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Abstract: This report provides a wide-ranging survey of parallel genetic
algorithms and reviews a number of approaches that have been adopted to
parallelise them. A tutorial level introduction to genetic algorithms is given and the
underlying mechanisms are described and discussed with many current
developments reviewed. Three broad classes of parallel genetic algorithms are
considered in detail and compared with conventional sequential implementations.
It is argued that significant performance benefits can be realised by using
distributed population structures and selection mechanisms even when the
paradigm is implemented on a sequential machine.
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Parallel Genetic Algorithms: A Survey

Andrew Chipperfield and Peter Fleming

Department of Automatic Control and Systems Engineering
University of Sheffield, UK

1 Introduction

Stochastic search and optimization methods, based on the principles of natural biological
evolution, have received considerable and increasing interest over the past decade. Introduced in
the 1970s by Holland [1], genetic algorithms (GAs) are part of the larger class of evolutionary
algorithms that also includes evolution strategies and genetic programming. Compared to
traditional optimization methods, such as calculus-based and enumerative strategies, the GA is
robust, global and generally more straightforward to apply. In recent years, GAs have been
applied to a broad range of problems including ecosystem modelling, combinatorial and
parametric optimization, machine intelligence, analysis of complex systems and financial
prediction.

This report provides a wide-ranging survey of the current trends and techniques in GAs and
mviews a number of approaches that have been adopted to parallelise the GA. Starting with a
~ titorial level introduction, the basic operations in the GA are described in the form of a brief
walk-through. Next, the major routines, such as fitness assignment and selection, are considered
by referring to the model of a simple sequential CA and recent advances are described. Although
tv: sequential model is used, most of the underlying mechanisms discussed are the same whether
the GA implementation is sequential or parallel. A broad range of parallel implementations are
described covering a representative selection of application areas. Finally, some conclusions are
drawn about the benefits of parallel GAs over sequential ones.

2 What are Genetic Algorithms?

The GA is a stochastic global search method that mimics the metaphor of natural biological
evolution [1]. GAs operate on a population of potential solutions applying the principle of
survival of the fittest to produce (hopefully) better and better approximations to a solution. At
each generation, a new set of approximations is created by the process of selecting individuals
according to their level of fitness in the problem domain and breeding them together using
operators borrowed from natural genetics. This process leads to the evolution of populations of
individuals that are better suited to their environment than the individuals that they were created
from, just as in natural adaptation.

2.1 Overview of GAs

Individuals, or current approximations, are encoded as strings, chromosomes, composed over
some alphabet(s), so that the genotypes (chromosome values) are uniquely mapped onto the
decision variable (phenotypic) domain. The most commonly used representation in GAs is the




binary alphabet {0, 1} although other representations can be used, e.g. ternary, integer, real-
valued etc. For example, a problem with two variables, x; and x5, may be mapped onto the
chromosome structure in the following way:

1011010011;010111010100101

X] X2
- B | s —

where x; is encoded with 10 bits and x; with 15 bits, possibly reflecting the level of accuracy or
range of the individual decision variables. Examining the chromosome string in isolation yields
no information about the problem we are trying to solve. It is only with the decoding of the
chromosome into its phenotypic values that any meaning can be applied to the representation.
However, as described below, the search process will operate on this encoding of the decision
variables, rather than the decision variables themselves, except, of course, where real-valued
genes are used.

Having decoded the chromosome representation into the decision variable domain, it is possible
to assess the performance, or fitness, of individual members of a population. This is done through
an objective function that characterises an individual’s performance in the problem domain. In the
natural world, this would be an individual’s ability to survive in its present environment. Thus, the
objective function establishes the basis for selection of pairs of individuals that will be mated
together during reproduction.

During the reproduction phase, each individual is assigned a fitness value derived from its raw
performance measure given by the objective function. This value is used in the selection to bias
towards more fit individuals. Highly fit individuals, relative to the whole population, have a high
probability of being selected for mating whereas less fit individuals have a correspondingly low
probability of being selected.

Once the individuals have been assigned a fitness value, they can be chosen from the population,
with a probability according to their relative fitness, and recombined to produce the next
generation. Genetic operators manipulate the characters (genes) of the chromosomes directly,
using the assumption that certain individual’s gene codes, on average, produce fitter individuals.
The recombination operator is used to exchange genetic information between pairs, or larger
groups, of individuals. The simplest recombination operator is that of single-point crossover.

Consider the two parent binary strings:
P, =1001011 0,and
P,=10111000.

If an integer position, i, is selected uniformly at random from the range [1, /-1], where [ is the
string length, and the genetic information exchanged between the individuals about this point,



then two new offspring strings are produced. The two offspring below are produced when the
crossover point i = 5 is selected,

0, =10010i00 0,and

0,b=10111{110.

This crossover operation is not necessarily performed on all strings in the population. Instead, it is
applied with a probability P, when the pairs are chosen for breeding. A further genetic operator,
called mutation, is then applied to the new chromosomes, again with a set probability, P,,,.
Mutation causes the individual genetic representation to be changed according to some
probabilistic rule. In the binary string representation, mutation will cause a random bit to change
its state, 0 => 1 or 1 = 0. So, for example, mutating the fourth bit of 0; leads to the new string,

Oj; =1 000000 0.

Mutation is generally considered to be a background operator that ensures that the probability of
searching a particular subspace of the problem space is never zero. This has the effect of tending
to inhibit the possibility of converging to a local optimum, rather than the global optimum.

After recombination and mutation, the individual strings are then, if necessary, decoded, the
objective function evaluated, a fitness value assigned to each individual and individuals selected
for mating according to their fitness, and so the process continues through subsequent
generations. In this way, the average performance of individuals in a population is expected to
increase, as good individuals are preserved and bred with one another and the less fit individuals
die out. The GA is terminated when some criteria are satisfied, e.g. a certain number of
generations completed, a mean deviation in the performance of individuals in the popuiation, or
when a particular point in the search space is encountered.

2.2 GAs versus Traditional Methods

From the above discussion, it can be seen that the GA differs substantially from more traditional
search and optimization methods. The four most significant differences are:

* GAs search a population of points in parallel, not a single point.
* GAs use probabilistic transition rules, not deterministic ones.

» GAs work on an encoding of the parameter set rather than the parameter set itself
(except in where real-valued individuals are used).

* GAs do not require derivative information or other auxiliary knowledge; only the
objective function and corresponding fitness levels influence the directions of

search.

It is important to note that the GA provides a number of potential solutions to a given problem and



the choice of final solution is left to the user. In cases where a particular problem does not have
one individual solution, for example, a family of Pareto-optimal solutions, as is the case in
multiobjective optimization problems, then the GA is potentially useful for identifying these
alternative solutions simultaneously.

3 Major Elements of the Genetic Algorithm

The simple genetic algorithm (SGA) is described by Goldberg [2] and is used here to illustrate the
basic components of the GA. A pseudo-code outline of the SGA is shown in Fig. 1. The
popuiation at time ¢ is represented by the time-dependent variable P, with the initial population of
random estimates being P(0). Using this outline of a GA, the remainder of this Section describes
the major elements of the GA.

procedure GA
begin
t=0;
initialize P(t);
evaluate P(t);
while not finished do
begin
t=t+1;
select P(t) from P(t-1);
reproduce pairs in P(t);
evaluate P(t);
end
end.
Figure 1: A Simple Genetic Algorithm

3.1 Population Representation and Initialisation

GAs operate simultaneously on a number of potential solutions, called a population, consisting of
some encoding of the parameter set. Typically, a population is composed of between 30 and 100
individuals, although, a variant called the micro GA uses very small populations, ~10 individuals,
with a restrictive reproduction and replacement strategy in an attempt to satisfy real-time
execution requirements [3].

The most commonly used representation of chromosomes in the GA is that of the single-level
binary string. Here, each decision variable in the parameter set is encoded as a binary string and
these are concatenated to form a chromosome. The use of Gray coding has been advocated as a
method of overcoming the hidden representational bias in conventional binary representation as
the Hamming distance between adjacent values is constant [4]. Empirical evidence of Caruana
and Schaffer [5] suggests that large Hamming distances in the representational mapping between



adjacent values, as is the case in the standard binary representation, can result in the search
process being deceived or unable to efficiently locate the global minimum. A further approach of
Schmitendorgf et al [6], is the use of logarithmic scaling in the conversion of binary-coded
chromosomes to their real phenotypic values. Although the precision of the parameter values is
possibly less consistent over the desired range, in problems where the spread of feasible
parameters is unknown a larger search space may be covered with the same number of bits than a
linear mapping scheme, thus allowing the computational burden of exploring unknown search
spaces to be reduced to a more manageable level.

Whilst binary-coded GAs are most commonly used, there is an increasing interest in alternative
encoding strategies, such as integer and real-valued representations. For some problem domains,
it is argued that the binary representation is in fact deceptive in that it obscures the nature of the
search [7]. In the subset selection problem [8], for example, the use of an integer representation
and look-up tables provides a convenient and natural way of expressing the mapping from
representation to problem domain.

The use of real-valued genes in GAs is claimed by Wright [9] to offer a number of advantages in
numerical function optimization over binary encodings. Efficiency of the GA is increased as there
is no need to convert chromosomes to phenotypes before each function evaluation; less memory
is required as efficient floating-point internal computer representations can be used directly; there
is no loss in precision by discretisation to binary or other values; and there is greater freedom to
use different genetic operators. The use of real-valued encodings is described in detail by
Michalewicz [10] and in the literature on Evolution Strategies (see, for example, [11]).

Having decided on the representation, the first step in the SGA is to create an initial population.
This is usually achieved by generating the required number of individuals using a random number
generator that uniformly distributes numbers in the desired range. For example, with a binary
population of N;,; individuals whose chromosomes are L;,; bits long, N4 x L;,; random
numbers uniformly distributed from the set {0, 1} would be produced.

A variation is the extended random initialisation procedure of Bramlette [7] whereby a number of
random initialisations are tried for each individual and the one with the best performance is
chosen for the initial population. Other users of GAs have seeded the initial population with some
individuals that are known to be in the vicinity of the global minimum (see, for example, [12] and
[13]). This approach is, of course, only applicable if the nature of the problem is well understood
beforehand or if the GA is used in conjunction with a knowledge based system.

3.2 The Objective and Fitness Functions

The objective function is used to provide a measure of how individuals have performed in thel
problem domain. In the case of a minimization problem, the most fit individuals will have the

lowest numerical value of the associated objective function. This raw measure of fitness is usually

only used as an intermediate stage in determining the relative performance of individuals in a GA.

Another function, the fitness function, is normally used to transform the objective function value

into a measure of relative fitness [14], thus:



F(x) = g(f(x)) M

where f is the objective function, g transforms the value of the objective function to a non-
negative number and F is the resulting relative fitness. This mapping is always necessary when
the objective function is to be minimized as the lower objective function values correspond to
fitter individuals. In many cases, the fitness function value corresponds to the number of offspring
that an individual can expect to produce in the next generation. A commonly used transformation
is that of proportional fitness assignment (see, for example, [2]). The individual fitness, F(x;), of
each individual is computed as the individual’s raw performance, f(x;), relative to the whole
population, i.e.,

L. @
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where N;, 4 is the population size and x; is the phenotypic value of individual i. Whilst this fitness
assignment ensures that each individual has a probability of reproducing according to its relative
fitness, it fails to account for negative objective function values.

A linear transformation which offsets the objective function [2] is often used prior to fitness
assignment, such that,

F(x) =af(x)+b 3)

where a is a positive scaling factor if the optimization is maximizing and negative if we are
minimizing. The offset b is used to ensure that the resulting fitness values are non-negative.

The use of linear scaling and offsetting outlined above is, however, a possible cause of rapid
convergence. The selection algorithm (see below) selects individuals for reproduction on the basis
of their relative fitness. Using linear scaling, the expected number of offspring is approximately
proportional to that individuals performance. As there is no constraint on an individual’s
performance-in a given generation, highly fit individuals in early generations can dominate the
reproduction causing rapid convergence to possibly sub-optimal solutions. Similarly, if there is
little deviation in the population, then scaling provides only a small bias towards the most fit
individuals.

Baker [15] suggests that limiting the reproductive range, so that no individuals generate an
excessive number of offspring, prevents premature convergence. Here, individuals are assigned a
fitness according to their rank in the population rather than their raw performance. One variable,
SP, is used to determine the bias, or gelectiye pressure, towards the most fit individual and the
fitness of the others is determined by,

F(x) = 2-SP+2(SP-1) 5—, 4)
ind ~



where x; is the position in the ordered population of individual i.

For example, for a population size of N;,; = 40 and selective pressure of SP = 1.1, individuals are
given a fitness value in the range [0.9, 1.1]. The least fit individual has a fitness of 0.9 while the
most fit is assigned a fitness of 1.1. The increment in the fitness value between adjacent ranks is
thus 0.0051.

3.3 Selection

Selection is the process of determining the number of times, or trials, a particular individual is
chosen for reproduction and, thus, the number of offspring that an individual will produce. The
selection of individuals can be viewed as two separate processes:

1) determination of the number of trials an individual can expect to receive, and
2) conversion of the expected number of trials into a discrete number of offspring,

The first part is concerned with the transformation of raw fitness values into a real-valued
expectation of an individual’s probability to reproduce and is dealt with in the previous subsection
as fitness assignment. The second part is the probabilistic selection of individuals for reproduction
based on the fitness of individuals relative to one another and is sometimes known as sampling.
The remainder of this subsection will review some of the more popular selection methods in
current usage.

Baker [16] presented three measures of performance for selection algorithms,,@jas,,gp&gd_augu N
efficiency. Bias is defined as the absolute difference between an_individual’s actual and expected
selection probability. Optimal zero bias is therefore achieved when an individual’s selection
probability equals its expected number of trials.

Spread is the range in the possible number of trials that an individual may achieve. If f{(i) is the
actual number of trials that individual i receives, then the “minimum spread” is the smallest
spread that theoretically permits zero bias, i.e.

i) € {Let(i)], [et(i)] } (5

where et(i) is the expected number of trials of individual i, | ez (i) | is the floor of et(i) and
[et(i)7] is the ceiling. Thus, while bias is an indication of accuracy, the spread of a selection
method measures its consistency.

The desire for efficient selection methods is motivated by the need to maintain a GAs overall time
complexity. It has been shown in the literature that the other phases of a GA (excluding the actual
objective function evaluations) are O(L;,4.N;,4) or better time complexity. The selection
algorithm should thus achieve zero bias whilst maintaining a minimum spread and not
contributing to an increased time complexity of the GA.



3.3.1 Roulette Wheel Selection Methods

Many selection techniques employ a “roulette wheel” mechanism to probabilistically select
individuals based on some measure of their performance. A real-valued interval, Sum, is
determined as either the sum of the individuals’ expected selection probabilities or the sum of the
raw fitness values over all the individuals in the current population. Individuals are then mapped
one-to-one into contiguous intervals in the range [0, Sum]. The size of each individual interval
corresponds to the fitness value of the associated individual. For example, in Fig. 2 the
circumference of the roulette wheel is the sum of all six individual’s fitness values. Individual 5 is
the most fit individual and occupies the largest interval, whereas individuals 6 and 4 are the least
fit and have correspondingly smaller intervals within the roulette wheel. To select an individual, a
random number is generated in the interval [0, Sum] and the individual whose segment spans the
random number is selected. This process is repeated until the desired number of individuals have
been selected.

The basic roulette wheel selection method is stochastic sampling with replacement (SSR). Here,
the segment size and selection probability remain the same throughout the selection phase and
individuals are selected according to the procedure outlined above. SSR gives zero bias but a
potentially unlimited spread. Any individual with a segment size > 0 could entirely fill the next
population.

® o

@ ©®

Figure 2: Roulette Wheel Selection

Stochastic sampling with partial replacement (SSPR) extends upon SSR by resizing an
individual’s segment if it is selected. Each time an individual is selected, the size of its segment is
reduced by 1.0. If the segment size becomes negative, then it is set to 0.0. This provides an upper
bound on the spread of [ef (i) 1. However, the lower bound is zero and the bias is higher than that
of SSR.

Remainder sampling methods involve two distinct phases. In the integral phase, individuals are
selected deterministically according to the integer part of their expected trials. The remaining
individuals are then selected probabilistically from the fractional part of the individuals expected
values. Remainder stochastic sampling with replacement (RSSR) uses roulette wheel selection to



sample the individual not assigned deterministically. During the roulette wheel selection phase,
individual’s fractional parts remain unchanged and, thus, compete for selection between “spins”.
RSSR provides zero bias and the spread is lower bounded. The upper bound is limited only by the
number of fractionally assigned samples and the size of the integral part of an individual. For
example, any individual with a fractional part > 0 could win all the samples during the fractional
phase. Remainder stochastic sampling without replacement (RSSWR) sets the fractional part of
an individual’s expected values to zero if it is sampled during the fractional phase. This gives
RSSWR minimum spread, although this selection method is biased in favour of smaller fractions.

3.3.2 Stochastic Universal Sampling

Stochastic universal sampling (SUS) is a single-phase sampling algorithm with minimum spread
and zero bias. Instead of the single selection pointer employed in roulette wheel methods, SUS
uses N equally spaced pointers, where N is the number of selections required. The population is
shuffled randomly and a single random number in the range [0 Sum/N] is generated, prr. The N
individuals are then chosen by generating the N pointers spaced by 1, [ptr, ptr+1, ..., ptr+N-1], and
selecting the individuals whose fitnesses span the positions of the pointers. An individual is thus
guaranteed to be selected a minimum of | et (i) | times and no more than [et (i) ], thus achieving
minimum spread. In addition, as individuals are selected entirely on their position in the
population, SUS has zero bias. For these reasons, SUS has become the most widely used selection
algorithm in current GAs.

3.4 Crossover (Recombination)

The basic operator for producing new ‘chromosomes in the GA is that of crossover. Like its
counterpart in nature, crossover produces new individuals that have some parts of both parent’s
genetic material. The simplest form of crossover is that of single-point crossover, described in the
Overview of GAs in Section 2.1. In this Section, a number of variations on crossover are
described and discussed and the relative merits of each reviewed.

3.4.1 Multi-point Crossover

For multi-point crossover, m crossover positions, k;€ {1,2,...,/-1}, where k; are the
crossover points and / is the length of the chromosome, are chosen at random with no duplicates
and sorted into ascending order. Then, the bits between successive crossover points are exchanged
between the two parents to produce two new offspring. The section between the first allele
position and the first crossover point is not exchanged between individuals. This process is
illustrated in Fig. 3 overleaf.
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Figure 3: Multi-point Crossover (m=5)

The idea behind multi-point, and indeed many of the variations on the crossover operator, is that
the parts of the chromosome representation that contribute most to the performance of a particular
individual may not necessarily be contained in adjacent sub-strings [17]. Further, the disruptive
nature of multi-point crossover appears to encourage the exploration of the search space, rather
than favouring convergence to highly fit individuals early in the search, thus making the search
more robust [18].

3.4.2 Uniform Crossover

Single and multi-point crossover define cross points as places between loci where a chromosome
can be split. Uniform crossover [19] generalises this scheme to make every locus a potential
crossover point. A crossover mask, the same length as the chromosome structures is created at
random and the parity of the bits in the mask indicates which parent will supply the offspring with
which bits. Consider the following two parents, crossover mask and resulting offspring:

P, =1011000111
P, =0001111000

Mask =0011001100

0, =0011110100
0O, =1001001011

Here, the first offspring, O, is produced by taking the bit from P, if the corresponding mask bit is
1 or the bit from P, if the corresponding mask bit is 0. Offspring O, is created using the inverse of
the mask or, equivalently, swapping P; and P,.

Uniform crossover, like multi-point crossover, has been claimed to reduce the bias associated with
the length of the binary representation used and the particular coding for a given parameter set.
This helps to overcome the bias in single-point crossover towards short sub-strings without
requiring precise understanding of the significance of individual bits in the chromosome
representation. Spears and De Jong [20] have demonstrated how uniform crossover may be
parameterised by applying a probability to the swapping of bits. This extra parameter can be used
to control the amount of disruption during recombination without introducing a bias towards the
length of the representation used. When uniform crossover is used with real-valued alleles, it is
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usually referred to as discrete recombination.
3.4.3 Other Crossover Operators

A related crossover operator is that of shuffle [21]. A single cross-point is selected, but before the
bits are exchanged, they are randomly shuffled in both parents. After recombination, the bits in
the offspring are unshuffled. This too removes positional bias as the bits are randomly reassigned
each time crossover is performed.

The reduced surrogate operator [17] constrains crossover to always produce new individuals
wherever possible. Usually, this is implemented by restricting the location of crossover points
such that crossover points only occur where gene values differ.

3.4.4 Intermediate Recombination

Given a real-valued encoding of the chromosome structure, intermediate recombination is a
method of producing new phenotypes around and between the values of the parents phenotypes
[22]. Offspring are produced according to the rule,

where a is a scaling factor chosen uniformly at random over some interval, typically [-0.25, 1.25]
and P; and P, are the parent chromosomes (see, for example, [22]). Each variable in the offspring
is the result of combining the variables in the parents according to the above expression with a
new a chosen for each pair of parent genes. In geometric terms, intermediate recombination is
capable of producing new variables within a slightly larger hypercube than that defined by the
parents but constrained by the range of a. as shown in Fig 4.

A
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Figure 4: Geometric Effect of Intermediate Recombination

3.4.5 Line Recombination

Line recombination [22] is similar to intermediate recombination, except that only one value of a
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is used in the recombination. Fig. 5 shows how line recombination can generate any point on the
line defined by the parents within the limits of the perturbation, «, for a recombination in two
variables.
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Figure 5: Geometric Effect of Line Recombination

3.4.6 Discussion

The binary operators discussed in this Section have all, to some extent, used disruption in the
representation to help improve exploration-during-recombination. Whilst these operators may be
used with real-valued populations, the resulting changes in the genetic material after
recombination would not extend to the actual values of the decision variables, although offspring
may, of course, contain genes from either parent. The intermediate and line recombination
operators overcome this limitation by acting on the decision variables themselves. Like uniform
crossover, the real-valued operators may also be parameterised to provide a control over the level
of disruption introduced into offspring. For discrete-valued representations, variations on the
recombination operators may be used that ensure that only valid values are produced as a result of
crossover [23].

3.5 Mutation

In natural evolution, mutation is a random process where one allele of a gene is replaced by
another to produce a new genetic structure. In GAs, mutation is randomly applied with low
probability, typically in the range 0.001 and 0.01, and modifies elements in the chromosomes.
Usually considered as a background operator, the role of mutation is often seen as providing a
guarantee that the probability of searching any given string will never be zero and acting as a
safety net to recover good genetic material that may be lost through the action of selection and
crossover [2].

The effect of mutation on a binary string is illustrated in Fig. 6 for a 10-bit chromosome
representing a real value decoded over the interval [0, 10] using both standard and Gray coding
and a mutation point of 3 in the binary string. Here, binary mutation flips the value of the bit at the
loci selected to be the mutation point. The effect of mutation on the decision variable, of course,
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depends on the encoding scheme used. Given that mutation is generally applied uniformly to an
entire population of strings, it is possible that a given binary string may be mutated at more than
one point.

mutation point ——g binary = Gray
Original string- 0 001 1 0 0 0 1 0 09659 0.6634
Mutated string- 0 0§11 1 0 0 0 1 0 22146 1.8439

Figure 6: Binary Mutation

With non-binary representations, mutation is achieved by either perturbing the gene values or
random selection of new values within the allowed range. Wright [9] and Janikow and
Michalewicz [24] demonstrate how real-coded GAs may take advantage of higher mutation rates
than binary-coded GAs, increasing the level of possible exploration of the search space without
adversely affecting the convergence characteristics. Indeed, Tate and Smith [25] argue that for
codings more complex than binary, high mutation rates can be both desirable and necessary and
show how, for a complex combinatorial optimization problem, high mutation rates and non-binary
coding yielded significantly better solutions than the normal approach.

Many variations on the mutation operator have been proposed. For example, biasing the mutation
towards individuals with lower fitness values to increase the exploration in the search without
losing information from the fitter individuals [26] or parameterising the mutation such that the
mutation rate decreases with the population convergence [27]. Miihlenbein [22] has introduced a
mutation operator for the real-coded GA-that-use -linear ter r_the distribution of the
range of mutation applied to gene values. It is claimed that by biasing mutation towards smaller
changes in gene values, mutation can be used in conjunction with recombination as a foreground
search process. Other mutation operations include that of frade mutation [8)], whereby the
contribution of individual genes in a chromosome is used to direct mutation towards weaker
terms, and reorder mutation [8], that swaps the positions of bits or genes to increase diversity in
the decision variable space.

3.6 Reinsertion

Once a new population has been produced by selection and recombination of individuals from the
old population, the fitness of the individuals in the new population may be determined. If fewer
individuals are produced by recombination than the size of the original population, then the
fractional difference between the new and old population sizes is termed a generation gap [28]. In
the case where the number of new individuals produced at each generation is one or two, the GA
is said to be steady-state [29] or incremental [30]. If one or more of the most fit individuals is
deterministically allowed to propagate through successive generations then the GA is said to use
an elitist strategy.

To maintain the size of the original population, the new individuals have to be reinserted into the
old population. Similarly, if not all the new individuals are to be used at each generation or if
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more offspring are generated than the size of the old population then a reinsertion scheme must be
used to determine which individuals are to exist in the new population. An important feature of
not creating more offspring than the current population size at each generation is that the
generational computational time is reduced, most dramatically in the case of the steady-state GA,
and that the memory requirements are smaller as fewer new individuals need to be stored while
offspring are produced.

When se]ecting which members of the old population should be rcplaced the most apparent
strategy is to replace the least fit members deterministically. However, in studies, Fogarty [31] has
shown that no significant difference in convergence characteristics was found when the
individuals selected for replacement where chosen with inverse proportional selection or
deterministically as the least fit. He further asserts that replacing the least fit members effectively
implements an elitist strategy as the most fit will probabilistically survive through successive
generations. Indeed, the most successful replacement scheme was one that selected the oldest
members of a populahon for replacement. This is reported as being more in keeping with
generational rcproductlon as every member of the population will, at some time, be replaced.
Thus, for an individual to survive successive generations, it must be sufficiently fit to ensure
propagation into future generations.

3.7 Termination of the GA

Because the GA is a stochastic search method, it is difficult to formally specify convergence
criteria. As the fitness of a population may remain static for a number of generations before a
superior individual is found, the application of conventional termination criteria becomes
problematic. A common practice is to terminate the GA after a prespecified number of
generations and then test the quality of the best members of the population against the problem
definition. If no acceptable solutions are found, the GA may be restarted or a fresh search
initiated.

4 Parallel GAs

Given the preceding description of the GA, it is clear that the GA may be parallelised in a number
of ways. Indeed, there are many variations on parallel GAs, many of which are very different
from the original GA presented by Holland [1]. Most of the major differences are encountered in
the population structure and the method of selecting individuals for reproduction. The motivation
for exploring parallel GAs is manifold. One may wish to improve speed and efficiency by
employing a parallel computer, apply the GA to larger problems or try to follow the biological
metaphor more closely by introducing structure and geographic location into the population. As
this Section will show, the benefits of using parallel GAs, even when run on a sequential machine,
can be more than just a speed-up in the execution time.

In the remainder of this Section, we describe a number of parallel GAs and use three broad
categories to classify them:- global, migration and diffusion. These categories reflect the different
ways in which parallelism is exploited in the GA and the nature of the population structure and
recombination mechanisms used. The global GA treats the entire population as a single breeding
unit and aims to exploit the algorithmic parallelism inherent in the GA. Migration GAs divide the
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population into a number of sub-populations, each of which is treated as a separate breeding unit
under the control of a conventional GA. To encourage the proliferation of good genetic material
throughout the whole population, individuals migrate between the sub-populations from time to
time. Generally, the migration GA is considered coarse-grained. The diffusion GA treats each
individual as a separate breeding unit, the individuals it may mate with being selected from within
a small local neighbourhood. The use of local selection and reproduction rules leads to a
continuous diffusion of individuals over the population. The diffusion GA is usually considered
fine-grained.

4.1 Global GAs

Examination of the pseudo-code outline of the sequential Simple GA given in Fig. 1 reveals thata
significant proportion of the computation in a GA is composed of taking pairs of individuals,
combining them to form new offspring, applying mutation and evaluating a cost function. Taking
a population size of, say, 50 and assuming that reproduction of two individuals creates two new
offspring, then the inner loop of Fig. 1 contains 25 discrete operations that may be performed
concurrently at each generation. The Worker/Farmer architecture in Fig. 7 demonstrates how this
geometric parallelism may be exploited by a parallel computer.

GA FARMER

Selection
Fitness Assignment

WORKER 1 WORKER 2 WORKER N
Recombination Recombination e @ ® | Recombination
Mutation Mutation Mutation
Function Evaluation Function Evaluation Function Evaluation

Figure 7: A Worker/Farmer GA

The GA Farmer node initialises and holds the entire population, performs selection and assigns
fitness to individuals. The Worker nodes recombine individuals, apply mutation and evaluate the
objective function for the resulting offspring. Goldberg [2] describes a similar scheme, the
synchronous master-slave, whereby a hybrid GA uses a local search routine at each worker to
further refine the estimates generated at each node. Others, notably Fogarty and Huang [30] and
Dodd et al [32] use the processor farm for the evaluation of objective functions only.

Although the farmed GA does not embrace all of the parallelism inherent in the GA, near linear
speed-up has been reported in cases where the objective function is significantly more
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computationally expensive than the GA itself. In particular, when the objective function being
minimized is of low computational cost, then there is potentially a bottleneck at the farmer while
fitness assignment and selection are performed. The computational efficiency, of course, depends
on the balance between the cost of the parallel parts of the GA and the sequential elements. Thus,
the farmed GA may be inefficient if the objective function evaluation times vary greatly.

Goldberg [2] also describes a semi-synchronous master-slave GA that overcomes this potential
bottleneck by relaxing the requirement for strict synchronous operation. Here, individuals are
selected and inserted into the population as and when the worker nodes complete their tasks.
However, both the synchronous and semi-synchronous models are potentially unreliable because
of the dependence on the single farmer process.

A further issue is that of the message size used to pass individuals from the Farmer to the
Workers. Whilst smaller messages allow greater control over the load balance on the nodes in the
parallel system, they may be less efficient in using available bandwidth. Thus, more than one pair
of individuals may be sent from the Farmer to a Worker in a communication interval. If the
objective function is sufficiently large, then the worker/farmer GA may prove a useful method of
reducing the execution time of the GA when the nodes used are networked workstations.

A more robust extension to the worker/farmer implementations is the asynchronous, concurrent
GA [2]. Using a number of identical processors, genetic operators and objective function
evaluations are performed independently of one another on a population stored in a shared
memory. This requires that no individual be accessed by more than one processor simultaneously.
Although more complicated to implement than the conventional farmed GAs described above,
this scheme is highly tolerant to processor and memory failure. Even if only one processor and
some of the shared memory are functioning, it is still possible for useful processing to be
performed.

4.2 Migration GAs

The GA as described thus far operates globally on a single population. That is, individuals are
processed probabilistically on their performance in the population as a whole and any individual
has the potential to mate with any other individual in the entire population. This treatment of the
population as a single breeding unit is known as panmixia.

In natural evolution, species tend to reproduce within subgroups of the entire population, isolated

to some extent from one another, but with the possibility of mating occurring across the
boundaries of the subgroups. A population distributed amongst a number of semi-isolated _
breeding groups is known as polytypic. Humans, for example, are polytypic in that they consist of
groups of the species isolated from one another geographically, culturally and economically.
Whilst breeding may occur between individuals from different subgroups of the species, it is
much more likely that individuals from within the same group will reproduce together.

The migration or island model of the GA introduces geographic population distribution by
dividing a large population into many smaller semi-isolated sub-populations or demes. Each sub-
population is a separate breeding unit using local selection and reproduction rules to locally
evolve the species. From time to time, migration of individuals occurs between sub-populations
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such that individuals from one population are introduced into another sub-population. The pattern
of migration limits how much genetic diversity can occur in the global population. This pattern of
migration is determined by the number of individuals migrated, the interval between migration
and the migration paths between sub-populations. This movement of individuals between demes
is often termed the stepping stone model.

The traditional sequential GA can readily be extended to encompass the migration model. A
pseudo-code outline of the modified algorithm for the migration GA is shown in Fig. 8. The
population is divided into a number of sub-populations each of which is evolved by an
independent GA. Additional routines are included to exchange individuals between sub-
populations according to the communications topology employed and a global termination
criteria introduced. Fig. 9 shows a possible implementation of the migration GA and some of the
migration paths between the population islands.

-- Each node (GAI)

WHILE not finnished
SEQ

... Selection

... Reproduction

... Evaluation

PAR
... Send emmigrants
... Receive immigrants

Figure 8: Pseudo-code Outline of the Migration GA

Grosso [33] first introduced a geographically isolated population structure in 1985 using an island
model of the GA with five independent sub-populations. From his study, he found that semi-
isolated populations improved the performance of the GA in terms of the quality of solution and
the number of function evaluations required. He asserted that limited migration of individuals
between sub-populations was more effective than either complete sub-population
interdependence or independence.

In 1987, Petty et al [34] presented a migration GA influenced by earlier work on population
isolation conducted by Wilson [35] in his ANIMAT classifier-based learning system and Schaffer’s
VEGA [36]. ANIMAT modelled an artificial creature seeking food and avoiding trees in a two-
dimensional wood. Each individual specifies one action that this creature was to make, e.g. in
which direction to move. If an individual was selected for reproduction, then its mate was chosen
from the sub-population of individuals specifying the same action. Schaffer’s VEGA, Vector
Evaluated GA, was designed to solve problems with multiple objectives. The population was
divided into a sub-populations, each sub-population associated with a particular objective.
Individuals were then selected according to their performance within a sub-population, and
mating was allowed to occur across the sub-population boundaries. The idea behind this
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Figure 9: A Migration GA

Petty’s migration GA was implemented on an Intel iPSC message-passing multi-processor system
with a binary n-cube interconnection network. One GA, called a nodal GA, was placed on each
processor. At each generation, the best individual on each node is communicated to its
neighbours. Each sub-population therefore receives one individuals from each neighbouring node
which it inserts into its current population. A number of insertion strategies were tested:-
replacing the worst individuals with immigrants, uniform replacement of individuals by
immigrants and replacement of individuals with the smallest Hamming distance from the
immigrants. However, the effect of the insertion methods is not reported. Petty et al found a
significant performance increase in terms of the convergence characteristics when the parallel GA
was applied to numerical optimization problems selected from De Jong’s test-bed functions [14],
as well as the speed-up associated with running the GA on a parallel machine. Typically, the
migration GA was able to converge to solutions not found by a global GA although the results
showed a degree of problem dependence.

Tanse [37] also reported on a migration GA in 1987. He studied the migration model and
compared its performance with a partitioned GA, i.e. a GA whose population is divided into sub-
populations that evolve entirely independently with no migration between sub-populations.
Again, the GA was implemented on a hypercube machine, although Tanse’s parallel computer
employed custom VAX-like CPUs. This implementation used two new parameters to specify the
migration interval, at which generation migration should take place, and the migration rate, the
number of individuals transferred between sub-populations. In early experiments [37], Tanse
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selected individuals for migration probabilistically from the subset of the sub-population whose
fitness was at least equal to the average fitness of the sub-population. Likewise, individuals were
selected for replacement by immigrants probabilistically from the subset of individuals whose
fitness was no greater than the average for that sub-population. Later [38], it appears that a new
strategy was adopted. At a migration generation, each node produced more offspring than the
current sub-population size. The migrants were then uniformly selected from the offspring and
removed from the sub-population, thus maintaining the correct sub-population size. The receiving
sub-population uniformly replaced individuals with immigrants. The philosophy behind this
approach is that the most fit individuals are more likely to reproduce and are therefore most likely
to migrate. The actual migration took place bidirectionally along one dimension of the hypercube,
selected on the basis of the generation number. Thus, the neighbour selected to receive individuals
from a node will also send its migrants to that node.

The results presented by Tanse showed a near-linear speed-up when compared against a
sequential GA with a population size equal to the sum of the individual sub-populations.
Comparing the migration GA with the partitioned GA, the migration GA consistently found
superior individuals and had a higher average fitness over the entire population. However, due to
the limited number of test functions, no conclusion can be drawn about the general effect of the
migration rate and interval. The effect of the mutation and crossover operators used with the
migration GA was also investigated. The results indicate that it is feasible to use different
crossover and mutation rates on different nodes, allowing the balance between exploration and
exploitation to be varied locally, but with migration ensuring that good individuals should survive
in at least some sub-populations.

Similar results to Tanse are reported by Starkweather et al [39] and Cohoon et al [40].
Starkweathers et al’s GA has a number of notable differences to the implementations described so
far. Rather than using a generational GA in which most or all of the population is replaced at each
generation, their parallel GA was based on Whitley’s GENITOR program [29] that uses one-at-a-
time reproduction replacing a single individual at each reproduction step. sub-populations are
placed on a ring or a circle and migration of the fittest individuals takes place at regular predefined
intervals. At migration step M, individuals on node X are migrated to the sub-population given by
mod(M+X,N) where N is the number of sub-populations numbered O to N-1. For example, at
migration 1, sub-population 0 individuals migrate to sub-population 1 and at migration 2
individuals from sub-population 0 migrate to sub-population 2. The migration GA was applied to
a wide range of problems including neural network optimization, a mapping problem and a 105-
city travelling salesman problem. In all test cases, the migration GA produced better results than a
comparable sequential one. When the migration GA was implemented on a sequential machine it
was found that it would find better solutions and execute faster than a standard GA with the same
population size on a number of test cases. In addition, the use of an adaptive mutation rate,
initially high and reducing with generations, was found to improve the convergence
characteristics of the GA.

In 1991, Miihlenbein et al [41] described a real-valued parallel GA for use as a “black-box solver”
in high-dimensional optimization problems. A conventional single-point crossover operator was
employed that operated directly on the ANSI-IEEE floating-point representation of the decision
variables. The mutation operator worked only on the fractional part of a variable’s representation,
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thus mutation is exponentially biased towards producing a new individual in the region of the
original rather than one a larger numerical distance away. In experiments, the parallel GA was
able to find global solutions to problems of up to a dimension of 400.

The distributed breeder GA of Miihlenbein and Schlierkamp-Voosen [22], rather than modelling
the natural and self-organized evolution of the earlier parallel GA described above, is based on a
model of rational selection in human breeding groups. Whereas the parallel GA models natural
selection, the breeder GA models artificial selection. Using influences from Evolution Strategies
[11] and GAs, the breeder GA selects the best 7% of a population, where T is a predefined
parameter, and randomly mates them until sufficient offspring are produced. As well as ensuring
that no individuals mate with themselves, the fittest individual also survives into the following
generation. This selection and reproduction process is known as truncation selection as only a
subset of each generation are used as potential parents.

The breeder GA operates on populations of real-valued individuals and has new genetic operators
designed specifically for this representation, such as intermediate and line recombination, which
have been described earlier in Sections 3.4 and 3.5. The parallel GA uses a local hill-climbing
algorithm on certain individuals to improve a current local estimate. In the breeder GA, the
mutation operator was found to be almost as effective as local hill-climbing but was much less
complex and computationally demanding to implement. In all cases, the breeder GA was found to
be more effective than the earlier parallel GA and managed to solve numerical optimization
problems of dimension 1000.

A recent variation of the migration GA intended to overcome the problem of premature
convergence is presented by Potts et al [42]. This algorithm, called GAMAS (GA based on
Migration and Artificial Selection), uses four interdependent binary populations labelled SPECIES
I to SPECIES IV. At initialisation, SPECIES 1I, SPECIES Il and SPECIES IV are generated with a
predefined bias. SPECIES II is created with a bias in favour of 0’s in the chromosome
representation, SPECIES IV biased towards 1’s and SPECIES IIl with equal probability of 0’s and
1’s. Since the ratio of 0’s to 1’s contained in the optimal solution is not known a priori, this bias
intends to encourage the exploration of different areas of the search space. SPECIES 1 is later filled
as the result of an artificial selection process. The sub-population size used in all SPECIES was set
to 36 individuals.

To encourage both exploitation and exploration of the species, GAMAS uses different mutation
rates in the three evolving sub-populations. SPECIES 1I is used for exploration and has a high
mutation rate, SPECIES IV for exploitation with a low mutation rate and SPECIES Il for both
exploration and exploitation with a slightly higher mutation rate than SPECIES IV. At each
generation, the most fit individuals from SPECIESII, Il and 1V are artificially selected and placed in
SPECIES I, replacing less fit individuals where necessary. Thus, SPECIES I is used as a dominant
incipient species and is held in isolation with no reproduction or crossover. To further enforce
exploration, migration of randomly selected individuals takes place between SPECIES I1, I1I and IV,
This migration takes place at high frequency in early generations and is gradually reduced in
subsequent generations. At predetermined generation intervals, the entire contents of SPECIES I
are used to replace SPECIES IV, the exploitation species. The rationale being to further develop the
good approximations already obtained. A further refinement to the migration GA is the concept of
recycling whereby the three evolving species are reinitialised without affecting the individuals
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contained in SPECIES 1. Recycling is intended to allow the GA to explore new regions of the
search space and overcome the initial population bias reported by Goldberg [2].

GAMAS has been tested on a NP-hard combinatorial optimization problem - the file allocation
problem, the XOR neural network which contains many optimal solutions and the multimodal,
multivariate sine envelope sine wave function of Schaffer [43]. Again, in all these cases GAMAS
found superior solutions to the sequential GA. In the XOR neural network problem, GAMAS also
demonstrated an ability to find a number of different optimal solutions.

Clearly, the migration model of the GA is well suited to parallel implementation on MIMD
machines. Given the range of possible population topologies and migration paths between them,
efficient communications networks should be possible on most parallel architectures from small
multiprocessor platforms to clusters of networked workstations. The semi-isolation of sub-
populations and limited communication between them also encourages a high degree of fault
tolerance. In a well-designed migration GA, in the event of the loss of individual sub-populations
or communications paths between them, the GA can still perform useful computation.

The migration GA has generally been reported as a more efficient search and optimization method
than conventional sequential GAs. From the preceding text, it should be clear that this is the effect
of local selection and migration rather than parallel implementation. However, the migration GA
is slightly more complex to use as further parameters are introduced to control migration between
sub-populations.

4.3 Diffusion GAs

An alternative model of a distributed population structure is provided by the diffusion GA.
Whereas migration introduces discontinuities into the population structure with barriers between
the borders of the islands containing the sub-populations, diffusion treats the population as a
single continuous structure. Each individual is assigned a geographic location on the population
surface and is allowed to breed with individuals contained in a small local neighbourhood. This
neighbourhood is usually chosen from immediately adjacent individuals on the population surface
and is motivated by the practical communication restrictions of parallel computers. The diffusion
GA is also known as the neighbourhood, cellular or fine grained GA.

Fig.10 shows a pseudo-code outline of the diffusion GA. Consider the population distribution
shown in Fig. 11(a) where each individual, ; ;, is assigned a separate node on a toroidal-mesh
parallel processing network. The Figure shows that there are no specific islands in the population
structure, rather a contiguous geographic distribution of individuals, however, there is potential
for a similar effect. Given that mating is restricted to adjacent processors, then individuals on
distant processors may take as many generations to meet and mate as individuals in different sub-
populations in the island model. Wright [44] refers to this form of isolation within a species as
isolation by distance. From Fig. 10, each individual is first initialised, either randomly or using a
heuristic, and its performance evaluated. Each node then sends its individual to its neighbours and
receives individuals from those neighbours. For example, in Fig. 11(a), individual I3 sends a
copy of itself to I ;, I3 5, I3 5 and I ; and receives copies of the individuals on those nodes. The
purpose of this communication is to provide a pool of potential mates from the incoming
individuals. Thus, selection of a mate for individual /3 ; is made on the basis of a neighbourhood

21



fitness over the individuals I 7, I3 5, I3 5 and I4 ;. Reproduction involves the usual crossover and
mutation operators and is used to produce a single individual to replace the parent residing on the
node. However, rules may be applied to retain the original parent if neither of the offspring is
sufficiently fit to replace it.

-- Each node (Ii,j)

Initialise
WHILE not finished
SEQ
... Evaluate
PAR
... Send self to neighbours
... Receive neighbours
... Select mate
... Reproduce

Figure 10: Pseudo-code Outline of the Diffusion GA

At initialisation, the distribution of genetic material over the population surface is random,
assuming that the population has not been seeded heuristically. After a few generations, local
clusters of individuals with similar genetic material and fitness may appear in the population
giving rise to virtual islands. This phenomena is shown in Fig. 11(b) where the shading is used to
represent individuals with similar genetic material. The drift in the population caused by local
selection tends to reduce the number of clusters whilst increasing their size over generations as
the most fit individuals diffuse over the population.
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Figure 11: A Diffusion GA
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The first attempt at a massively-parallel fine-grained GA known to the authors was by Robertson
[45] in 1987. Robertson used a SIMD Connection Machine and assigned one individual per
processor. However, global selection and recombination was performed on the host machine and
the individual processors were only used for function evaluation implementing a massive
processor farm (Section 4.1). Even considering the large communications overhead of this
scheme, the objective function evaluation was significantly large for huge speed-up to be
reported. By 1989 a more subtle and appropriate scheme for the Connection Machine was
presented by Manderick and Spiessens [46] and later implemented on an AMT DAP [47].
Individuals were again placed on separate processors in a planar grid, but a local selection
strategy based on a neighbourhood fitness distribution was used. This first diffusion algorithm
was not only motivated by the desire to use the Connection Machine’s architecture more
effectively, but also to align the GA more closely with natural biological evolution. Spiessens and
Manderick argue that in nature there is no global selection or fitness-distribution. Rather, natural
selection is a local phenomenon where individuals find a mate in their local environment. Their
implementation is similar to that described here with the exception that one parent is chosen from
the local neighbourhood probabilistically on the basis of the neighbourhood fitness function and
recombined with a randomly selected mate within the same locality. This implementation was
tested on the De Jong test-bed functions and compared with a conventional GA. The results
indicate that the lower selective pressure, due to the local selection mechanism, encourages
greater exploration of the search space and helps inhibit the early domination of the population by
good individuals. The results also showed that the parallel GA was more effective when the
objective function was multimodal.

At around the same time, Mihlenbein [48] and Gorges-Schleuter [49] introduced an
asynchronous parallel GA, ASPARAGOS. Using ideas from population genetics, the GA was
implemented on a connected ladder network, or ring, topology using Transputers with one
individual per processor as shown in Fig. 12. An individual’s neighbourhood is defined by its
mobility, so, for example, given a ‘moving radius’ of two yields a neighbourhood size of eight.

deme

Figure 12: ASPARAGOS Population Structure

ASPARAGOS also employs local hill-climbing when a new individual is created. The rationale
behind this idea is that hill climbing can more quickly improve the fitness of an individual than
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genetic operators. When applied to the quadratic assignment problem, ASPARAGOS found a new
optimum for the largest published problem [48]. In other areas, such as numerical optimization,
ASPARAGOS has been found to perform well, and super-linear speed-up has been reported.
Although, as Miihlenbein points out, measuring performance of parallel GAs is difficult due to the
probabilistic nature of the algorithm and the effective change in the search strategy with varying
numbers of processors. Furthermore, in some experiments, a single population GA was not able to
locate the minimum at all.

Davidor [50] in his version of the diffusion GA, called ECO GA, used a 2-D grid with wrap-
around to produce a population surface in which each individual had eight neighbours. He used a
one-at-a-time reproduction strategy and allowed the offspring produced by a particular
neighbourhood to replace probabilistically an individual in the vicinity of its parents. Davidor also
described the phenomena of niche and speciation where the virtual islands on the population
surface represent near local optima.

An interesting variation on local selection is given by Collins and Jefferson [51]. Instead of
selecting a mate from within a small local neighbourhood, an individual takes a random walk and
selects a mate from individuals encountered on the way. This was found to be highly efficient in
the graph partitioning problem and demonstrated a capability of finding multiple optima in a
single population. In addition, four metrics where used to measure the differences in evolutionary
dynamics between polytypic and panmictic populations. They were the diversity of alleles and
genotypes, an inbreeding coefficient measuring the similarity between parents and speed and
robustness.

A hierarchically structured distributed GA is described by Voight et al [52]that is suitable for fine-
and coarse-grain multiprocessor implementations. A population model using different diffusion
rates corresponding to the hierarchical structure of the evolution surface is used. Interacting
breeding units, or local environments, are organised hierarchically such that interaction within
individual local environments is greater than the interactions between individuals in different
local environments. Thus, the population structure allows the local interactions of the diffusion
GA whilst also modelling the semi-isolation of the migration GA. To accommodate different
granularities, local environments or single individuals may reside on separate processors.

More recently, a number of researchers have focused on the nature of the population structure and
its effect on the diffusion and convergence characteristics of the GA. For example, Baluja 53]
reports on a comparative study of neighbourhood topologies. Three topologies are considered:- a
linear neighbourhood, a two dimensional toroidal array and a linear neighbourhood with a
rightward discontinuity. When tested on a wide range of test-bed problems the toroidal array
neighbourhood consistently outperformed the other population structures. However, for some
problems the linear neighbourhoods were found to produce the best convergence pattern. Baluja
argues that these results are due to a combination of the effect of genetic mobility and total
population size. In particular, the parameters of the different implementations, such as crossover
and mutation rates, where held constant and not tuned to a particular neighbourhood structure,
However, in an earlier study, Gorges-Schleuter [54] observed that as the borders in one-
dimensional population structures are smaller than those in two dimensions, local niches once
established tend to survive for longer periods.
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The diffusion model provides a finer grain of parallelism than that of the worker/farmer and island
models. Its is suitable for implementation on a wide range of parallel architectures from single-bit
digital array processors (DAPs) and massively parallel SIMD machines like the Connection
Machine, to MIMD computers, such as Transputer networks. There are even reports in the
literature of fine-grained GAs being implemented on clusters of networked workstations [55].

The basic operator to support the diffusion model is that of a local neighbourhood selection
mechanism. From the examples of diffusion models presented in this Section, it is clear that this
local selection results in performance superior to that of global and migration GAs with
comparable population sizes. Good solutions are found faster, requiring fewer function
evaluations, and different solution niches may be established in the same evolutionary cycle.
Furthermore, diffusion appears to implement a more robust search in the presence of deceptive or
GA-hard objective functions.

5 Conclusions

In this report, a broad survey of the current trends in GAs has been presented. Many of the
variations on the original GA have been discussed, such as different representation and selection
strategies, and a number of parallel implementations have been described in detail. From the
material presented in this text, it should be clear to the reader that the GA is a powerful and
versatile search and optimisation method applicable to a broad spectrum of activities. Further, it is
apparent that parallel GAs employing population distribution with local selection and
reproduction and some level of genetic mobility are superior to approaches where the population
is treated globally.

Clearly, this is a particularly rewarding area for work in parallel algorithm design. Not only can
we realise the algorithms efficiently on parallel architectures, but also the paradigm has revealed

performance benefits which can even be realised on a sequential machine.

From the preceding discussion of migration and diffusion GAs, the following general points can
be noted about parallel GAs when compared with global strategies:

* Parallel GAs typically require less function evaluations to find optimal solutions.
* They have the potential to find multiple optimal solutions.
* They may be synchronous or asynchronous.

* The implementation of parallel GAs may be adapted to efficiently exploit
different parallel architectures.

» They have a higher degree of robustness.
* Paralle] GAs may be made fault-tolerant.

* Parallel GAs come closer to the biological metaphor of evolution.
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