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On-line Structure Detection and Parameter Estimation
with Exponential Windowing for Nonlinear Systems

W.Luo* S.A.Billings™ and K. M. Tsang*

Abstract

A new recursive orthogonal estimation algorithm is derived which updates both
the model structure and the parameters of nonlinear models on-line. Techniques
developed for linear systems are not generally suitable when nonlinear models are con-
sidered because the complexity of nonlinear systems and the demands of recursive pro-
ccssiﬁg make on-line structure detection much more difficult. In the present study a
new on-line orthogonal estimation algorithm based on the polynomial NARMAX
model is derived by extending the family of orthogonal Qr decomposition algorithms
to include on-line model structure selection. The new algorithm which includes
exponential data windowing based on a stable Givens routine minimizes the loss func-
tion at every selection step by selecting significant regression variables, computes the
parameter estimates and maintains the orthogonality of the vector space for continuous
computation. Simulated examples are included to demonstrate the performance of the
new algorithm. :

1. Introduction

Most real systems are nonlinear. If the nonlinearities are relatively mild tech-
“niques of linearization can provide simple methods of modelling nonlinear systems.
However such conditions are often not satisfactory and the obvious extension is to
consider the application of nonlinear models. For nonlinear systems with time-varying
structure nonlinear threshold models can provide an adequate representation but the
analysis of the transient behaviour between operating regions can be difficult if the
nonlinearities are severe or the input changes rapidly. A solution to these systems 1S t0
use time-varying models and on-line algorithms. The polynomial NARMAX (Non-
linear AutoRegressive Moving Average with Exogenous inputs) model (Leontaritis and
Billings 1985) can be used to describe a large class of nonlinear systems (usually with

less than 10 terms) and exhibits a low computational cost compared with other
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nonlinear descriptions (Billings 1985). The extension of this model to include time-
varying terms will be considered in the present study.

Almost all recursive parameter estimation algorithms operate under the assump-
tion that the system structure or which terms should be in the model has been predeter-
mined. But real systems can be time-variant and the model structure can change so it
becomes necessary to detect such structure changes on-line to ensure accurate esti-
mates are obtained. Lattice algorithms developed for linear systems can perform on-
line adjustment for the order of linear AR or ARMA models using order-recursion
methods based on the shifting property of the regressors used in these models. But
such order-recursion techniques are not suitable for most nonlinear models because
these properties no longer hold. The recursive modified Gram Schmidt algorithm
(RMGS) (Ling et al 1986) does not require the shifting property as a prerequisite for
performing order-recursion, but the expansion of candidate variables must be in a
specified form for easy adjustment of the model order. Assume that m candidate vari-
ables can be arranged in the order of ¢,, ¢5, ¢s, ..., 0. Such a sequence ensures that if
oy, ..., ¢;; cannot properly describe the system dynamics a reasonable solution can be
obtained by a successive expansion of the variables ¢;, ¢, ... . Since most nonlinear
models do not have such a simple structure, the order-recursive procedure of RMGS
cannot readily be applied to adjust the structure of these models. New recursive algo-
rithms which do not depend on the shifting property or the successive expansion of
candidate variables should therefore be developed to detect the system structure on-

line.

The recursive parameter estimation algorithms based on orthogonal QR decompo-

_ sition (Golub and Styan 1973, Bierman 1977) are numerically stable and accurate but

the adjustment of the model structure is restricted. Although the off-line Ok decompo-
sition algorithms with forward selection derived in (Chen et al 1989) can provide a
good starting point for developing on-line structure detection methods the selection
procedures cannot be easily carried over to the on-line case. There are three reasons
for this. First a finite storage space requires that the orthogonal transformation must be
implemented sequentially. Second, when an orthogonal space has been formed, the
change of the matrix position of any orthogonal vector, for example the i 'th orthogo-
nal vector, will destroy the orthogonality of the i+1, i+2, ..., m'th orthogonal vectors.
To ensure orthogonality these vectors must be reorthogonalized but this becomes
difficult if the off-line method is employed, because the finite memory space cannot
store the complete data set. Thirdly, the system structure is unknown, therefore the
computation has to start with all the candidate variables some of which may be
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linearly dependent, so the regression matrix may not be of full rank. This can induce
singularities and the least squares normal equations will no longer have a unique solu-
tion.

These problems are avoided in the present study by using the Givens rotation
method to develop a new recursive QR decomposition algorithm for time-varying poly-
nomial NARMAX models. This new algorithm which will be referred to as the GFSE
algorithm (Givens rotation with Forward Selection and Exponential windowing algo-
rithm) can detect the model structure on-line and estimate the unknown parameters.
The GFSE algorithm like other recursive QR parameter estimation algorithms is
numerically stable and accurate but provides more flexibility for on-line selection of
regression variables. This algorithm can therefore be applied to systems with time-
varying structure. Although only SISO systems will be considered in the present study,
the new method can readily be extended to MIMO systems. The paper is organized as
follows. First the time-varying polynomial NARMAX model is defined in Section 2.
The recursive orthogonal transformation is described in Section 3 and the mechanics of
the on-line structure detection are derived in Section 4. In Section 5 the initialization
of the algorithm is discussed and Section 6 provides a summary of the procedures. The
properties of the new GFSE algorithm are described in Section 7 and simulated results
are included in Section 8.

2. System Representation

Subject to some mild assumptions, a discrete time SISO nonlinear system can be
represented by the NARMAX model (Leontaritis and Billings 1985)

y(O)=F (=D (1=1, )1t (1=d )i (1=d =n, +1)s (1=1) e (1=n, )] + € (1). 2-1)

where ¢ is the (’th time point, y(), n (1) and e (1) represent the output, input, and noise
respectively, n,, n, and n, are the corresponding orders, F[.] is some nonlinear func-
tions and 4 is the minimum time delay of the input. Since F[.] may include cross
product-terms and higher degree terms in y(.), u(.) and e(.), the degree of the power
terms in y(.), u(.) and e(.) will be referred to as the degree of nonlinearity denoted as
n;. In practical computations the noise will not be measurable and is replaced by the

residual or prediction error

et)=y@)-$@) 2-2)
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where * represents one step ahead predicted output. Eqn (2-1) can be rewritten as
Y(O=F Iy =1y (0—=ny )t (1 =d )yt (1 —=d —n, +1) (1 =1).... (T~ )] + (). (2-3)

The model (2-3) can be used to specify a general finite-dimensional input-output
nonlinear system (Chen and Billings 1989, Fnaiech and Ljung 1987). Various possibili-
ties of parametrizing F[.] exist (Chen and Billings 1989). If functions ¢,(.) are chosen
as monomials of lagged u(r), y(+) and/or &(r), e.g. u*(r-1)y(1-2) etc, a polynomial model
is obtained. Transforming the lagged input, output and residual in (2-3) into regressors
yields the pseudo-linear regression model

i=1
or more concisely

y(r)= iqa,-(r)e,-(r) + E(1). (2-5)
i=]
In equation (2-5) ¢,(r) expresses the ith regression variable (regressor), m is the
number of the regressors and 6,(r) is the unknown parameter corresponding to ¢;(r).
Combining all the data at time points 1, 2, ...... , t produces the model

y(t) = @()0(r) + £(1) (2-6)

where @(r) is the rxm regression matrix, 6(s) is the mx1 parameter matrix, y(r) and &(r)
are rx1 matrices. Since the linear-in-the-parameter property is preserved, the models
can be applied to severely nonlinear systems using efficient off-line estimation algo-
rithms (Chen et al 1989).

Replacing m with a variant m(r) in Eqn. (2-4), the variable structure NARMAX
model is defined. This should provide an acceptable basis for predicting the output
during time variation and produce a smooth transient between different operating
regimes. Such a model is time-dependent not signal-dependent (Billings and Voon
1987). Like most nonlinear models, the structure of the NARMAX model does not
satisfy the shift-invariant property or successive expansion of candidate variables.
However the polynomial structure of the NARMAX model provides some significant
properties which can be utilized to develop new algorithms for both on-line structure
detection and parameter estimation of nonlinear systems.
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3. A Recursive Orthogonal Transformation with Exponential Weighting

The Euclidean norm of a vector is unitarily invariant,
Il y( )-(1)0() 1l = Il v(1)-QT (1®(1)8(1) Il
where v(1) = Q7 (r)y(r) and Q(r) is a rxt orthogonal matrix given by
Q) =[q,(r) qat) - Gu(1) Qualt) - qa(1)]

Q" (1)Q(:)=I and hence Q(r) is a rxr orthonormal matrix. Choose Q(r) to be of the form

- R(1)
Q (Nd(r) =

o)

where O(r) is a (r—m)xm zero matrix and

r”(l) rl?.(") L. rlm(’)
0 ralt) . ra(f)

R(1) = B '
0 .0 r,,,,,;(r)

is an mxm upper triangular matrix. Premultiply y(1 }=®()8(r) by Q' (1) to obtain

R(1)].
Q" (1y(1) = QT(1)®(1)B(1) = 8() + Q" (Newr)
O)
and hence
Vi (1) R(1)|.
V(1) = = 8(1) + QT (1elr)
Vi) O(1)

where v, (1) contains the first m components of v(r) and v,_, (1) contains the remainder.
The estimation of @() is easily achieved by solving the triangular system
R(1)8(1) = v,,(1), and consequently the norm of the residual vector
eI = 1| Y@1Y 1| = Ve (Ol = € X 32(0) )7
i=m+]
The whole factorization process involves a decomposition of @(/) and it is hence called

the orthogonal triangular decomposition or the QR algorithm.

Suppose that there are r-1 observations of the system y(/-1)=®(:-1)8(:-1) which
contains m regression variables, augmenting the r-1 normal equations with a zero ele-
ment denoted O, and a I1xm zero row vector O, yields

y(r=-1)| _ |P(r-1
-

o Ne-1) (3-1)
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Premultiplying by a rxr orthogonal matrix Q" (s-1) yields the Qr orthogonal decompo-
sition
Ve li—1) R(r-1)

vii-1) = v,y (t=D| = |0, [8(=1) + QT (1=1)e(t-1) (3-2)
02 0]

where v,, (1-1) and v,_;_,(1—1) have dimensions mx1 and (1-1-m)x1 respectively, O,_,_, 1s
a (1-1-m)xm zero matrix, the residual vector
En (’_l)

e(r=1) = [, (-1 . (3-3)
0

and e, (1-1), €. (t1=1) are mx1 and (r-1-m)x1 matrices respectively. Suppose that a
new observation is added to improve the previous estimates. The regression equations
can be written as

v(i-1) R(-1)|_ O
V1w (=1 [=1 0,21 B =1+QT (1 =Dg(r =1)+| 05 | . (3-4)
y (1) $() e(r)

where O,, and O, are mxl1 and (r-1-m)x] zero matrices respectively, and g(r) is the a
priori prediction error defined by
(1) = y(1) — &(1)B(r-1)

Premultiplying (3-4) with a rx orthogonal matrix Q/(r) updates the Qr decomposition
so that
Vi (1) R(1)

V(1) = [Vioiom (D] = |02 [80) + QT (De() (3-5)
\'1(;) 01

where v, (1) is the ¢’ th element of v(r), the orthogonal matrix Q(/)=Q(/-1)Q, (1), the resi-
dual vector is given by
E, (1)

elt) = [€_j_m ()
g(1)

where the 1’ th element of e(r), (1), is the residual (the a posteriori prediction error)
defined as

e(1) =y () — &(1)8(r) .
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The parameter vector 8(r) can then be computed using a back-substitution with the
relationship v,,(1)=R(1)8(/). It is worth noting that (3-5) provides a framework which
can easily be employed for on-line detection of system structure by means of measur-
ing the residual sum of squares (RSS).

Inspection of (3-5) shows that removing the equations between the (r-1-m)’ th
and (r-1)" th row of (3-5) does not affect the solution of the estimate 8(1) (=R™'(/)v,. (1))
and the residual sum of squares (RSS) can still be obtained from

RSS (1) = llE(OIF = IyIP=IVa (OIP = ¥ (y(1) = VI Wi (1) (3-6)

Inspection of the derivation of (3-5) also shows that the orthogonal transformation
matrix Q" (/) or Q() does not need to be expressed explicitly for computing R(:) and
vn(t). To provide a suitable framework for on-line computation using recursive orthog-
onal decomposition conveniently (e.g. the Givens rotation described later), Eqn (3-5)
can be represented as an augmented matrix

R(1) Vm(1)
0, 0,

e

To track variations in the parameters of the system under investigation, it is
necessary to weight the most recent input-output and residuals data. Define the weight-
ing matrix A as a diagonal matrix

A()=diag [N7' N2 0 A A7 (3-8)

where 0O<i<I is called the weighting factor or the forgetting factor. Therefore the least
squares error function, namely, the residual sum of squares (RSS) in (3-6), is modified
to

R3S (1) =27 ()e()=e" (DA )e(r)= TA™ eXi) (3-9)

i=l
where -~ denotes the weighted variables, matrices and vectors which are multiplied by
A" or A2, and the weighted error vector &(1) = y(r) - ®(1)8(¢). When implemented with
the forgetting factor A#1, R(-1) and v,(r-1) in Eqn (3-4) should be weighted and
correspondingly the orthogonal transformation between (3-4) and (3-5) can be

represented as

& 1/2< = D x
AIR(1-1) AV 1)} & {R(:) Vi (1) (3-10)

o(1) y(1) 0, 0,
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To ensure clarity, the symbol - will not be used in the remainder of this paper, because
the following discussion only relates to the exponential windowing method.

The key problem is how to find an orthogonal transformation matrix Q/(s) which
can implement the above transformation. Such a matrix, Q/(1), can be formed as the
product of m Givens rotations (Gentleman 1973, Gentleman 1974) as

- Ql(1) =G, (1) Gpy(t) - Gy(1)

where the Givens rotation factors are

Ly Oélz 03 04
_ |Oiay cosPi(r) O3 sinB,; (1) -
Git)= Oi5; 0Oz Lz Oy (=Lisimt) 5

OM] "S.lrnB,'(f) 0543 COSﬁ,‘(’)

where the zero matrices O,, and unity matrices I, have corresponding dimensions (here
the subscriptions are not dimensions). G;(r) is of dimension rxs, B; is the rotation angle
and the subscript i denotes the values associated with the processing of the ith column.

As mentioned above the reorthogonalization can be executed using the augmented
matrix in which orthogonal transformation matrices do not need to be expressed expli-
- citly. At time r, define the (m+1)x(m+1) matrix
_|A2R(-1) A, G- )
: =" o0 3 (1) \3-11)

Then the orthogonal Qr transformation can be applied to C row by row. For example
the transformation of the i’ th and j th row is presented as follows

. * * *
row 5 0s e 06 €1 Tidiate coon G amad => B, O‘Q'.b_(_'i,k-s»]- coon Cim4l

. * *
row j: 0, ... 0-£j.k-f_j.k+l- o G+l => 0,..0.0 , Cidktls oo Cimel

where * denotes the new value after transformation. The elements can be computed
using the following equations:

cix = Nedrely (3-12a)

cosp = = sinp = =% (3-12b.¢)
Cix Cix

Clp = Cip COSB+ i sinB L Gy =g sinp + ¢, cOSP (3-12d.e)

where p = k+1,k+2, ... m+1. The augmented matrix (3-7) is then obtained and 8(r) is
computed using back-substitution.
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If the regression matrix &(r) is of full rank (rank m,=m) the Givens procedure
described above should be numerically stable and accurate just like other recursive ggr
algorithms. But if the system structure is unknown, the computation inevitably involves
all candidate variables and some of these variables may be linearly dependent so that
@(r) will be less than full rank (m,<m). This means that &7 (1)@(r) may be singular and
there may no longer be a unique solution. Nevertheless, @(:) can still be decomposed

as
Qe = [RY)]

by using the orthogonal transformations, where R(r) is a real upper triangular matrix
with (m-m,) zero diagonal elements and m, positive diagonal elements and the row
vectors of R(r) corresponding to the zero diagonal elements become zero vectors. If the
columns of &(r) can be permuted so that the selected column vector at each stage
minimizes RSS, then &(/) can be decomposed as

Ry, Rp;
Tl = 11 Ry _
Q 0, O, (3-13)
where
r 1
'n 2 - - o Tim,
0 k2 5+ <« 5 T
0 R,
R = o
; ; ;s ; 0;
0 0 . . 0 rym
Os
rl.m__ﬂ . i . Fim
Fam+ - - - Fam
Ry =
rmr,mr-i-l . g G Fmom
O

0,, 04, 0s, O, are zero matrices with dimensions (t-m)xm,, (1-m)x(m-m,), (m-m,)xm,,
(m-m,)x(m-m,) respectively and IT is a rxr permutation matrix. To clearly express the
operations of the argument "(1)" was ignored in (3-13) and such a simplification will
be used throughout the remainder of this section.

A generalized inverse of @, e.g. @, can always be found and @'y is a solution of
the normal equations with all the candidate variables. But there are many such general-

ized inverses and corresponding solutions. So the significant regression variables must
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be found from the linearly independent columns and the corresponding parameters

determined.

The symbol () will be used to represent a permuted matrix. Inspection of (3-13)
shows that the first m, column vectors of @' (=®I1) are linearly independent. Partition-
ing yields

Q = Qm’ Qmmm’ Ql—m ] (3-14)
and
o= (@] P, ]

where Q,., Q.-» 2and Q,., are of dimension rxm,, tx(m-m,) and rx(r—-m) respectively,

and @;!, ®;_, are of dimension rxm, and rx(m-m,,. Egn. (3-13) can be written as

QT QT d’ﬂ Q; (Drr_
QL |®F &I, 1=|Ql ol QI o, | . (3-15)
QfT—m QrT:-n: q)rlr:[r QI—m ¢E-mr

Inspection of (3-15) shows that

T 11
QO
=lnT T

]1 Qm-—mrd)m,

Rl'nr
0;

T &40
er q)m ~m,

T 411
R erq)rn -rn‘_
12751 T n = -
Qm —mrd)m—mr

R 0,

Based on (3-14) the orthogonal output vector is given by

F
Q.. ¥ W
T T ,
Q y = Qm—mr.v = ‘m—m’
QlT—m Yy Yiem

Using the candidate variables corresponding to the first m, column vectors, which are

linearly independent, to represent the dynamics of the underlying system the equations
QI aNd, =Q

can have a unique solution and the estimate 8, can hence be obtained using the tri-
angular system Rmrém, =v, . In practice roundoff errors always exist in & and further
roundoff errors are involved in forming the elements of R. This means that some
diagonal elements r; and the corresponding rows may be approximately but not
exactly zero. It is necessary to identify which column vectors are linearly independent.
Using specified criteria the significant regressors can be selected from all the candidate

variables. Assuming that the first m, column vectors are selected as the significant
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regressors, the estimate 8, can be obtained from R, 6, =V, , where R, is the top-left
portion of the upper triangular matrix R, . The above operations can still be imple-

mented conveniently in the augmented matrix

R VYm R R v, R, Rnm Vi,
= = 05 05 Vm —m, . (3- 1 6)
0, 0, 0, 0, 0, 0,

Therefore, it is important to ensure that all significant regressors are permuted to the
left portion of @ in the recursive orthogonal process.

4. On-line Structure Detection

Since complete input-output data and orthogonal vector storage are not possible in
on-line processing the extension of the off-line detection procedure (Chen et al 1989)
to the on-line case must resolve two problems: i) which elements or functions of ele-
ments represent the contribution of a regression variable to the output; ii) how to refor-
mulate the orthogonal vectors based on the selected optimal regressors at every selec-
tion step.

In the remainder of this section the notation "(1)" will be ignored when all quanti-
ties being discussed are available up to the time r. For example, @(1) will be written
as &.

Dividing (3-6) by y"y gives the normalized RSS (NRSS), given by

T on
‘HIJ"MJ

NRSS =1 - g 1- _Z],ERR,- ; 4-1)

o

where ERR; =v*/y' y. This is defined as the error reduction ratio (ERR) of the orthog-
onal vector q; (Liu et al 1987, Billings and Chen 1989), it is obtained by transforming
the first i columns of ®. Geometrically, v; represents the projection of the output in the
direction of the ith orthogonal vector. This constituent has been normalized, because
lg;I=1. The value of v? can be conveniently utilized to select significant regressors
from all the candidate regression variables by using a forward search procedure so that
every selected variable minimizes NRSS(1) in every selection step. The number of the
selected regressors at time r, named m,, will normally be less than the number of can-

didate variables, m. Therefore the selection will be continued m, steps until

NRSS, (1) =1~ ZI,ERR;— k| (4-2)

i=]




e
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where &, is a pre-set tolerance. Generally, the selected variables at every computational
period are different. The number of these regressors is time-varying, named m, (). If
m, (1) regression variables (corresponding to the first m (1) columns of ®(1)), are deter-
mined as significant regressors, the detailed form of (4-2) is

m (1)

NRSSms(,)(f) = 1 == E ERR, (f) < és " (4‘3)

i=]

It is important to select the optimal regressors and to compute NRSS,, (1) with v; (1) for
limited memory space in on-line identification.

At the j’th selection step off-line structure detection initially considers all the @,
p=j...m, as candidates one of which will be combined with the previously formed
orthogonal vectors to form gq;. Then for p=j....m, compute \'J%;,)=(qj-(,,,y)2 and select the
j’th optimal regressor with the maximum v2. to minimize RSS. Since in on-line pro-
cessing all the previous input-output data or the formed orthogonal vectors cannot be
stored, the computation must be limited within the augmented matrix (3-16). The key
procedure for on-line structure detection is to utilize R and v,, efficiently to obtain v;,),
p=l..m, j=l..m(1), and to permute implicitly m, (1) optimal regressors in the first m (1)
columns of @, where /i denotes the permuted matrix at the m, (1) selection step. Since
R indicates the relationship between Q and @, the different triangular forms of R
correspond to different constituents of the orthogonal space mapped from the columns
of ®. The corresponding rotated form of v, can indicate the contribution of all the new

orthogonal vectors to the output in the new orthogonal space. Consider the matrix

r 1
raorp Mz - - - Tim N
0 ryy 23 o - - Tom V2
0 ra . - - Fam V3
0 . ;o] w (4-4)
0 0 0 . .0 rom V)

This shows that ¢, is used to compose q,, both ¢, and ¢, are used to constitute g, etc,

where here v, is equivalent to v, This is based on the expansion of Q=®R, i.e.

1 1 I
g=—19% . q@=—¢—
I '

Y

22

and v,=q,y. But the following matrix
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Fia r'o s Fim Wi
ry 0 ra . . . Fam V2
0 ra . . . Fim Vi
0 . e wlll g (4-5)
0 0 0 . .0 rm ¥

which is a variant of a triangular matrix shows that ¢, is used to compose the first
orthogonal vector q, and ¢, and ¢, are used to constitute the second orthogonal vector
q» where v, is taken as equivalent to v,. This produces the factor of Q=@R™
described as

1 1 I'n
91=r—¢2- Gr=——0~

I I'n I'nrne

Do areaes

and v,=q,y. The underlines in the above notation is only used to distinguish these quan-
tities from those of (4-4). To easily execute the back-substitution the columns of R,

named r;, i=1..m, will be permuted and retriangularized.

Expanding ®=QR gives

¢, =qr,

i il J
¢,l = z qlrrfj = E ql'rl"l + E ql'rij ( j = 2.. M ) (4-6)
=1 i=1 i=j

Inspection of the above shows that if a candidate vector, for example ¢, (j<k), which
is selected as the j’th optimal regressor is permuted in the j’th column of ®, the
operation of reorthogonalization only needs to be applied to r;,, i=j...m, p=j...m using
the Givens rotation in (3-12) where the orthogonal formation matrix is not expressed

explicitly. Such a computational process can be expressed concisely in the following

equations:
R] |nm o rj o0 Fp o Ty
Q'd= = (4-7a)
0, 0,
-R- r] rz rk i % rj CECE rﬂ’l
QT'bnjk = 1_.[!; - (4'7b)
0, 0,
Q};JQT‘DHJ'A- = Qri}. My = (4-Tc)

0, 0,
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where T is the permutation matrix for exchanging ¢, and ¢, (the equivalent effect of
which is to exchange r; and r,), Q,T,j denotes the orthogonal transformation matrix of

I; (namely reorthogonalization) and

the j’th selection step which retriangularizes [gl

* denotes the new results after retriangularization. Since R contains the information
from the previously formed orthogonal vectors and candidate vectors, the operations
are only implemented in part of R (see the right-hand sides of (4-7a)-(4-7c)), so that
the whole process avoids the storage of the orthogonal vectors and candidate vectors.

Note that

T
Vo =[Vi Vo s 0 ¥ o W o V]

=lalyaly - qfy - afy - qlyV . (4-8)

This shows that when the j’th optimal regressor has been determined the reorthogonal-
izing computation of the output vector is only applied to some elements of v,,, vi(=q]y),

i=j...m and this computation can be implemented at the same time as retriangularizing

R
0, [T 52

Based on (3-6) the j'th optimal regressor should be the candidate vanable with
the maximum of v2,,, p=j...m, so that the RSS can be minimized. Such a computation
for v2,, can only use R. If a candidate variable, for example ¢, is selected as the j’th
optimal regressor, v2,, should be the the maximum of all the v7,, when the elements
rus i=j+l...m, are transformed to zero in the retriangularization. Since R is upper tri-

angular, the columns of R, r,, p=j...m, have the following form
rP=["lpr2p""'Jf’"'rppo"'o]:r' (4-9)

This means that only the nonzero elements r;,, i=j...p are involved in the computation,
namely, v;,,, can be obtained by applying p-j Givens rotations to v; using r, and v;,
i=j...p. First set v;;=v; and two auxiliary variables r}},=r;, and v,{),=v;. Using (3-12)

V() can be calculated using the following procedure:

For i=j+1...., ;
rioy = NCGTY + 1 (4-10a)
(i=1)
B r;
Ly - ) : ‘2
Vig) = Vi) T Tm - (300)

i)
Titp) Figpy

Finally v2,, = (v,
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Once the optimal regressor is determined the new orthogonal space can be formed
using the procedures of (4-7). The selection procedures are summarized in Section 6.

5. Initialization

To initialize R(r) and v, (), let all the elements in R(0) and v, (0) equal a small
positive number to prevent division by zero.

The candidate variables represent a library of regressors from which sub-models
can be generated. These variables should be sufficient to describe the dynamics of the
system under test in a wide range of operation. The GFSE algorithm also allows the
addition of some "empty" variables at the beginning of the computation by assigning
all the elements of the associated columns of R(0) as very small numbers. Variables
which have not been involved in the initial regréssion model can then replace these
"empty" variables in the computational process. Removing some useless candidate
variables can also be easily realized by substituting all the elements of the associated
columns of R(r) with very small numbers. An alternative method of adjusting candi-
date variables is to extend or contract on-line the dimension of the augmented matrix
(3-7). All the new elements are initialized to very small numbers at time ¢ and then the
data associated with these new variables are added successively to the computation so
that the data will have the effect on the estimates from time 1.

A constant forgetting factor A slightly less than 1 is usually chosen. Define
Ni & = (5-1)

~ as the asymptotic memory length (Clarke and Gawthop 1975). This means that after N,
samples the square of the current error will have about 36% of the current contribution
to least squares error criterion RSS(r). If the system under test remains approximately
time invariant over N, samples, a suitable choice of A can then be made from (5-1).
The choice of A affects both the tracking ability and noise-sensitivity of the estimators.
Typical choices of A are between 0.98 to 0.995. In some applications where the system
dynamics change suddenly A can be designed as a time-varying parameter to enhance
the tracking performance.

The design of the tolerance & in (4-3) depends on a knowledge of the system
under test, but it is often difficult to decide on an optimal value at the beginning of the
identification. A very small & will lead to unnecessarily complex sub-models. To

avoid such an inadequate design, some statistical tests can be used.
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6. Summary of the GFSE’s Procedure

First, initialize the estimator according to Section 5, including initial values of the
elements of the augmented matrix, candidate variables, forgetting factor A and toler-
ance £,. Then perform the computation. At the beginning of the computation at time
instant 7, the augmented matrix is

R(1-1) Vm(r-1)

0, 0, (6-1)

(i) Multiply R(:-1) and v, (--1) by A2, and put the data, [¢,(t) -+ - ¢.(r) y(r)], at
the (m+1)"th row to obtain

A2R(1-1) A, (=D AR -1) AV (1=1)
= (6-2)
o) o da() x() o(r) y(1)
(ii) Using Givens rotation, produce the new augmented matrix
Vo (1)
R(()I]) o, } . (6-3)

(iii) With (4-10), compute v;, (), p=l...m, j21 and choose the j'th optimal
regressor with the maximum v7,, by selecting the columns of R(1).

(iv) According to the result from Step (iii) (e.g., the kth variable has been
selected) exchange the positions of the current j’th and & ’th columns of R(r), and then

retriangularize R(/) and rotate v, (r) using Givens rotation.

(v) Compute NRSS (1) using (4-3). If the critical value,

NRSS}(’) =1- iERR,(I) < 55 *
=1

perform the next step; otherwise perform statistical tests to decide whether to return to
step (iii) to select more regressors. Suppose that m, regressors have been selected, then
the computational matrix is




rn@) . om0 o 0]
0
T, m, (1) v,.,;(r )
0
L6 .- B 0

(vi) Using back-substitution solve for the parameters 8;(r), i=1,.m,, from R, (1),
which is the top-left triangular portion of the final R(1), and v,, (r) which consists of the

first m, elements.

(vii) Compute the residual at the time instant  &(r) = y(1) - EJQJ,‘ (1) 8;(1) This result

i=]
will become part of the next input signal if the initially designed model includes noise

terms.

7. Properties of the GFSE Algorithm

Although the properties of Or decomposition depend on the condition number
x[®] which is defined as the ratio of the largest to the smallest nonzero singular value
of @ (Golub and Styan 1973, Chen et al 1989), the problems relevant to positive
definitness of (®"®)" and the effects of accumulated roundoff errors due to updating
the parameter vector (Ardalan 1986, Ardalan and Alexander 1987) are largely avoided.
When the GFSE algorithm is applied in parameter estimation the numerical stability
- will be similar to other recursive QR algorithms. When the GFSE algorithm is applied
in structure detection the procedure consists of permutation and reorthogonalization. It
is obvious that the permutation does not introduce additional roundoff errors. The
reorthogonalization utilizes the 2x2 Givens rotation factor on each of the two column
vectors formed by the two corresponding rows. Such an orthogonal rotation does not
increase the magnitude of roundoff errors.

For systems with time-varying structure, the GFSE algorithm always, based on
the contribution of the candidate variables make to the output, determines which vari-
ables should be included in the final model. Only after the model structure have been
determined can the corresponding parameter estimates be calculated. If the system
structure does not change over time the parameter estimates will exhibit the same con-

vergent properties of the underlying recursive parameter estimation algorithms.
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The stability of a recursive estimator is related to the stability of the noise model.
For the recursive prediction error method (RPEM) applied in on-line parameter
identification for the NARMAX model Chen and Billings (1988) utilized the
differential equation approach to investigate the convergence property of this algo-
rithm. They were able to show that the stability of the estimator is associated with a
stable noise model and power terms in e(r) should be avoided because these can
become explosive and can induce instability. This consideration is carried over to the
GFSE algorithm. But it should be noted that the GFSE algorithm is distinguished from
other RLS parameter estimation algorithms because of the on-line detection of the
structure. During computation, both the model structure and parameters can be
identified. Therefore the GFSE algorithm provides a possibility to track nonlinear noise
models on-line. In practical simulation tests which will be described in Section 8, the
power of e(k), (k=r-1. ...1-n;) has been set to a value larger than one (e.g. two) and the
estimator still worked very well. However nonlinear systems are in general very com-
plex and the convergence analysis for on-line structure and parameter identification

becomes very complex and more work is required to investigate these issues.

8. Numerical Results

To illustrate the GFSE algorithm, a time-varying system will be simulated where
both the structure and parameters change suddenly. The first 250 data points were gen-
erated using a linear model

() =05z(-1)+ u(r-1)
yry=z()+er)

and the second 250 data points by a NARMAX model
2(1)=02:z(¢=1)+ 0.8 u(r=1) + 0.1 u?(t-1)
ya)=:z@)+e(r)

Notice that the models relating y(¢) to u(r) will involve coloured noise terms.

In the test, the input signal u(r) was an independent sequence of uniform distribu-
tion with zero mean and the variance 1.03, and the noise signal ¢(/) was a Gaussian
white noise with zero mean and variance 0.005. The output and input signals are illus-
trated in Fig. 1. To demonstrate that it is not possible to fit a single global model to
this system and that the GFSE algorithm can give a reasonable time-varying model,

the noise-free case was considered initially. With the off-line method described in




- 19 -

(Chen et al 1989), two global NARMAX models were estimated based on the
specifications 1)n,=n,=n.=2, n;=2; 2)n,=n,=n=2, =3 . The former model has 28 candi-
date variables and the latter has 84. These two models represent two possible expan-
sions, one including only up to quadratic and the other only up to cubic terms, which
were fitted to the total data set. To aid the estimation, Akaike’s information criterion
was applied to the computation with a cutoff of AIC=4.0. The two models gave large

500
RSS (=Y €r)) values, 9.926 and 7.602, respectively and both have a complex structure

1=1

(with 8 and 13 terms, see Table 1), compared with the real structure. The predicted
outputs and residuals produced from the models are plotted in Fig. 2 and 3. Although
the data were noise-free the residuals are large. The off-line validity tests illustrated in
Fig. 4 and 5 (Billings and Voon 1983, Billings and Voon 1986) indicate that the two
fitted models are an inadequate representation for this system. The on-line validity tests
(see Appendix) show that neither of these global models can match the dynamics at all
time points, Fig. 6 and 7.

The new on-line structure detection and parameter estimation GFSE algorithm
was then applied to the same data set. The initial design was n,=n,=n=n=2, £=0.01,
A=0.97 . The estimates after 250 and 500 iterations are given in Table 2 and the

500
predicted output and residuals are shown in Fig. 8. The value of Ye%*(r) becomes much
=1

smaller (0.374), compared with the values obtained in the previous global models. It is
significant that the residuals become relatively smooth in two intervals where the sys-
tem structure is stable. In the initial stage of processing, the estimates are still converg-
ing and the predicted output can not track the real output well and the residuals have a
few large jumps. This phenomenon also occurs between the 251th and 325th point
when the sudden model change occurs. Because the system structure at the 251th point
suddenly changes the estimator requires time to respond and to modify the previous
structure and parameters. The error suddenly increases in this short interval and then
decreases exponentially subject to the pre-set forgetting factor A. This variation in the
structure can also be observed on the plots of the three parameters, Fig. 9. The on-line
validity tests (Fig. 10) provide the same information and show that this time-varying
model is acceptable.

Noise was then added to the above data set by operating on the noisy output y(r)
in the above models. The input and output are shown in Fig. 11. the initial design was
given by n,=n,=n=2, n=2, £,=0.01, A=0.97. The fitted sub-models at the 250 th and 500 th

data points are listed in Table 3 and the predicted output and the residuals are plotted

500
in Fig. 12. Due to the presence of noise, the value of Y e(r) increases to 1.91 and the

1=1
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curve of the residuals becomes ragged. Notice that even when the noise is added into
the system the loss function is still lower than that obtained from the two global
models in the noise-free case. The corresponding on-line validity tests (Fig. 14) indi-
cate that the time-varying model is adequate. The analysis has shown that the three
estimated parameters (Fig. 13) are tracked over the variation of the structure even
when the data is disturbed by noise. The values of the parameters are still very close
to the true values.

The effect of the forgetting factor A has also been tested for this system. If A has
a small value, e.g. 0.90, the tracking ability is good, see Fig. 15 and Table 4. This can
easily be observed from the parameter curves of y(s-1) and u*:-1), Fig. 16. But the
predicted output quickly deteriorates due to the noise disturbances and this can also be
clearly seen at 350°th to 400’th point on the curves of y(s-1) and »*(-1). If A is set to a
large value, e.g. 0.99, the response to a large variation in the system structure is slow

so that the parameters are still converging even when the system structure has become

500
stabilized. Therefore the error is large and the value of Y e’(r) rises to 6.899. This result

r=]

is illustrated in Fig. 17, 18 and Table 5.

9. Conclusions

Most existing recursive parameter estimation algorithms work on the assumption
that the system structure is time-invariant and has been determined. Algorithms based
on these principles cannot produce an accurate solution for systems with time-varying
structure. Lattice algorithms and the RMGS algorithm can provide the facility for the
on-line adjustment of the structure of linear models using order-recursion techniques.
However some key properties of the regressors, which are used in these algorithms, do
not exist in most nonlinear models so it is difficult to extend these algorithms to gen-
eral nonlinear systems. It is therefore necessary to develop new recursive algorithms
for both detecting the system structure and estimating the system parameters on-line.

A recursive orthogonal QR decomposition algorithm, called the GFSE has been
derived in this paper. This new algorithm overcomes the disadvantages of lattice algo-
rithms, RMGS and other existing recursive parameter estimation algorithms and also
preserves the numerical stability and accuracy of orthogonal decomposition methods.
The algorithm does not require the storage of all the original data, nor the orthogonal
vectors, and consequently memory space is saved. Both the structure and parameters

can be updated on-line for a wide class of nonlinear systems. Overparameterisation is
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avoided and flexibility in the selection of the regressors is maintained. Simulations
using the GFSE algorithm illustrate the ability to track the variation of both system
structure and parameters.

Since the estimation algorithm involves structure detection, the computational cost
is higher than would be the case if just parameter estimation were performed and
hence the use of parallel processing techniques may be appropriate in some applica-
tions which require fast computation.

The results in the present paper only expresses the generalized computational pro-
cedures of the new algorithm and do not refer to the special treatment required in
some applications. For example, some control problems do not require variation of the
structure at every time step and updating of the structure may therefore be reduced.
When the system structure and parameters are stable, some computational procedures
become redundant and this leads to the development of selective updating algorithms
which only update the structure and parameters when a sufficient improvement can be

achieved. These and other related problems will be addressed in forthcoming papers.
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Table la: Global Model with 28 terms, Noise-free Case

term 0 ERR St.Dev.
u(r-1) 9.070386E —01 7.978188E-01 | 6.356812E -03
y(1-1) 4.243559E —01 1.678550E-01 | 1.590431E—02
e(r-1) 7.309806E =01 9.946108E—-03 | 4.938950E —02
u¥(r-1) 4.340994E —02 3.868522E-03 | 5.056084E —03
e(1-2) 2.518882E —01 1.594725E-03 | 4.915041E-02
u(1=2) —4.610006E -02 | 4.645953E-04 | 1.619390F —02
u(t-1)y =1 1.431958E-02 | 2.055899E—-04 | 6.000943E-03
eX(1-1) 2.528252E 01 7.248319E-05 | 1.791946E -01
n = 500 RSS = 9.926377E+00
criterion AIC=4.0 e esy’y = 1.817415E 02
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Table 1b: Global Model with 84 terms, Noise-free Case

term ) ERR St.Dev.
u(r-1) 8.886380E—-01 7.978188E -01 5.702131E-03
y(t-1) 3.880198E 01 1.678550E 01 1.221655E 02
e(t-1) 7.419301E-01 6.596605E —03 7.706479E 02
y3(r -1) 2.296590FE 01 4.004659E-03 2.565859E =02
u*(1-1) 4.384641E-02 2.758204E 03 4.239363E 03
e(t-u(r-1)y(-2) 2.946119E 01 1.082497E -03 3.612769E 02
e(1=-2)y (r=2)y(t-1) 2.086115E-01 1.507739E -03 3.137829E-02
E(I—l)}‘z(l—Z) —2.708210E 01 7.486877E -04 4.441615E 02
e(t—Du(r=1)(-1) 2.493311E-01 7.152694E —(4 3.620446E -02
u(t —2)}‘2(1 -1) -2.328737E 01 7.695575E -04 2.609124E 02
yr=2y2-1) _1.001797E-01 | 1.504718E-03 | 1.338755E—02
er-1) —1.579338E -0 3.922463E-04 4.301757E 01
u(r=-1y(-1) 1.840856E -02 3.278574E -04 5.368260E 03

n = 500
criterion A/C=4.0

RSS

= 7.601820E +00

e e/y’y = 1.391813E-02

Table 2: Time-Varying Model, Noise-free Case, A=0.97

point | terms ] 6 ERR
u(r-1) 1.000000E +00 1.000000E +00 7.478421E-01

250 th y(=1) 5.000000E -01 5.000000E 01 2.521579E-01
u*(r-1) none none *
u(t-1) 8.000001E-01 8.000001E-01 9.273681E-01

500 th y(r-1) 2.000001E-01 2.000001E-01 5.111581E-02
w2r=1) | 1.000000E-01 | 9.999995E-02 | 2.151604E-02

500
r =500 A =097 YeXr) = 3.743278E-01

1=
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Table 3: Time-Varying Model, Noise Case, A=0.97

point | terms 6 6 ERR
u(t-1) 1.000000E +00 1.011648E+00 | 7.329127E-01
250 th | y(r-1) 5.000000E 01 5.109544E -01 2.638053E-01
u(r-1) none none %
u(t-1) 8.000000E 01 7.927485E 01 9.236030E 01
500 th y(r-1) 2.00000E —01 2.015239E 01 5.194039E 02
u(1-1) 1.000000E 01 9.814149E-02 | 2.101408E-02
500
r =500 A =097 Y (1) = 1.913597E+00
1=
Table 4: Time-Varying Model, Noise Case, A4=0.90
point | terms ] 6 ERR
u(r-1) 1.000000E +00 1.014191E+00 7.318673E-01
250 th y(-1) 5.000000E -01 5.204697E-01 2.648013E-01
u(1-1) none none g
u(r-1) 8.000000E -01 7.922933E -01 9.238081E 01
500 th y(r-=1) 2.00000E -01 1.966080E 01 5.022280E 02
u(r-1) 1.000000E -01 9.961569E -02 2.314501E-02
500
1 =500 A =090 Y eX(r) = 2.010585E+00

=1
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Table 5: Time-Varying Model, Noise Case, A=0.99
point | terms 8 ] ERR
u(r-1) 1.000000E +00 1.005268E +00 7.258623E 01
250 th y(-1) 5.000000E -01 4,923638E 01 2.642085E 01
u(r-1) none none »
u(r-1) 8.000000E -01 8.172578E-01 8.905356E 01
y(t-1) 2.00000E 01 7.319452E 01 7.505734E 02
500 th u?(t-1) 1.000000E 01 8.752618E -02 1.600140E-02
u(r-2) none -4.035374E -01 1.434520E-03
y(-2) none —1.159932E-01 1.240755E-03
u¥(1-2) none —4.255118E-02 | 1.603582E-03
e(t-1) none —1.107034E -01 1.379275E -04
500
t =500 A =099 Ye¥(r) = 6.898567E +00
=1
Appendix

On-line Model Validity Tests with Exponential Windowing

For off-line identification model validity tests based on correlation methods have
been developed in (Billings and Voon 1983, Billings and Voon 1986). If the fitted
model is correct and unbiased the residual sequence will be uncorrelated with all linear
~and nonlinear combinations of past inputs and outputs. That is,

Yo (1) = E[(e(1)-E)(e(r +1)-E)] = (1)
Y,oe(t) = E[(u(t)-i)e(+1)-E)] =0 ¥ 1
Yereun(T) = ENEN-E)e(-1-1)-B)u(r-1-1)-&)] =0 & 120

¥ o (1) = E[u() - )e(+1)-8)] =0 K 1

¥ oo(1) = El(P-uDE0+0-€)] =0 K 1

where ~ denotes the time average and the ’ in the subscripts indicates that the mean
has been removed. The above tests often give the experimenter a great deal of infor-
mation regarding the deficiencies in the fitted model and can indicate which terms

should be included in the model to improve the fit. All the functions are usually




-

.25 -

computed in normalized form

n—=1T -
% dla(ry-a)b(t+1)y-b)

=]

| \ya'a' (O)qlb‘b' (0)

Yo (1) = -1g¥, <1

If the number of the data points is large the standard deviation of the correlation is
1Wn and the 95% confidence intervals are approximately +1.96/¥n (Billings and Voon
1983, Billings and Voon 1986).

A new set of model validity tests, called on-line validity tests to distinguish them
from the off-line tests, have be derived which can be used in on-line computations
with exponential windowing. This approach has also been used for performance moni-
toring in nonlinear adaptive noise cancellation (Billings and Alturki 1990).

Suppose r+1+1 samples are available up to the current time, where t is the number
of the lags, the newest sample is defined as the measurement at the ¢’ th time instant
and earlier measurements are at the j’ th time instant, i=-t-1, ..., 1-1. Taking the aver-

age value of the correlation function associated with finite lags at the time instant 1

] 1
Par (T.1) = ;.-Euq}“”(“)

This represents a compromise between completeness of the validity tests and complex-
ity of the computation. As the number of the samples increases, the values at the i’th
time instant, i=r+1, ..., can be successively obtained. From these values, it is possible
to observe if the fitted model is adequate or not in on-line identification. The normal-
ized functions corresponding to the five validity tests above are given as (the subscript
s denotes normalization)

PeelT.1) B MNPee(TS—1) + (1I=1)E(1 )e(r)

Pec (T.1) = Y01 Wee(0.1)
Puc(td) MPue(T=1) + (I-MT(1)e(r)
Pue (1) = =
£ \‘l"uu (O.f )‘PJIE(OJ) \‘Puu (0" )LPEE(O'!)
sy o —Pee) ___ MPeiy(T=1) + (-ne D (1)
Peee, T 0 NF 0 ¥es( 0 VW (0.)
T M, -1) + (-mCner)
o UL E Y =
“ E, ‘\’lpuz‘ub(o"') qJE.E(O‘r) .J\Puz'id:‘(o‘!) lPF‘E(OJ)
P, 2eaAT1) NP, 22T =1) + (1= N1 €2 (1))

fﬁub » (T1) = =
- \VY,2,2000) ¥ 2,2(0.1) VY, 2,2(00) ¥ 2 2(0.1)




o D »

where

c mm = Setk) . T = S u—
n-)ur , ar(r)-_HlEﬂs(r k), @) 1+1£’0u“ k),

o b e o s moen A e gy =T
D= — E{,}a(r k=D ut—+-1). T = — Eﬂ[u (1=K (1))

e (0.1) = NWee(00=1) + (1-m)e*(r)
¥ (04) = MW, (00=1) + (1-mu’(r)
¥,2,2000) = 1¥,2,2004-1) + (=M1 ()P

¥ 2,2(00) = 0¥ 5,200 -1) + (A-)[eXt )¢ 7 (1))

1 l
2= 3wk, n=— 3 €0),
1 j:.u—pl+] - 2 i=r—p:+l
Here p,<t, p,<i, represent the number of the finite samples of the input (i) and the
residual (/) which are kept in the memory of the computer. When <0, u (i) and (/) are
defined as zero.

The values of all these p functions are within the range from -1 to 1. According
to the results from the off-line model validity tests (Billings and Voon 1983, Billings
and Voon 1986), if the fitted model produced by the on-line estimator is correct,

Pec, (1) should be near zero and all the other functions should be zero. Considering the
asymptotic memory length N, (:ﬁ) as the length of data to be tested, if N, is large
the standard deviation of the correlation is 1/4/N, and the 95% confidence intervals are
defined as approximately +1.96/4/N,. Replacing 1 with N, in the equation (nzﬁT) yields

the definition

The assignment of the forgetting factor n should be co-ordinated with the forget-
ting factor A in the on-line estimator, because the available length of data to be tested,
N,, has been defined by A in (5-1). With the definitions, (5-1) and the above equation,
the selection of n obeys the equation, n = 1/(2-1).

These test functions are related to the selection of t (the number of lags). Consid-
ering the time for the on-line computation and the time-availability of the models, 1
may be designed as typically 5 - 20.
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