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Radial Basis Function Network Training Using a Fuzzy
Clustering Scheme

G. L. Zheng and S. A. Billings
Department of Automatic Control and Systems Engineering,
University of Sheffield, Mappin Street, Sheffield S1 4DU

Training algorithms for radial basis function (RBF) networks usually consist of an
unsupervised procedure for finding the centres and a supervised learning algorithm for
updating the connection weights. Good network performance will often be dependent on
the RBF centre Jocations but the k-means clustering or related methods which are often
used can be sensitive to the initial conditions and this can result in local minima and a
deterioration in overall network performance. In the present study, a fuzzy clustering scheme
is implemented to locate the radial basis function centres in a manner which overcomes the
sensitivity to initial conditions and improves overall network performance. Artificial and

practical data sets are used to demonstrate the properties of the fuzzy clustering scheme.
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the data, which suggests that clustering techniques may be used to find the centres. The
most popular choice of clustering algorithm so far has been the k-means algorithm because
of its simplicity. However, it is well known that the clustering results of the k-means algo-
rithm may depend on the sequence in which the data samples are processed and may be
sensitive to the initial settings of the algorithm. In the present work, we investigate how
the sensitivity problem may be overcome by incorporating a fuzzy clustering scheme into
the RBF network.

The layout of the paper is organized as follows. Section two describes briefly the radial
basis function network, the network structure and a training algorithm. Section three
is devoted to a brief disscussion on centre selection and clustering algorithms. A fuzzy
clustering scheme is presented in section four. Experimental results are given in section
five, which show how the sensitivity problem of the k-means algorithm may be overcome by
the new fuzzy clustering scheme. Possible simplifications and a brief disscussion on related
algorithms are given in section six. Finally, conclusions are given in section seven.

2 Radial Basis Function Networks

A basic radial basis function (RBF) network may be depicted as shown in Fig 1. Without
loss of generality, in the present study the number of outputs in the network will be assumed
to be one, but the architecture can be readily extended to cope with multi-output problems.
The architecture consists of an input laver, a hidden laver and an output layer. The input
vector to the network is passed to the hidden laver nodes via unit connection weights.
The hidden layer consists of a set of radial basis functions. Associated with each hidden
layer node is a parameter vector ¢; called a centre. The hidden layer node calculates the
Euclidean distance between the centre and the network input vector and then passes the
result to a radial basis function. All the radial basis functions in the hidden layer nodes are
usually of the same type. Typical choices of the radial basis functions are
i). the thin-plate-spline function:

o(v) = v? x log(v) (1)
it). the Gaussian function:
-(%)
Bv)=¢ \F (2)
it1). the multiquadric function:
o(v) = (v + %)} (3)

vi). the inverse multiqguadric function:

1

@ e T
(v) vt

(4)
where v is a non-negative number and is the distance from the input vector x to the radial
basis function centre e, and 4 is the widtl of the radial basis functions. In radial basis

function networks. the thin-plate-spline function has been used by Chen ¢f. al. [7], [R]. and
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Figure 1: A radial basis function network architucture

the Gaussian and multiquadric functions have been used by Moody [6], Broomhead [9] and
Poggio [5].
The response of the output layer node may be considered as a map : R™ — R, that is

N
f(x) =Y 6ol x —ei [) + 6o (5)

i=1
where N is the number of training data and || e || denotes the Euclidean norm, ¢; is the
data sample (i=1, 2, ..., N). x,¢; € R™, §; (i = 1,2,..., N) are the weights associated with
the 7t* radial basis function centre. fp is a constant term which acts as a shift in the output
level. It may be seen that the training of the network is an interpolation problem and the
solution may be obtained by solving a set of constrained linear equations. The complexity
increases with the number of training data, which may make the implementation of the
network above unrealistic. In practical applications, it is often desirable to use a network

with a finite number of basis functions. A natural approximated solution would be

(x) = S 6id(] x = i []) + o (6)

=1
where n. is the number of radial basis function centres. Given a set of data (x;,y:), (i =

1,2, oy N3y € B®, ¥ E R, XKoo= (B, Figyerns afm)T, the connection weights, centres and
widths may be obtained by minimizing the following cost function

N

J=Y (- ) (xi- 1) (7)

=1

The above minimization problem may be solved using a nonlinear optimization or gradient
decent algorithm. However, such an algorithm will give similar results as the back propaga-
tion algorithm. Thus advantages of the radial basis function networks mentioned above will
be lost. Therefore, most learning algorithms developed so far are divided into two stages

i. Learn the centres and widths in the hidden layer;
ii. Learn the connection weights from the hidden layer to the output layer.

The centres and widths are typically obtained by an unsupervised algorithm. For ex-
ample, Moody et al [6] suggested a k-means clustering procedure as an updating rule for



the centres and a p-nearest neighbour rule for the widths, and Vogt [10] used a Learning
Vector Quantization (LVQ) procedure to locate the centres. The k-means clustering was
also used by Chen et al [7] in a hybrid training algorithm. Since the cost function J in (7) is
quadratic in the connection weights 6; (i = 0,1,...,n,), after the centres ¢; (1 = 1,2,...,n,)
and the width 3 have been chosen, the connection weights can be obtained using the least
squares algorithm. In the present work, a recursive least squares (RLS) method using a
Givens transformation will be used to compute the connection weights.

3 Centre Selection and Clustering

Suppose that the centre locations are to be determined using the natural definition of
optimiality, then the following condition must be satisfied by the centres ¢; (i = 1,2, e T2)
daJ
dce;

=0 1=1,2,...,n, (R)

Using the gradient-decent method. this vields

03 ud 186
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Assume that the training errors (y, — f*) are conqtantq vields
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It may be clear that the above condition means that the centres move towards the majority
of the training data. The optimal centres are a weighted sum of the data samples. The
weight of the data sample x; for a given centre ¢; is proportional to the interpolation error
at the data sample, the rate of change of the radial basis function on that centre in the
neighbourhood of the data and is inverselv proportional to the distance from the data to the
centre. This suggests that a clustering algorithm may be used to locate the centres. Many
clustering algorithms may serve this purpose. For example. Moody [6] used a sequential
version of the k-means algorithm for centre clustering. The k-means clustering is one of the
optimization clustering methods. which minimize or maximize a certain clustering criterion.
A general expression for the number of distinct partitions of N objects into n, non-empty
groups is given as [11]

¢ . (n .
N(N,n _1]12—1” ‘(“);N (11)
€ i=1

It may be seen that it is impossible to consider every possible partition of N object into
n. groups when N is large. For example, the number of partitions of 100 objects into 5
groups would be

N(100.5) = 108



Therefore, nearly all optimization clustering algorithms search for the optimum value
of a clustering criterion by arranging existing partitions and keeping the new one only if it
provides an improvement in the criterion. The essential steps in these algorithms are

a. Find some initial partition of the objects into the required number of groups.

b. Calculate the change in the clustering criterion produced by moving each object from
its own to another cluster.

¢. Make the change which leads to the greatest improvement in the value of the clustering
criterion.

d. Repeat steps b and ¢ until no move of a single object causes the clustering criterion
to improve.

The initial partition might be given in the following ways
i. Specified on the basis of prior knowledge.
ii. Chosen at random.
iii. n. points might be selected in some way to act as initial centres.

Onme of the major disadvantages of the optimization clustering method is that different
initial partitions might lead to different local optimum of the clustering criterion since the
method is essentiallv a descent algorithm. In some cases. the results from an optimization
method can be largely affected by the choice of the initial partition. This may be appreciated
from the experimental examples with the sequential k-means method given later. A similar
clustering scheme. the Learning Vector Quantization (LVQ) method was used in reference
[10] for locating the RBF centres. In this reference, the class membership of the training
data was also taken into consideration. When the nearest centre is of the same class as
the training data. the centre is moved in the direction of the data, otherwise, it is moved
in the opposite direction to the data. It may be correct to say that the LVQ scheme is
also sensitive to the initial positions of the centres. It is obvious that the output of the
radial basis function network depends on the centre locations. If the clustering result is
sensitive to the initial locations of the centres. the output of the network will be sensitive to
the initial centre locations as well and for some initial settings unsatisfactory results may
be obtained. Therefore, clustering algorithms which are more robust to initial settings are
required. In the following section. a self-organizing scheme which is insensitive to the initial
centre locations will be described in detail.

4 Fuzzy Clustering Scheme

The clustering scheme to be described in this section is a modified version of the Self-
Organizing feature Map (SOM) of Kohonen [12]. The SOM places a number of reference or
codebook vectors into a high-dimension input data space to appproximate the data set in an
ordered fashion. The algorithm can eflectively he used to visualize metric ordering relations
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Figure 2: A basic model of the self-organizing map

within the input data. The basic model] of the self-organizing map consists of two layers
as shown in Fig 2. The first layer contains the input nodes and the second layer contains
the output nodes. The output nodes are completely connected to the input nodes by unit
weights. Associated with each output node is an adjustable weight w; (j = s oty
which can be viewed as the centre of cluster j and the output d; is the distance between
the centre of cluster j and the data sample x.

A significant feature of the self-organizing map is that the output nodes are not affected
independently to each other, but as topologically related subsets. The subset is defined by
a topological neighbourliood set N, around output node c. During the learning process,
the subset however, may be composed of different output nodes and the width or radius of
N¢ can be time-variable. This strategy enhances the Jateral interactions among the output
nodes and achieves a good global ordering of the data. The algorithm is given as [12)

1. Randomly set the weights wi (1 =1,2, 00,0 = 1,2,...,n). Set the neighbourhood
size N,.

2. For each training data x;, find the best-matcl output node ¢, such that

= we | = min {]) xi = w; |} (12)
where % = [mg ---wTin}T

Wj = [wﬂ, sy U!jn}T

Update w;; using the following rule

w. = J Wite)xi-w;] if jeN,
’ w; f JEN.
3. Go to step 2, if there are significant changes in weights.

4. If Nc = {0}, stop. Else, decrease the width of N,.

For good global ordering, it was suggested in [12] that the width of N, should be very wide
in the beginning and shrink monotonically with time. It is even, possible to end the process
with N = {0} as given above. The parameter a(f) is a scalar-valued ‘adaptive gain’ and

=1



0 < a(t) < 1. It is usually related to a similar gain used in the stochastic approximation
processes [13]. An alternative is to introduce a 'bell curved’ adaptive gain given as [12]

I, ~Feli?

a = ap s (13)
where r; and r. denote the coordinates of output nodes j and ¢ respectively. ag and o are
suitable decreasing functions of time. Note that the gain is inversly proportional to the
topological distance from the j** output node to the best-matching node c.

The self-organizing map is an unsupervised learning process and has been particularly
successful in pattern recognition applications. Like other unsupervised classification meth-
ods, it may be used to find clusters in the training data. In particular, when the input data
has a well-defined density function, the weight vectors of the output nodes tend to imitate
this function, no matter how complex it may be. Therefore, the SOM algorithm is a strong
candidate for clustering in radial basis function networks.

Since it is difficult to express the dyvnamic properties of the learning process in math-
ematical theorems. simulation experiments and practical applications are usually used to
explain the properties of the algorithm. It was found in [12] that a very wide initial neigh-
bourhood N, is essential to obtain good global ordering. A wide initial A, introduces a
rough global order in the map. the acquired global order however is not destroyed by using
a narrower N, later.

Note that the SOM algorithm uses the concept of topological neighbourhood. Topolog-
ical neighbours are not necessarily neighbours in the sense of metric distance. Heuristically,
it might be advantageous to introduce metric neighbourhoods for clustering applications.
This idea was introduced by Huntsherger et al [15] and was also used by Kavuri at al [16].
In the SOM algorithm, the output nodes within the topological neighbourhood N, have
the same correction towards the training data. In clustering applications. it may make
sense to assign extra weight to clusters according to their metric distances to the winning
cluster. Such that a cluster centre which is relatively far from the winning cluster has rela-
tively small amount of movement towards the training data. For applications in radial basis
function networks. this heuristic may be justified using the condition given in equation (10)
in the previous section. where the weight of a data sample for a given centre is inversely
proportional to the distance from the data to the centre. The fuzzy membership functions
may be used for this weighting purpose. and this was introduced into the SOM algorithm
by Huntsburger ¢f al [15]. The modified algorithm is given as follows. In the following, by
neighbourhood we mean the set of neighbours in the sense of metric distance.

1. Randomly initialize the weights wy; (1 = 1,2,....n., 7 = 1,2,....n). Set the number
of neighbour clusters N..

2. For each training data x;, find the output node (or cluster) ¢, such that

H X; — W, H :ulin_:,{ﬂ X —W; ”} (]4)
where ™y == By @)®
O I

Update wy; according to

Way; = Wy; + (1) piy (Ti5—wy;) J=1,2,....n. (15)

o0



where v includes ¢ and its N. neighbours.
3. Go to step 2, if there are significant changes in weights.

4. If N. = 0. stop. Otherwise, set N. = N.—1 and go to step 2.

where 1;, is the membership function of the 7t* pattern (or input data) in the v** cluster.
p P p p

1, if  d{xw) =0,
piw =2 0 if dx;ow)=0 (#v,1<Lv<ng),
-1
(Z?___ﬁl %((3:—::’)1) , otherwise.

Note that the membership function is in the range [0, 1] and is inversly proportional to the
distance of the i** pattern (or input data) from the v** cluster d(x;,w,). The algorithm
updates all the N, nearest clusters of the data point according to their distances to the
data. We refer to this clustering algorithm as a fuzzy clustering scheme in the sence that
every data sample is related to N, clusters. It may be seen that this weighting strategy
is similar to the one given in equation (12). In the following section, the scheme will be
incorporated into a radial basis function network. The properties of the resulting network
are compared with that of the network incorporated with a sequential k-means clustering
algorithm.

5 Experimental Results

In this section, the fuzzy clustering scheme described in the previous section will be used
for clustering and for finding centre locations in a radial basis function network. It will be
shown how the sensitivity problem found in the k-means clustering may be overcome by
using the fuzzy clustering scheme.

5.1 Clustering Results

In this section, two data sets are used to test the fuzzy clustering scheme. The first is an
artificial data set illustrated in Fig 3. There are four clusters with 500 samples each. Each
cluster has a Gaussian distribution with a variance of 0.05. The centres of the clusters are
(0.5, 0.0), (0.0. 0.5). (-0.5. 0.0) and (0.0, -0.5) respectivelv. They will be referred as class
1, 2, 3 and 4 respectively in sequence. Note that the four classes are well seperated and
good clustering results would be expected with most clustering algorithms. The second
data set used is Anderson’s Iris data [14]. The iris data consists of four measurements
of fifty plants each of three Iris subspecies: Iris setosa, Iris versicolor and Iris virginica.
The four measurements are the sepal length, sepal width, petal length and petal width.
The data set is plotted in Fig 4 with sepal width against sepal length and petal width
against petal length. It may be seen that the Iris setosas are well seperated from versicolors
and virginicas, while versicolors and virginicas slightly overlap. In the following. the three
subspecies will be referred as class 1. 2 and 3 respectively.

In the experiments, a constant clustering gain was used in the k-means clustering al-
gorithm and a time varving clustering gain was used in the fuzzy clustering scheme. The
k-means clustering used in the experiments was



Figure 3: A set of simulated data with four classes
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Figure 4: Iris data plotted with sepal width against sepal length, and petal \\'id£]1 against
3 ()

petal length, '4+: setosas, "o’ versicolors, "*": virginicas,

L. Initialize ventres iy (0= 1,8 wutin 5= 1.2 00.0). 88¢ the clustering gain ag and
counter tg = 0. Set the number of iteration T
2. For each sample data x;, find the nearest centre c, such that
| xi—c. || = min {{] x; — c; |1}

where X; = [-ﬂh—--ﬂ‘:‘n]T

¢; = [e51000y CJH]T

Update c.; according to

Cej :ch+(‘10 (.r,-j—ccj) j: 1,2,... n.

3

3. f to < T, Go to step 2, otherwise stop.
The fuzzy clustering scheme used in the experiments was given as

1. Initialize centres 5. (1 =1,2,...,n¢, 7= 1,2,...,n). Set the initial clustering gain ag.
Set the number of iteration 7; and counter t; = 0, 15 = 0. Set the initial number of
neighbours N.. Calculate the total number of iterations T = (N, + 1) x T..

2. Set the clustering gain a = ag(1 — 1o/T).

10



Table 1: Final Centres (Fuzzy Clustering) for Different Initial Centres
(a0 = 0.1, T; = 4)

Initial centres cq () Ca C4
11C1,2,3.4,5 0.5004 | -0.0041 | -0.4966 | 0.0014
-0.0020 | 0.5009 | -0.0028 | -0.5034

3. For each sample data x;, find the centre c, such that

| xi = ec || = minj {[| x; — ¢; ||}
where % = [Ty e Tin) T

P T
& = [es10 v Csn)
Update ¢,; according to
Cug = €5+ O Jhiy (05 — ) 7= 1 2peaitis

where v includes ¢ and its N, neighbours. The coefficient i, is the fuzzy membership
function given in section four.

4. Sett;, =1+ 1, lo=to+ 1. I {; < T;. go to step 3.
5. If N. = 0, stop. Otherwise, set N, = N, — 1. #;, = 0 and go to step 2.

Note that, instead of monitoring the changes of the centres, we simply process the data set
for a certain number of iterations. For some of the experiments, the final centres may not
have converged. Since our aim is to investigate the effect of initialization on the clustering
results, the conclusions should not he affected.

Experiment 1: Clustering the four data classes into four clusters. In this
experiment. five sets of initial centres were used:

1IC1: The first four samples from class 1.

1IC2: The first four samples from class 2.

1IC3: The first four samples from class 3.

1IC4: The first four samples from class 4.

1IC5: All the four initial centres were placed at (1, 1).

The data samples were processed in the order of class 1, 2, 3 and 4. The final centres
obtained using the k-means and the fuzzy clustering algorithms are given in Table 1 and
Table 2 respectively. The underlined centres are in the wrong locations.

It is obvious that the k-means clustering is very sensitive to the initial centre locations.
Although the k-means clustering achieved correct clustering results for initialization 11C1
and 1IC2, it failed to find the cluster centres for initializations 11C3 11C4 and 11C5. Note
that for initialization 11C'5. only one cluster centre was correctly located and the other three
centres were left unchanged. These three centres are usually referred to as dead centres.

11



Table 2: Final Centres (k-means) for Different Initial Centres
(ag=0.1, T = 15)

Initial centres cy c c3 Cy
11C1 0.5149 | -0.0144 | -0.4922 | -0.0026
-0.0032 | 0.5133 | -0.0018 | -0.5216
11C2 0.5149 | -0.0144 | -0.4922 | -0.0026
-0.0032 | 0.5133 | -0.0018 | -0.5216
11C3 -0.5125 | -0.0144 | -0.4796 | -0.0026
0.0501 | 0.5133 | -0.0327 | -0.5216
11C4 0.0219 | -0.0144 | -0.4922 | -0.0297
-0.5462 | 0.5133 | -0.0018 | -0.4663
11CH 1.0000 | 1.0000 | 1.0000 | -0.0026
1.0000 | 1.0000 | 1.0000 | -0.5216

Table 3: Final Centres (Fuzzy Clustering) for Different Initial Centres
(ap = 0.1, T; = 15)

Initial centres c1 C2 c3

210°1.2.3.4 5.0039 | 5.8807 | 6.8440
3.4255 | 2.7403 | 3.0794
1.4628 | 4.4150 | 5.7102
0.2472 | 1.4538 | 2.0662

Since all four initial centres were placed at the same location and were far away from the
data samples, once one of the initial centres was moved towards the data set, it became the
nearest centre to all the data samples and was updated at every sample step.

Experiment 2: Clustering the Iris data into three clusters. In this experiment,
the fuzzy clustering and the k-means clustering were run on the Iris data. Three cluster
centres were chosen and four sets of initial centres were selected.

2IC1: The first three samples of class 1.

2IC2: The first three samples of class 2.

2IC3: The first three samples of class 3.

2IC4: All the three initial centres were placed at (10.0. 10.0, 10.0, 10.0).

The final centres obtained using the k-means and the fuzzy clustering scheme are listed
in Table 3 and Table 4.

It may be seen that the k-means algorithm again failed to find the correct cluster centres
for most of the initial centre locations. The clustering results are stronglyv affected by the

12



Table 4: Final Centres (k-means) for Different Initial Centres
(Ctg = 0.1, T= ]0)

Initial centres | 2IC1 21C2 21C3 21C4
01 5.1893 | 4.9806 | 4.9578 | 10.0
3.6543 | 3.4159 | 3.3915 | 10.0
1.5217 | 1.4684 | 1.4656 | 10.0
0.2806 | 0.2340 | 0.2534 | 10.0
ca 4.7310 | 7.2965 | 5.9307 | 10.0
3.0248 | 3.1789 | 2.7410 | 10.0
1.6091 | 6.0542 | 4.7814 | 10.0
0.2971 | 2.1184 | 1.6400 | 10.0
c3 6.4795 | 6.2458 | 6.7555 | 6.4794
3.0235 | 3.0422 | 3.1320 | 3.0236
5.3782 | 5.2211 | 5.6045 | 5.3781
2.0667 | 2.0475 | 2.1852 | 2.0667

initial centres. For the fuzzy clustering scheme, the results are independent of the initial
centres.

We also experimented on the fuzzy clustering scheme with different initial clustering
gains. This revealed that the algorithm is robust to changes in the clustering gain. The
robustiness may be appreciated from the maximum deviations of the final centers from their
real locations. For comparision. the actual cluster centres of the iris data are given in the
following

c1 = (5.006, 3.428, 1.462, 0.216)

ca = (5.936, 2.770, 4.260, 1.326)
3 = (6.588, 2.974, 5.552, 2.026)

The maximum deviation in any one coordinate were 0.256. 0.241 and 0.233 (which were all
in the first coordinate of ¢3) for ag = 0.1. 0.3 and 0.5 respectively.

Experiment 3: Clustering the four data classes into eight clusters. In the
previous experiments, it was shown that the fuzzy clustering scheme was insensitive to the
locations of the initial centres. In both the experiments, the number of centres were set to
equal the number of natural clusters within the data set. In practical applications. however,
the number of natural clusters is usually unknown and the number of centres chosen is
often larger than the number of natural clusters. This is particularly true in radial basis
function networks. In radial basis function networks, the exact number of natural clusters
may be unimportment. It is required that all the data samples are represented by the
centres according to their distribution. Dead centres as found in the k-means clustering and
centres lying between clusters (or classes) would deteriate the performance of the network.
The former happens because the initial centres are far away from the data samples and

13



Table 5: Final Centres (Fuzzy Clustering) for Different Initial Centres
(ap = 0.1, T; = 4, number of centres = 8§)

Initial centres | €17.€19 | €21,€27 | €31.€C32 C41.C42
0.5211 | 0.0327 | -0.4586 | 0.0127
-0.0339 | 0.5114 | -0.0060 | -0.4630

31C1,2,3.4.5
0.4787 | -0.0437 | -0.5393 | -0.0122
0.0350 | 0.4902 | 0.0013 | -0.5458

there exists strong competition hetween the centres. The later was found in the conscience
learning strategy [17] when the number of centres was larger than that of the natural
clusters. The conscience learning strategyv equalizes the average rates of winning for each
cluster by reducing the winning rate of the frequent winning centres. It may be correct to
say that the later is due to the lack of competition between the centres. In this experiment,
we investigate the performance of the fuzzy clustering scheme when the number of centres
is larger than that of the natural clusters. The number of centres was chosen as eight in
this experiment. Again five initial centre sets were used. these are

3IC1: The first eight samples from class 1.

3IC2: The first eight samples from class 2.

3IC3: The first eight samples from class 3.

31C4: The first eight samples from class 4.

3IC5: All the eight initial centres were placed at (1. 1).

For all these initial centres. the final centres converged to the same set of centres and
every cluster is represented hy two centres. There were not anyv dead centres or centres
lving between classes. The clustering results are given in Table 5.

To investigate the effect of the initial clustering gain on the clustering results. the fuzzy
clustering scheme was run with different initial values of ag (0.3. 0.5. 0.7. 0.9). The final
centres are shown in Fig 5. In these experiments, all the initial centres were placed at (1,
1). It may be seen that the final centre locations were only slightly affected when different
initial clustering gains were selected. These are mainly determined by the number of centres
and the properties of the data set.

5.2 Classification Results

As mentioned previously. the RBF centres should move towards the majority of the train-
ing data. Therefore. network performance would be improved by implementing a better
clustering algorithm in the RBF network. But k-means clustering is very sensitive to the
initial centre locations. such that the final centres are often trapped at local minima. In
certain cases, some of the training data are poorly represented. It is obvious that the per-
formance of the network will deteriorate if this situitation arises in the RBF network. In
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Figure 5: Final centres (fuzzy clustering) for different clustering gaina: ag = 0.3, b: ag =
0.5, ¢c: ag=0.7, d: ag=10.9

network training, it is expected that the final centres should be insensitive to the initial set-
tings of the clustering algoritlim and they should not become trapped at local minima. The
experiments described in section 5.1 indicate that the fuzzy clustering scheme has the above
mentioned properties and it is a strong candidate for centre selection in RBF networks.
In this section, the fuzzy clustering scheme described in section 5.1 was implemented in a
radial basis function network for finding the RBF centres. The classification performance
of the network was compared with that of the network implemented with the k-means clus-
tering. The Iris data was used to train the network. For fairness of comparision, constant
clustering gains were used in botl the networks. With the same initial clustering gains, the
final centres obtained in this section will be further deviated from their optimal locations
than those obtained in the previous section. However, the algorithm converges much faster.
We experimented with different clustering gains and different initial centre locations. The
results are given in Table 6 and Table 7 below. The output of the network is a three
dimensional unit vector. For data sample x;, if x; belongs to class j, the desired output of
the network is e; (with unity on the j** position and zeros on the others). In the exper-
iments, if the j** output of the network in not less than 0.75 and the other two are not
larger than 0.25, the pattern x; was considered to be correctly classified, otherwise, it was
misclassified. This is much more strict than the so-called "winner takes all” criterion, in
which the pattern x; is correctly classified if the 7% output is larger than the others. Ten
centres were used for classifying the data set. Eight sets of initial centres were used in the
experiments, they are

4IC1: Ten randomly selected data samples.

4IC2: The first ten samples of class 1.

4IC3: The last five samples of class 1 and the first five samples of class 2.

41C4: The first ten samples of class 2.



Table 6: Classification Performances (Initial centres: 41C1)

Fuzzy clustering K-means
(T;=35) (T = 10)
Clustering Misclassification Misclassification |
gain class 1 | class 2 | class 3 | class 1 | class 2 | class 3
ag = 0.1 0 7 9 0 9 9
ap = 0.2 0 6 10 0 6 11
oo = 0.3 0 6 10 0 8 12
apg =04 0 6 10 0 4 10
ag = 0.5 0 6 12 0 6 13
ag = 0.6 0 6 11 0 9 11
ag = 0.7 0 9 13 0 T 13
ag = 0.8 0 9 12 0 g 10
ag = 0.9 0 10 12 0 9 11

4IC5: The last five samples of class 2 and the first five samples of class 3.

41C6: The first ten samples of class 3.

4ICT: The last five samples of class 3 and the first five samples of class 1.

4ICB8: All the ten centres were placed at (10, 10, 10. 10).

Both the fuzzy clustering scheme and the k-means algorithm were run with different
initial clustering gains and the same set of initial centres 41C1. Since the initial centres are
evenly distributed in the region of the data (see Fig 6), both the algorithms achieved similar
classification accuracy. The average misclassification is 18.2 patterns for the fuzzy clustering
scheme and 18.6 patterns for the k-means algorithm. However, the fuzzy clustering scheme
showed a clear relation between the number of misclassifications and the clustering gain.
The larger the clustering gain, the less accurate the classification. This is because the
final centre locations deviate further from their optimal locations when the clustering gain
is increased. For the k-means algorithm, there seems no explicit relation between the
classification accuracy and the clustering gain. For different clustering gains, the centres
become trapped at different local minima and the network exibits very different classification
behaviour.

The best clustering gains obtained in the previous experiments were chosen to run
the fuzzy clustering and the k-means algorithm respectively with different initial centre
locations. The classification performance of the networks are listed in Table 7. It may
be seen that the network with fuzzy clustering exhibited uniform classification performance
for different initial centres. On average. it also achieved much higher classification accuracy
than the network with k-means clustering. For initial settings 41C1 - 41C7, the average
number of misclassification for the network with k-means clustering is 21.3 patterns. For
initial setting 41C8&, all the patterns in classes 2 and 3 were misclassified. Note that the
network with k-means clustering achieved the best classification performance among the
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Table 7: Classification Performances (different initial centres)

Fuzzy clustering K-means
(Ti = 3) (T = 10)
Initial Misclassification Misclassification
centres | class 1 | class 2 | class 3 | class 1 | class 2 | class 3
41C1 0 7 9 0 4 10
4102 0 7 9 0 11 18
41C3 0 7 9 0 7 10
41C4 0 7 9 0 13 9
41C5H 0 7 9 0 17 14
416 0 7 9 0 10 10
41C7 0 7 9 0 9 7
41C8 0 7 9 0 50 50
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Figure 6: Initial centre set 41C1
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experiments when the initial centres were 41C1. This may be explained as follows. Since
the optimal centres for the radial basis function network depend on the data as well as
the properties of the underlying function which is being approximated by the network, the
optimal clustering centres are not necessaryly the optimal RBF centres. Therefore, for
certain centre locations, which are local optimal solutions of the clustering procedure, the
RBF network may achieve good classification results. However, this is arrived at completely
by chance and is unpredictable.

6 Discussions and Related Methods

The fuzzy clustering scheme described in the previous section is a variant of the self-
organizing feature map. Several parameters are required such as the clustering gain, number
of neighbourhood clusters and a strategy to alter these two parameters during clustering.
From the experiments described above. it may be seen that the clustering gain only has a
marginal effect on the final clustering results when it is monotonically decreased with time.

When the number of neighbours is n. — 1, there is only one cluster centre. This centre
should be the grand mean of the data samples. In practical applications however, this will
depend on the sequence in which the data samples are processed. This cluster centre will
be split into smaller clusters when the number of neighbours is reduced. As the number of
neighbour clusters is reduced from n.—1 to 0, the cluster centres will undergo a sequence of
transitions. For a given number of neighbour centres, the clustering scheme will converge to
a local minima. By changing the number of neighbour centres, the scheme will escape from
this local minima. The local minima is avoided by a sequence of changes in the number of
neighbour centres. The optimal way to alter the numher of neighbour centres is probably
problem dependent and is unknown. In the experiments above, the number of neighbour
clusters was decreased by one from N.—1 to 0 every T; iterations. In practical applications,
this method may became computationally expensive when the number of clusters is large,
although it mayv be necessary in some cases. While there is no simple rule to indicate how to
alter the number of neighbour clusters, we intended to investigate if it is possible to start the
clustering procedure with a very large number of neighbour clusters in the first T; iterations
onlv and reduce this to a much smaller number and then continue to reduce it by smaller
steps. We experimented with the Iris data in the hope of reducing the computational cost
of the clustering procedure. With ten centres selected. we hegan the clustering procedure
for the first T} iterations with nine neighbours and reduced it to a smaller number N, for
the next T; iterations, after which the number of neighbours was reduced by one every
T; iterations. When N, was 7, 6, 5, 4 and 3, the RBF network achieved the same
classification results as those listed in Table 7 (where N, was 8). Reducing N, further,
produced worse results. We also experimented with different numbers of centres. The
results showed that it is possible to start the clustering procedure from a very large number
of neighbours and reduce it to roughly half the number of the centres and to get the same
clustering results as the procedure given in the previous section. This strategy can reduce
the computational cost significantly and still produce the same global cluster centres. As
mentioned previously however, it seems essential to start with a very large number of
neighbour centres in the first T; iterations.



The adaptation rule in the fuzzy clustering scheme was determined heuristicly and
a cost function which is minimized by the updating formular (11) cannot be specified.
Recently, several clustering algorithms which minimize certain objective functions have been
developed. The deterministic annealing [18], [19] and the generalized clustering network
[20] are such schemes. One common feature of these algorithms is that they introduce
a similar adaptation rule as the one given in the fuzzy clustering scheme, this not only
updates the 'winning’ cluster centre but also affects all cluster centres in a neighbourhood
set. The determinstic annealing method is based on statistical physics and minimizes the
cost function or free energy

By = _% S In [E e-ﬁ("-“—")’] (16)

A stochastic gradient descent adaptation rule would be

By Sy + B i [y — Gy (17)
where
r"ﬁ(x|"cv)2
iy = = = 1,2, .., n
Z;L;l C"’ﬁ(x'_cj}

By anology, 3 is said to be proportional to the temperature. As 3 gets larger, the
associations between the data samples and the cluster centres become less fuzzy. When S is
zero, each data sample is equally associated with all cluster centres, while as 3 tends to
infinity each data sample helongs to exactly one cluster centre with probability one. To
avoid local minima of the cost function, the clustering procedure usually begins with a high
temperature and this is gradually reduced to zero. At /3 = 0 there is only one cluster centre,
this cluster will split into smaller clusters at a higher 3 value. Therefore, the clusters will
undergo a sequence of phase transitions during the clustering process. However, to optimize
the method, more serious investigations into the phase transition (or annealing schedule)
are required. In practical applications. 3 was usually increased exponentially, this would
certainly compromise the clustering results and may result a very slow clustering process.
In addition, a strategy to alter the clustering gain is also required.

The generalized clustering network minimizes the cost function

B S Tty Ge(Xi - )
gc N

(18)
where _
1 'lf M=
Gev = W, otherwise

The cost function Eg, is minimized by local gradient descent search using the sample func-
tion

LX:L(X.C],-----\CW.:):Zgru(x_cv)z (19)
v=1
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Note that Ly is a measure of the locally weighted mismatch error of x with respect to the
winning cluster c. The adaptation rules are given as

2
by = Ceit QDLDEX‘_C‘ (zi; — ;) for the winning cluster c (20)
2
Lo =G+ QLX‘—B(;—‘L(::,-J- —¢j) for the other (n. — 1) clusters (21)

where
Te
D=Y |xi—c |
v=1

Note that the updating rules are very similar to those adopted in the fuzzy clustering
scheme except that now there is no need to specify a neighbourhood set. The clustering
gain may also be altered as similar to the procedure used in the fuzzy clustering scheme.
When applied to the Iris data, the generalized clustering network ended up with a maximum
deviation of 0.26 for 500 iterations [20]. In our experiment. a slightly smaller deviation was
achieved in 45 iterations although different initial cluster centres and clustering gains were
used. We also experimented with ten cluster centres, for initial settings 41C'4 and 41C6 the
generalized clustering network failed to converge to the same set of final centres in 2000
iterations. It may be correct to say that the convergence rate of the algorithm is slower
than the fuzzy clustering scheme.

7 Conclusions

A fuzzy clustering scheme has been implemented in a radial basis function network. It has
been shown by experiments that the fuzzy clustering scheme is insensitive to initial centre
locations and is robust with respect to changes in the clustering gain. The fuzzy clustering
scheme relates a data sample not only to the nearest cluster centre but also to a set of
neighbour cluster centres. By using a sequence of different neighbour sets, the algorithm
can avoid the local minima problems found in the k-means or similar clustering algorithms.
While there is no simple rule on how to alter the number of neighbour centres, it was shown
on a real data set that it is possible to start the clustering scheme with a very large number
of neighbour centres in the first 7; iterations and then to reduce this to a much smaller
number in the following T; iterations. The computational cost can thus be significantly
reduced and global clustering results can still be obtained.

When the fuzzy clustering scheme was applied in RBF networks, all the data samples
were well represented by the cluster centres. There were no dead centres or centres lying
between classes and the resulting network achieved better classification performance than
the network with the k-means algorithm.
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