The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Improved Structure Selection for Nonlinear Models Based on
Term Clustering..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79627/

Monograph:

Aguirre, L.A. and Billings, S.A. (1994) Improved Structure Selection for Nonlinear Models
Based on Term Clustering. Research Report. ACSE Research Report 509 . Department of
Automatic Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

® a8 s6)

Improved Structure Selection for Nonlinear
Models Based on Term Clustering

L A Aguirre, and S A Billings

Department of Automatic Control and Systems Engineering
University of Sheflield
P.O. Box 600
Mappin Street
Sheffield S1 4DU
United Kingdom

Research Report No 509

March 1994



Improved Structure Selection for Nonlinear
Models Based on Term Clustering

Luis A. AGUIRRE! and S. A. BILLINGS

Department of Automatic Control and Systems Engineering
University of Sheffield
P.O. Box 600, Mappin Street — Sheffield S1 4DU - UK

Abstract

In this paper the concepts of term clusters and cluster coefficients are defined and
used in the context of system identification. It is argued that if a certain type of term
in a nonlinear model is spurious, the respective cluster coefficient is small compared
to the coefficients of the other clusters represented in the model. Once the spurious
clusters have been detected, the corresponding terms can be deleted from the set of
candidate terms. The consequences of doing this are i) a drastic reduction in the size
of the set of candidate terms and consequently a substantial gain in computation time
is achieved, ii) the final estimated model is more likely to reproduce the dynamics of
the original system, and iii) the final model is more robust to overparametrization.
Numerical examples are included to illustrate the new procedure.

1 Introduction

The use of nonlinear models in system identification and analysis is, in many instances,
essential because a number of phenomena observed in practice arise from nonlinearities in
the original system. Thus the use of nonlinear models raises the hopes of reproducing and
therefore analysing phenomena such as nonlinear oscillations, bifurcations and chaos. These
dynamical regimes cannot be produced by linear models.

A number of nonlinear representations are currently available and these include polyno-
mials, rational and piecewise linear models, radial basis functions and neural networks. A
difficulty which appears to be common to most nonlinear representations is that the num-
ber of possible structures increases exponentially, and even for simple nonlinear systems the
total number of terms often becomes impractical. Moreover, excessively complex models
have two main disadvantages, namely i) the numerical problem becomes ill-conditioned, and
ii) overparametrized nonlinear models tend to destroy the original dynamics.

Consequently several techniques for selecting the best model structure have been sug-
gested in the literature (Billings et al., 1988; Billings et al., 1989; Haber and Unbehauen,
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1990; Kadtke et al., 1993). Most of these techniques provide a detailed way of selecting the
most relevant terms usually from a large set of candidates or, in some cases, of eliminating
the unnecessary terms in a trial model. However, the performance of such methods usually
depends on factors such as the sampling period and measurement noise.

It is the objective of this paper to develop tools and define a new term clustering procedure
which can be used in conjunction with existing techniques to enhance structure selection for
nonlinear models such that overparametrization and numerical ill-conditioning are avoided.

In the present study the concepts of term clusters and cluster coefficients are defined
for polynomial models. Such concepts are applicable when the data has been produced by
sampling a continuous process. It is also shown how such concepts can be used as a powerful
aid to structure selection. In this respect, a structure selection criterion which has been
developed previously (Billings and Chen, 1989; Billings et al., 1989) is used as a basis.

The paper is organised as follows. In §2.1 term clusters and cluster coefficients are
defined. The effect of spurious clusters on the respective model is investigated in §2.2. The
question of how to assess the importance of a given cluster is addressed in § 2.3. Some related
results concerning systems with integral action are developed in § 3. Section 4 provides three
numerical examples to illustrate the application of the new concepts. Finally, the main
points of the paper are summarised in § 5.

2 Term Clustering

In this section the concepts of term clusters and cluster coefficients are introduced and a few
related features are discussed. The application of such concepts to the structure selection of
nonlinear models is illustrated in §4.

2.1 Definition

Consider the ponlinear autoregressive moving average model with exogenous inputs (NAR-
MAX) (Billings and Leontaritis, 1981; Leontaritis and Billings, 1985a; Leontaritis and
Billings, 1985b)

y(k) = F¢ly(k—1),...,y(k—n,),u(k—d), ... ,u(k—d—n,+1)ek),...
se(k_ne)] ) (1)

where n,, n, and n, are the maximum lags considered for the output, input and noise terms,
respectively and d is the delay measured in sampling intervals, T,. Moreover, u(k) and y(k)
are respectively input and output time series obtained by sampling the continuous data u(t)
and y(t) at Ty, e(k) accounts for uncertainties, possible noise, unmodelled dynamics, etc.



and F*[] is some nonlinear function of y(k), u(k) and e(k) with nonlinearity degree £€ Z*.
In this paper, the map F*[|] is taken to be a polynomial of degree £.

The deterministic part of a NARMAX model, that is, a NARX model, can be expanded
as the summation of terms with degrees of nonlinearity in the range 1 <m < {. Each mth-
order term can contain a pth-order factor in y(k — n;) and a (m — p)th-order factor in
u(k — n;) and is multiplied by a coefficient ¢pm-p(n1,...,nm) as follows (Peyton-Jones and
Billings, 1989)

Mu

L m
=22 2 Gmp(nn . ,ﬂm)l_[y (k —mi) H k = ni) (2)
m=0 p=0 "1,"m i=1 i=p+1
where
NyiMu Ny
Y=y

‘l'l.:

) (3)

1
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and the upper limit is n, if the summation refers to factors in y(k — n;) or n, for factors in
u(k — n;). For instance, expanding equation (2) up to second order, that is, £=2 gives

y(k) = coo+ i ao(ny)y(k —n1) + i co1(n1)u(k — n1)

+3°3 caolna, na)y(k = na)y(k = 12)
+ i i c1,1(n1,n2)y(k — na)u(k — na)
+ 353 coalns, ma)ulk - no)uk = ns) . ®

It should be noted that the term coefficients depend on the sampling time and should
therefore be represented as ¢;m—p(Ts, 71, - - -y nm ). However, for the sake of clarity, the argu-
ment T, is dropped.

Ezample 2.1
The model
y(t) = 2.1579y(t —1)—1.3203y(¢ — 2) +0.16239y(t — 3)
40.22480 x 10~%y(t — 3)* — 0.48196 x 10~ %y(t — 1)*
4+0.19463 x 10~2u(t — 2) + 0.34160 x 10~%u(t — 1)
40.35230 x 107 %y(t — 1)%y(t - 2)
—0.12162 x 107 %y(t — 1)y(t — 2)y(t — 3) ()



can be described equation (2) with

c10(1) = 2.1579 c1,0(2) = —1.3203 )
c1,0(3) = 0.16239 c30(3,3,3) = 0.22480 x 10~3
cao(1,1,1) = —0.48196 x 10~2 ¢o(2) = 0.19463 x 10~2 = (6)
coa(1) = 0.34160 x 10-2 eso(1,1,2) = 0.35230 x 102
cao(1,2,3) = —0.12162 x 107% else cpm—p(:) =0

If the sampling time T, is short enough such that

y(k—1) ~y(k—2) ...~ y(k—ny) }
) ~ ’

u(k—1) mu(k—2) ~ ...~ u(k—n,) (M)

then equation (2) can be rewritten as

Ny My L m
YE) R S cpmep(inyerrim) 30 Doyl — DPulk— 1) (8)
n1Nm m=0 p=0
Definition 2.1 The constants ¥7¥'7* ¢, m—p(n1,...,nm) in equation (8) are the coefficients
of the term clusters Q,p,m-p, which contain terms of the form y(k — i)Pu(k — 7)™ for
m=0,...,£ and p=0,...,m. Such coeflicients are called cluster coefficients and are repre-
sented as L pym-». a

The approximations in equation (7) have been made in order to point out the rationale
behind term clustering and also to introduce a more formal definition of term clusters and
cluster coefficients. However, such concepts are valid in most applications in which the
sampling period is selected in order to enable reliable parameter estimation, as will be
illustrated in §4.

Clearly, the set of candidate terms for a NARX model is the union of all possible clusters
up to degree £, that is

{all possible terms} = U Qrum-s
p=0...m
m=0...4

= constantUQ, U, UN2UQ,, UNaU...
... U all possible combinations up to degree £ . (9)



Ezample 2.2
The cluster coefficients of the model in equation (5) are

c1,0(1) + €1,0(2) + €1,0(3) = E, = 0.99999
03.0(3: 3, 3) + c3.0(1, 1, 1) + 53,0(1, 1 2) + C3'0(1, 2 3) = Eys = —29880x10"3 , (10)
c01(2) + coa(l) = Z, = 2.2879% 1073

which correspond to the term clusters Q,, 2,2 and (., respectively. ‘ o

Therefore a cluster, Q,pym-», is a set of terms of the form y(k — )Pu(k — j)™? for
m=0,...,£ and p=0,...,m, and the respective coefficient, ,5,m-p, is the summation
corresponding to the coefficients of all the terms in a model which are contained in such a
cluster. Moreover, it is interesting to note that in the limit when T, — 0 all the terms in
a cluster become indistinguishable and all the cluster coefficients vanish except X, which in
the limit equals unity, that is

%imo B, =1, Il'im0 B pym-p =0 for all other clusters . (11)

2.2 The effect of spurious clusters

In this subsection it will be argued that the dynamical effect on the residuals of terms taken
from spurious clusters is negligible. In order to show this a rather intuitive approach will be
followed.

Assume that a set of data has been recorded by sampling the output and possibly the
input of a continuous dynamical system. If the model

y(k) = T7(k = 1)0 + £(k) (12)

is fitted to such data and the parameter estimates are unbiased, it is known that the residuals,
£(k), should be unpredictable from all combinations of linear and nonlinear terms. This can
be readily verified using nonlinear correlation functions (Billings and Voon, 1986; Billings
and Tao, 1991). In other words, a model is said to be unbiased if it explains all relevant
dynamics in the data. If some dynamics are left unexplained, they would appear in the
residuals and would be detected by appropriate nonlinear validation tests.

Consider the following illustration. The Duffing-Ueda system (Ueda, 1980)

§(2) +0.19(t) + ¥°(t) = u(t) (13)

was simulated and 1800 data points of the input and output were sampled at T, =7 /100.
Such data were used to identify a NARX model with fifteen terms which were selected



automatically using a criterion based on the error reduction ratio (ERR) (Billings et al.,
1988). The estimated model, denoted as in equation (12), can be expressed as

y(k) = Y5 0r + [¥50s + £()) (14)
where ¥7(k — 1)=[¥ 2] and © =[6F OF]". The subscripts E and S denote effective and

spurious terms in the model.

In order to assess the dynamical effect of each term in the model, the following procedure
was devised. Firstly, a correlation index was defined which gives a measure of the level of
nonlinear correlation found in the residuals. The way this index is calculated is irrelevant
to the following discussion and is therefore omitted. Secondly, such an index was calcu-
lated for fifteen ‘sub-models’ of the form y(k) = ¥% Og. The first of these sub-models was
composed only of the first term of the original fifteen-term model. In other words, initially
U O =first term of {T™(k — 1) O} and the last sub-model was the complete fifteen-term
model, hence finally % Og=97(k — 1) 0.

To calculate the correlation index for the sub-model y(k) =¥§ Og is effectively to measure
the whiteness of the ‘residuals’ which for such a sub-model are given by the terms in square
brackets in equation (14). Hence, if the correlation of such ‘residuals’ and of {(k) is negligible,
it seems appropriate to infer that the dynamical contribution of {3 ©s must also be negligible
. Tt is stressed that in the procedure outlined above, the parameters were only estimated
once for the model. The sub-models were then obtained by truncating ¥3 Og off the original
fifteen-term model.

The normalised correlation index for the fifteen sub-models is plotted as a function of the
number of terms in U3 O in figure 1. Two distinct phases are evident in the results. In the
first phase, not all the effective terms in the model are included in ¥§ Og and consequently
the effect of such terms appears in the ‘residuals’ corresponding to that particular sub-model.
That is ¥F Og+£(k) are coloured and were detected by the correlation tests. This is indicated
by a large value of the correlation index. Conversely, when all the effective terms had been
included in the sub-model the correlation index produced much lower values.

An important point to note is that the value of the correlation index when ¥g Og com-
prised seven terms was as low as for the full model. In other words, the whiteness of
UT g + £(k) for the seven-term sub-model is comparable to the whitness of {(k) for the full
model. Therefore, it seems reasonable to assume that the remaining eight terms in ¥§ Os
do not contribute to the residuals and are not explaining any dynamics.

It should be realised that such a conclusion could only be arrived at because parameters
were not reestimated and therefore the whole eight-term part ¥F @g should be regarded
as ineffective. Consequently, if ¥3 ©s = 0 is substituted in the original model and the
correlation index is calculated, the value shown in figure 1 for the sub-model with seven
terms would be obtained. Moreover, such a value is as good as for the complete model and
therefore the aforementioned substitution seems justifiable.
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Figure 1: Correlation index as a function of the number of terms in ¥% Og.

The model which was estimated in the above illustration, based on the ERR criterion,
produced terms from the following clusters Q,, €, Q., Qs and Q2. Interestingly, the
first seven terms belong to the first three clusters, whereas the eight terms in ¥ Og were
selected from the two latter clusters. This strongly suggests that the clusters 2,5 and Q.2
are spurious and consequently only terms from Q,, Q,, @, should be considered for inclusion
in the final model. In fact, if the original system of equation (13) is discretised by Euler’s
rule, the final model contains the following terms y(k—1), y(k—2), y(k—1)* and u(k—1)
confirming our conclusiong.

These effects seem to be analogous to the pole-zero cancellation effect in linear estima-
tion. Overfitting linear models tends to provide cancelling pole-zero pairs. The additional
parameters which correspond to these pairs can be deleted from the model without seriously
affecting the whitness of the residuals. The term clustering ideas appear to be the equivalent
phenomenon for nonlinear models.

2.3 Verifying the importance of a cluster

In the preceding section it has been argued that the effect of spurious clusters is negligible
as far as residuals are concerned. This conclusion has been arrived at by calculating a
correlation index for sub-models obtained by truncating the full estimated model. In this
section it will be shown that the importance of each cluster is revealed by the respective
cluster coefficient. Thus if a certain cluster is spurious, this will be revealed by a negligible
cluster coefficient. This is because the dynamical effect of U3 ©s on the residuals is canceled
within each cluster represented in the model. This result is stated in the following lemma.



Lemma 2.1 Assuming that the contribution of ¥E Os to the residuals é(k) of the model
in equation (14) is negligible such that U§ ©s — 0, then the cluster coefficients of the term
clusters represented in U Og are null.

Proof.

Grouping the terms of U2 Og into clusters and assuming that the sampling period is short
enough such that the terms in a cluster can be approximately represented by a single term,
the following can be written

0 = \I‘;és

= E E EyFum—r y(k — l)Pu(k s 1)"‘—'.0

m=0 p=0

Vm,p|y(k—ilu(k—j)" % eUfs,Vi,j, (15)

where U)s is the union of all the term clusters represented in ¥§ (:)s. A set of N, equations
can be written using equation (15) and taking the values of y(k — 1)?u(k — 1)™~? from the
data records for various values of k. Such a set of equations can be expressed in matrix form
as

0=0%, (16)

where 0 € RV*! & ¢ RM*Net and e IRM«*! where N,, is the number of clusters in U3 Os
and N.> N.

It is noted that the vector & contains the cluster coefficients of U ©s. The columns of
® are formed by terms of the form y(k — 1)?u(k—1)™"" and consequently ® has full column
rank, that is rank(®)= N,,. Hence from the dimension theorem

rank{®} + dim[ker{®}] = N,, , (17)

where dim[-] and ker{:} denote the dimension and kernel, respectively. Consequently,
dim([ker{®}]=0, or in other words the null space of ¢ has dimension zero and the only
vector in such a subspace is the null vector. Thus equation (16) only has the trivial solution

Spum— =0, Vm,p|y(k—<Pu(k—j7)""?eUfs . (18)
This completes the proof. 0

It should be noted that if the terms in ¥F Og were not clustered to compose @, then in
general such a matrix would probably be rank deficient. Consequently, many other solutions
would exist besides the trivial one. Moreover, in practice the sampling will be short but
probably not sufficiently short as to ensure that all the terms in a cluster can be adequately
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approximated by a single term. Consequently, the coefficients of spurious clusters will not
be exactly null. However, such coefficients should be sufficiently small to indicate that the
respective clusters are indeed spurious. This is illustrated in the following example.

Ezample 2.8

For the fifteen-term model estimated in §2.2 the cluster coefficients are

%, = 0.99986 5, = 1.64564 x 102 T,s = —1.64349 x 1073 )
%, = 5.68100 x 10~ T,z = —7.3000 x 10~° .

This suggests that Q,s and Q,,2 are spurious clusters. It is stressed that besides the
magnitude of the cluster coefficients, other aspects also suggest which clusters are spurious.
This will be illustrated in example 4.1. m}

An important thing to note is that although the dynamical effect of ¥3 Os on the residu-
als may be negligible, the inclusion of such terms in the final model can drastically influence
the overall dynamics (Aguirre and Billings, 1994c). Therefore, every effort in recognising
spurious clusters and subsequently deleting unnecessary terms from the model is very worth-

while

3 Results for Systems with Integral Action

The results in this section are presented for the sake of completion and also because systems

with integral action are not uncommon in practice.

3.1 The linear case

Consider the linear system

y(k) = i a;y(k—1)+ i biu(k —1)

=1 =1

A(g™M)y(k) = B(gH)u(k) , (20)

where ¢~! is the backward time-shift operator such that y(k)g~! = y(k — 1). Note that
for a linear system, there are only two term clusters, namely Q, and §,. Taking the Z-

transform of equation (20) and expressing the polynomials in terms of the variable z yields
y(k) = B(z)u(k)/A(z). Then the following result holds.



Lemma 3.1 Given the model in equation (20) with A(z) monic, then B, =1 iff A(z) has a
zero at z = 1.
Proof. _

First it will be proved that if A(z) has a zero at z = 1 then £, = 1. Consider the
following polynomials and the summation of their coefficients up to the (n — 1)th power

(z+e) = E,=la],
(z4+a)(z4+a) — I2=<a;1>+[ag] + {2},
(z4+a)(z+a)(z+a) = Z2=<a;>+ <ay> + <ama;> +[ag] ,
+{oas} + {az03} + {a1203}

where the superscripts indicate the polynomial orders.
The following pattern is clear i) the terms in < > are copied from the previous step,
ii) the terms in [ ] are the new terms added at each step, and iii) the terms in { } are the
product of the terms in < > and the term in [ ] of the current step. Therefore, the algorithm
for generating X7 is
TP =<Ills 4 [an] + {227 an) . (21)
It is clear that —E" is the coefficient of £, for the model in equation (20) with
AZ)=(z4+a1)(z+ ) ... (2+ an) . (22)
Thus £7%=-X,. Equation (21) can then be rewritten as
S =4l S 4 e (23)

If A(z) has a zero at z =1, then a; = —1for i € 1, 2,..., n]. Without loss of generality
it is assumed that a, = —1, and from equation (23) it follows that ¥, =1.

Finally, it will be proved that if £, =1 then A(z) will have a zero at z=1. Thusif £, =1
equation (23) can be written as follows

n=1

o = _H . (24)
Clearly, if 7~ # —1 then a, = —1 which means that the last factor in equation (22)
corresponds to a root of A(z) at z=1. If &, # —1 this necessarily requires that 3™ =—1.
Note that £~ is the coeficient of , for an (n—1) th-order polynomial analogous to A(z).

Therefore

n—2

Qn-1 = _%;j{'_i (25)
and the proof is completed by following the same reasoning as before, a

10



3.2 The nonlinear case

The extension of lemma 3.1 to a NARX model is based on an n th-order Volterra model and
the multi-dimensional Fourier transform of such a model. The independent variable of this
model is a vector of frequencies w=wj,...,Ws O Z2=21,...,2n if the model is represented
using the Z-transform.

Lemma 3.2 The total nonlinear frequency response of a NARX model has a pole at z=1,
that is, {z;}, =1 if B, =1.

Proof.
The total nonlinear frequency response of an n th-order NARX model, H*¥™(.), is given
by (Peyton-Jones and Billings, 1989)

M . .
(1= cro(ny)eilattivnln) HEVE (G, . jwn) = f(ei() Hra()) (26)
ni=1
where Hy,(+) is used to denote the contribution to the k th-order frequency response function
that is generated by the /th degree of nonlinearity in the output.
The Z-transform is obtained by replacing e’“ with z; (Billings and Peyton-Jones, 1990).
It follows that the poles of H2¥™() in the Z-domain are the roots of

ny
1- Z CI'Q(nl)(ZI . Z..,,)_ln1 =0. (27)
ny=1
Hence, if H>¥™(.) has a pole at z=1, that is z;=1, i=1,...,n, then
ny
z C1,o(n1) =1, (28)
n1=1

The first part of the proof is completed by noticing that the left hand side of equation
(28) is the coefficient of the cluster Q,, that is, ¥y €10(n1)=E,.

To see that if B, =1 then H2¥™(-) has a pole at z=1 it is sufficient to show that the
poles of H2¥™(.) are determined by the linear output terms only (Peyton-Jones and Billings,
1989). The proof is then completed by following a reasoning similar to the one in the second
part of the proof of lemma 3.1. o

It should be noted that lemmas 3.1 and 3.2 hold regardless of the sampling period.
Furthermore, such lemmas also hold for time series models, that is AR and NAR models.

Lemma 3.2 is consistent with the observation that the poles of the nth-order transfer
function are determined only by the linear output terms of the NARX model (Peyton-Jones
and Billings, 1989). In other words, such poles are determined exclusively by the terms in

11



the cluster ,. Moreover, the Duffing-Ueda system has integral action, that is, a ‘pole at
the origin’ in the s-plane. This can be readily verified from the differential equation and by
the fact that for the models estimated from data generated by such equation Iy~ 1, see
examples 2.2 and 2.3.

4 Numerical Results

This section provides four examples concerning the use of term clustering to enhance struc-
ture selection in identification problems. The first example illustrates how models which are
composed of terms taken from effective clusters are usually better than models which include
terms from spurious clusters. The second example investigates the influence of noise on the
term clustering approach. In the third example it is shown that if the terms correspond-
ing to spurious clusters are removed from the set of candidate terms, the estimated models
are more robust to the deleterious effects of overparametrization. The fourth example uses
Chua's circuit operating in two different regimes. Application of higher-order spectral meth-
ods to noise-free data show that the nonlinear interactions in each regime is different. This
is also revealed by the cluster coefficients which are calculated form data with rather high
noise levels.

In order to assess the influence of the model structure on the dynamic properties of
nonlinear models, bifurcation diagrams are used. It has been argued that such diagrams are
far more sensitive to changes in the model structure than other indices such as variance of
residuals, prediction errors and correlation tests (Aguirre and Billings, 1994c). Details on
the computation of such diagrams can be found elsewhere (Parker and Chua, 1989).

The examples below use two systems, namely the Duffing-Ueda oscillator (Ueda, 1980)
and Chua's circuit (Chua and Hasler, 1993). These systems present an enormous variety of
dynamical regimes and are known to be quite sensitive to small variations in initial condi-
tions and parameters. Consequently such systems have become benchmarks in the study of
nonlinear dynamics.

Ezample 4.1

The equation of the Duffing-Ueda oscillator was used to generate a set of 900 data points
sampled at T, = /30, where 7 is the Nyquist rule. The input used was a square wave of
growing amplitude superimposed on a Gaussian distributed zero-mean signal. Such an input
yields improved estimated models for this system (Aguirre and Billings, 1994c).

Fixing the degree of nonlinearity and the maximum lags at the following values £ =3
and n, =n, =3, a family of models with a varying number of terms was estimated. The
terms were selected automatically based on the ERR criterion (Billings et al., 1989). The

12
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Figure 3: Bifurcation diagram of the fourteen-term estimated model for the Duffing-Ueda
system, T, =7 /30. Terms selected from all possible clusters.

bifurcation diagram of the Duffing-Ueda system and the best estimated model are shown in
figures 2 and 3, respectively. The estimated model has fourteen terms.

Figure 4 shows the cluster coefficients I, ¥,3, I, and E,s for a family of models with an
increasing number of terms. Three points are worth noting regarding the cluster coeficient
T3, 1) the first term of this cluster was the tenth whereas all the other clusters were repre-
sented in models with five terms or more, ii) the value of s tends to oscillate close to zero,
and iii) the magnitude of such a coefficient is far smaller than for the other clusters, in fact
T,s reaches values as low as -6.4637x10~%. Based on these observations it seems appropriate
to exclude all clusters except Q,, Qs and Q, from the set of candidate terms.

The same set of data was therefore used to estimate a fourteen term model with the same
values of £, n, and n, as before but where only terms from the clusters ,, Q, and Qs were
considered as candidate terms. As before, the terms in the final model were automatically
selected using a criterion based on ERR. The bifurcation diagram of the estimated model

13
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Figure 4: Cluster coefficients for the Duffing-Ueda system plotted as a function of the number
of terms in the model. (a) Ty, (b) E;s, () Iy and (d) Zes.

is shown in figure 5. The improvement is revealed by the widening of the chaotic window
at A~5.7 and by a more accurate placement of the supercritical and subcritical pitchfork
bifurcations at A=6.8 and A=~8.0, respectively.

These results suggest that a model is more likely to reproduce faithfully the overall
dynamics of the original system if the terms are chosen from effective clusters. i

Ezample 4.2

In this example noise was added to the output sequence used in example 4.1 such that
the resulting data had a signal to noise ratio equal to 117 dB. Whilst in the noise-free case
a model with np = 17 only had terms in the clusters £, Q. Qs and Q2 for the noisy
data, apart from such clusters terms from ., and {l.s were also selected using the ERR
criterion. However, the coefficients of the spurious clusters were again much smaller than
the coefficients of the effective clusters. This is illustrated in Table 1 which also includes
results for data with lessnoise for comparison purposes.

Tt is worth noticing that the coefficients of the effective clusters are not drastically changed
even in the presence of moderate amounts of noise. The slight changes arise as a consequence
of higher variances of the parameter estimates which is a well known consequence of the
presence of noise on the data. However, the coefficients of the spurious clusters do not seem
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Figure 5: Bifurcation diagram of the fourteen-term estimated model for the Duffing-Ueda
system, T, =7/30. Terms selected from effective clusters only.

to follow any definite pattern as the noise in the data is increased. This is another indication
that such clusters are indeed spurious.

Table 1. Cluster coefficients for a seventeen-term
model of the Duffing-Ueda oscillator

Cluster | Noise-free | SNR=208dB | SNR=117dB
Q, 0.9999 0.9971 0.9994
Qs -0.0103 -0.0160 -0.0196
Q. 0.0103 0.0165 0.0197

Q. | 7.5x10°7 | -2.4x10-® -3.2x10-%
Dy - - -2.3x10"4
Qs - - -1.9x10°¢

Ezample {.8

The data of example 4.1 sampled at T, = 7/60 was used in this example. A nine-term
model was estimated, see equation (5), and it was shown that such a model reproduces the
major dynamical invariants of the original system over a wide range of parameters (Aguirre
and Billings, 1994c). When five extra terms are allowed in the estimated model, the resulting
bifurcation diagram exhibits spurious dynamical regimes as shown in figure 6. In fact, the
chaotic window observed for approximately 8.7 < A < 9.1 has no counterpart in the original
model and is therefore spurious. This is just one instance of the common, though sometimes
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Figure 6: Bifurcation diagram of a fourteen-term estimated model for the Duffing-Ueda
system. The terms were selected from every possible cluster.
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Figure 7: Bifurcation diagram of a fourteen-term estimated model for the Duffing-Ueda

system. The terms were selected from effective clusters only.

overlooked, fact that overparametrizing nonlinear models usually induces ghost bifurcations
and spurious dynamical regimes (Aguirre and Billings, 1994b).

The cluster coefficients of this model are £, = 1.0000, Z,s = —2.7172 x 1073,
£,=2.T110x10"2% and Z,s = 2.5246 x 10~® and show quite clearly that the terms in the
cluster ,s can be safely omitted from the set of candidate terms. These clusters were there-
fore removed and another fourteen-term model was estimated from the same set of data.
With this initial model specification, only terms from the clusters Q,, Qs and Q, were se-
lected based on the ERR criterion. The bifurcation diagram of this model does not present
any spurious bifurcations as shown in figure 7.

These results show that the estimated model is more robust to overparametrization if
the ‘overparametrized terms’ are taken from effective clusters. =
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Ezample 4.4
This example uses Chua’s circuit (Chua and Hasler, 1993)

z = ay — h(z)) mz + (mo—my) 21
j=s —y+z , he)={ me o<1 (29)
z=-LFy mz — (me—my) < -1,

where mo=—1/7 and my =2/7. Varying the parameters  and /3 the circuit displays several
regular and chaotic regimes. The well known double scroll attractor, for instance, is obtained
for =9 . Another attractor produced by this circuit is the spiral Chua’s attractor observed
for «=8.5 and §=100/T.

It has been observed that in the noise-free case terms from Q, and Q,s are selected using
ERR to give a sixteen-term model of the double scroll attractor. Such a model reproduces
the topological geometry, the largest Lyapunov exponent and the correlation dimension of
the original attractor. However, when the data are on the spiral Chua’s attractor terms from
Q,, 0,2 and Qs are selected to form the final model (Aguirre and Billings, 1994a).

This can be explained by noticing that when the circuit is evolving on the double scroll,
the z-component varies over the entire domain of the piecewise linear function, that is, z
visits the three regions of h(z). This would seem to lend support for approximating such
a function by a smooth polynomial with a cubic nonlinearity (Khibnik et al., 1993). But
when the trajectories of the system evolve on the spiral attractor, only two segments of the
piecewise linear function are visited. It has then been conjectured that for such an attractor,
the nonlinearity could be approximated by a quadratic polynomial (Elgar and Kennedy,
1993). These are useful theoretical observations but are of very little practical value in
structure selection because they presuppose a priori knowledge of the system.

An explanation which does not assume any prior knowledge can be obtained by using
higher-order spectral analysis. In particular, the bispectrum and trispectrum have been cal-
culated for data on both the double scroll and the spiral strange attractors in Chua’s circuit.
In the former case the bispectrum did not show significant quadratic interactions whereas
the trispectrum revealed strong cubic interactions between the primary peak frequency and
the harmonics. In the latter case, the bispectrum and trispectrum revealed both quadratic
and cubic interaction for the spiral Chua’s attractor (Elgar and Chandran, 1993; Elgar and
Kennedy, 1993).

In the presence of noise, however, terms from Q,, Q,2 and {3, are automatically selected
using the ERR criterion in both cases, that is, from data on the double scroll and from data
on the spiral attractor. To illustrate how term clustering can help to recognise the effective
clusters in each case, two noisy time series, one for each attractor, with signal to noise ratios
equal to 29 dB were considered. The cluster coefficients for each case are listed in Table 2

g,

17




Table 2. Cluster coefficients for Chua’s circuit
Attractor Z, I s | Constant
double scroll | 1.1560 | -3.7029 x10~4 | -0.0536 -
Chua’s spiral | 0.9518 0.3332 0.0572 | -0.6181

Table 2 clearly reveals that although terms from (2,2 had been selected for noisy data in
the double scroll case, such a cluster can be confidently discarded from the set of candidate
terms. For the spiral Chua's attractor, however, the value of L,z leaves little doubt that
terms from 2,2 should be considered as candidates.

These results are in total accord with those discussed at the beginning of this example but
with the difference that the results in Table 2 were obtained from noisy data which correspond
to a more realistic scenario and shows how term clustering enhances the performance of
higher-order spectra and the ERR criterion. O

4.1 Discussion

Although the advantages of the term clustering approach to model selection can also be
assessed by verifying the variance of the residuals and the estimated parameters, bifurcation
diagrams have been used because they are more sensitive to changes in the model structure.

Notice that a cluster of terms may be irrelevant to the residuals in the sense that the
presence or absence of such terms in the model may not alter the ‘whiteness’ of the residuals.
This fact was used in lemma 2.1. However, terms which are irrelevant to the residuals, which
are calculated based on the one-step-ahead predictions, might induce spurious bifurcations
which are characteristic of the steady state predicted output. Secondly, in spite of the esti-
mated model being more robust to overparametrization effects if the terms are only selected
from effective clusters, overparametrizing a nonlinear model should always be avoided.

The fact that slightly overparametrized models in which the excess terms are members
of effective clusters still reproduce the original bifurcation diagrams without introducing
spurious dynamical regimes should come as no surprise. This is because for reasonably short
sampling periods the terms within a cluster are quite similar. Including a few more terms
will have the effect of ‘sharing’ information between terms during parameter estimation.
However, if the excess terms are taken from spurious clusters, the type of nonlinearity that
such terms are apt to model is not present in the data and consequently such terms will
induce spurious dynamics if included in the model structure.

The concept of zeroing-and-refitting has been suggested as one of the most powerful
methods for fine tuning a model structure (Kadtke et al., 1993). Briefly, in such an approach
the terms in a model which have coefficients smaller than a certain threshold are eliminated
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from the original structure. Thus parameters are re-estimated for the truncated model. This
can be carried out as many times as necessary.

It is pointed out that in examples 4.2 and 4.4 the use of the zeroing-and-refitting approach
(Kadtke et al., 1993) would not have given a clear indication of which terms were unnecessary.
In particular, for the data on the double scroll a few terms in the spurious cluster .2 have
coefficients of the same order of magnitude as some terms in the effective clusters. However,
as shown in Table 2, the cluster coefficient Z,2 is in fact much smaller.

The zeroing-and-refitting approach is indeed quite effective for low noise levels. High
noise levels, however, tend to increase the value of the term coefficients and it is no longer
obvious how to choose the threshold which separates the effective and spurious terms. While
the zeroing-and-refitting procedure makes the unstated claim that spurious terms will have
relatively small coefficients, it has been shown in lemma 2.1 that it is the composite effect of
the terms in a cluster which determines if such a cluster is spurious or not. This can easily be
seen by considering that two spurious but similar terms may have relatively large coefficients
with opposite signs thus indicating cancellation. Thus term clustering allows for effective
terms with relatively small coefficients and spurious terms with relatively large coeflicients.
These are not uncommon situations in practice.

Examples 4.1-4.4 illustrate that the term clustering approach usually yields models with
improved dynamics. Another major advantage is that computation time is drastically re-
duced. This reduction is achieved because using the concepts introduced in this paper, it is
often possible to discriminate between effective and spurious clusters and therefore greatly
reduce the initial set of candidate terms for the subsequent estimation of models from a par-
ticular piece of data. For the examples with the Duffing-Ueda system, the set of candidate
terms considering all possible clusters was composed of 64 terms which were considered in
the first run. After the first model was estimated, the effective clusters were deleted and a
new set of candidate terms was composed for all subsequent experiments on that particular
set of data. Thus the new set of candidate terms was composed of 16 terms since only
effective clusters were considered. This corresponds to a reduction of 75% in the original
size of the set of candidates. It is noted that even greater reductions can be achieved for
systems of higher order.

The results in this section and several simulations using other systems suggest that the
coeflicients of spurious clusters are indeed much smaller than those corresponding to effective
clusters. A rather intuitive proof of this has been provided in lemma 2.1. A natural question
is: how much is ‘much smaller’ 7 Although a rule of thumb could be suggested such as fixing
a threshold to be 10* times smaller than the largest cluster coefficient, this does not seem
to be the best procedure. If the coefficient of a spurious cluster is not convincingly smaller
than the other coefficients, it is often useful to plot the cluster coefficients as a function of
the number of terms in the model such as in figure 4. Spurious clusters are usually revealed
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by insignificant and/or oscillating coefficients. Moreover, if noise is added to the data, orifa
different window of data is used, the coefficients of effective clusters will not usually change
drastically. This will not be the case for spurious clusters. Because of these properties of
the clustering approach to coarse structure selection, a threshold is not absolutely necessary
and is hardly critical.

The term clustering approach introduced in the present study can easily be extended
to MIMO models. In the multivariable case, clusters are defined in a similar way for each
sub-system. Thus, for instance, the following terms are not members of the same cluster:
y1(k—2) and y3(k—j) V1,7, where such terms correspond to the first and second sub-systems,
respectively.

5 Conclusions

The concepts of term clustering and cluster coefficients have been introduced. The rationale
behind such concepts is that information is ‘shared’ among terms within individual clusters
during parameter estimation. Consequently if a cluster is spurious this should be revealed by
a relatively low value of the respective cluster coefficient. It has been pointed out how such
concepts can be used to provide important coarse information during structure selection for
nonlinear models. Thus term clustering used in conjunction with detailed structure selection
criteria form a consistent basis for selecting the most important terms in nonlinear modelling.

Some of the main properties of the new procedure are i) if a model is composed of terms
selected from effective clusters, such a model is more likely to reproduce faithfully the dynam-
ics of the original system, ii) the estimated models are more robust to overparametrization
provided the excess terms are not taken from spurious clusters, and iii) the procedure is
robust in the presence of noise.
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