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Abstract

This paper investigates how the choice of the sampling time affects the identification
of nonlinear models. It is shown how the choice of the sampling interval can affect

structure selection aud parameter estimation_in different ways so that a compromise
is required to properly select au appropriate sampling time. The use of a nonlinear
correlation function to aid in the choice of the sampling rate is investigated. Several

numerical examples are included to illustrate the main points of the paper.

1 Introduction

Most papers on system identification are concerned with the problem of estiz:‘iating a model
from a set of given data and therefore do not usually investigate how properties of the data
such as the frequency content of the input and the sampling time affect subsequent stéges
in the identification. _

In the case of linear systems the choice of the input and of the sampling time seems to
be well understood and perhaps this partly explains why little attention is usually devoted
to these matters. '

Unfortunately, in the case of nonlinear systems most of the procedures for selecting the
input commonly used for linear systems do not apply. For example, the use of pseudo random
binary signal (PRBS) inputs to excite nonlinear systems can cause loss of identifiability
(Leontaritis and Billings, 1987) and in the design of input signals both the frequency content
and the amplitude profile are of interest (Aguirre and Billings, 1994b).

Thus there seems to be 2 gap in the knowledge of how the quality of the input-output
data affects other aspects in the identification of nonlinear systems. It is the ain of this
paper to provide some results which hopefully will help bridge this gap. In pardicular, the
effects of the sampling time on structure selection, parameter estimation and on the quality
of the final model will be investigated.



The results suggest that in the identification of nonlinear systems a sampling interval
which aids-in-mode] structure selection is not necessarily the best-choice of sampling interval
for parameter estimation and vice versa. A compromise in the selection of the sampling
interval is therefore often required and a rule of thumb is introduced, based on higher order
autocorrelation functions, which seems to provide the user with an appropriate range of
sampling intervals for nonlinear system identification.

The outline of the paper is as follows. The next section provides some background related
to the structure selection and parameter estimation of nonlinear models. Section 3 investi-
gates the effects of the sampling time on the quality of the final models by comparing the
dynamics of both estimated and analytically discretised models. Section 4 investigates how
the sampling time influences the structure selection and parameter estimation algorithms.
Section 5 discusses the use of a simple rule of thumb for choosing the sampling time. Finally,
the main points of the paper are summarised in §6.

2 Background

This section provides some background on the procedure used to select the structure and
estimate the parameters of the identified models.

Consider the ponlinear autoregressive moving average model with exogenous inputs
(NARMAX) (Leontaritis and Billings, 1985a; Leontaritis and Billings, 1985b)

y(ky=Fly(k=1),...,y(k=ny),u(k=d), ... ,u(k—=d—=n,+1)ek),...

‘ e(k=n)] , - (1)
where n,, n, and n, are the maximum lags considered for the output, input and noise terms,
respectively and d is the delay measured in sampling intervals, T;. Moreover, u(k) and
y(k) are respectively input and output time series of length N obtained by sampling the
continuous data u(t) and y(t) at T,. The sequence e(k) accounts for uncertainties, possible
noise, unmodelled dynamics, etc. and F[-] is some nonlinear function of y(k), u(k) and e(k)
with nonlinearity degree £€ Z*. In this paper, the map F*[] is taken to be a polynomial of
degree £ but F¢[] can be defined as a neural network, rational function expansions, etc. if
required. In order to estimate the parameters of this map, equation (1) has to be expressed

in prediction error form as

y(k) = ¥ (k= 1)0 + &(k) , (2)
where
U(k-1) = [U(k-1) Ui (k—1) ¥i(k-1)| ,

6 = [6n, ér, &1, 3)

yuf
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and ¥3 (k —1) is a matrix which contains linear and nonlinear combinations of output
and input terms up to and including time & — 1. The matrices ¥J,.(k — 1) and ¥7(k —1)
are defined similarly. The parameters corresponding to each term in these matrices are
the elements of the vectors ©,,, ©,,; and O, respectively. Finally, £(k) are the residuals
which are defined as the difference between the measured data y(k) and the one-step-ahead
prediction \I'T(k—_l)(:). The parameter vector © can be estimated using orthogonal techniques
in order to effectively overcome numerical ill-conditioning and structure selection problems.

Parameter estimation is performed for a linear-in-the-parameters model of the type (Billings
et al., 1989; Korenberg et al., 1988)

ng
y(k) =3 giwi(k) + £(k), (4)

i=1
where ny = np + n¢ is the number of (process plus noise) terms in the model, {g:}7%, are
constant parameters and the polynomials {w;(k)}$, are constructed to be orthogonal over

the data records as follows

wo(k) = po(k) =1

wm(k) = pm(k)— Z amwi(k), m=1,2,...,n5 , (5)

1=0

where

TNk wik)
Tim we(k)?
The parameters of the auxiliary model in equation (4) can be estimated by

0<i<m—1. (6)

Zﬁ:l wm(k)z
Finally, parameters of the model in equation (2) can be calculated from the {g;}7*,.

A criterion for selecting the most important terms in the model can be devised as a
byproduct of the orthogonal parameter estimation procedure. The maximum mean squared
prediction error (MSPE) is achieved when no terms are included in the model, that is, when
ng =ny+ ng = 0. In this case the MSPE equals yz_(kj where the over-bar indicates time
averaging. The reduction in the MSPE due to the inclusion of the i th term, g; w;(k), in the
auxiliary model of equation (4) is g2 w?(k). Expressing this reduction as a fraction of the
total MSPE yields the error reduction ratio (ERR) (Billings et al., 1989; Korenberg et al.,

1988)

ERR]; = : ,
[ERR]. = = =h)

Hence those terms with large values of ERR are selected to form the model.

T G - (8)
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3 Effects of the Sampling Time on the Dynamics of
Estimated NARMAX Polynomial Models

This section presents some results which illustrate how the sampling period influences the
structure of estimated polynomials and therefore the final dynamics. The main objective is
to verify how quantities such as the the number of process terms, np, and the maximum lag
of the model n, =n, vary as T, is increased or decreased.

The basis of the approach is to estimate a family of models for several values of T,. In
order to assess the quality of each model, bifurcation diagrams are calculated. Such diagrams
reveal dynamical features of the models operating over a wide range of parameters and
are well suited for the purposes of model validation and comparison (Aguirre and Billings,
1994d). Subsequently, the models which best reproduce the bifurcation pattern of the original
system are selected and the structure of such models is compared in order to verify if there
is any relationship between the variables Ty, n, and n,. Two systems are considered in the
simulations, namely the Duffing-Ueda oscillator (Ueda, 1985)

j+ky+y’ = Acos(wt) , (9)
where k=0.1, and the modified van der Pol oscillator (Ueda and Akamatsu, 1981)

j+p(y’ -1y +y° = Acos(wt) , (10)
where u=0.2. These relatively simple equations are capable of exhibiting a vast diversity of
dynamical regimes and therefore have become benchmarks in the study of nonlinear dynamics
(Moon, 1987). "

It is assumed throughout that the structure of the noise model is adequate so that the
process model is unbiased. This can be readily verified in practice by applying correlation
validation tests (Billings and Voon, 1986). For the sake of simplicity it is further assumed
that n, =n,.

For the Duffing-Ueda oscillator the three values of T, were /30, 7/60 and x/100, where
3/r is the Nyquist rate. For the modified van der Pol oscillator the following values of the
sampling time were considered 7 /60, /80 and 7/100, where 4/ is the Nyquist rate. It is
helpful to realise that the number of samples per input period is 27 JwTy, thus for the Duffing-
Ueda oscillator with w=1rad/s, T, =/30 results in 60 samples per input period. For the
modified van der Pol oscillator, however, the input frequency was 4rad/s, thus T, = /80
resulted in 40 samples per input period.

It is noted that the sampling time has been chosen as T, =7 /K, K € Z™ in order to have
well defined Poincaré sections and bifurcation diagrams. ’

In figure la-b the values of n, =n, and n, were plotted against T, for the best estimated
models of both oscillators. These figures suggest, for the systems and inputs considered, that

4



(a) (b)

14 12
*
12 10 x
10 x
c X 1
gs + g a
_6
° Q
= H
" 4 * o “ .
o o)
2 o 2 o
o g -
0 0.05 0.1 0.15 02 0.03 0.05 0.06
Ts Ts

Figure 1: Values of ny,=n, and n; as function of T, for dynamically valid estimated models
of (a) the Duffing-Ueda oscillator, and (b) the modified van der Pol oscillator

as the sampling interval is increased (sampling frequency is reduced) the best models tend to
have more terms and require extra degrees of freedom to adequately capture the underlying
dynamics. Similar tendencies have also been verified for inaccurate models with comparable

biftx;%tion patterns.

t therefore seems appropriate to infer that the loss of accuracy due to slower sampling
may, to some extent, be compensated by an increase in the number of terms in the model,
7, and/or by an increase in the maximum lags considered, ny =n,, which is the number of
degrees of freedom of the model.

It is worth pointing out that these results may also be interpreted from another point
of view. Hence it also seeins appropriate to conclude that if the data are deliberately over-
sampled the complexity of the estimated models may be somewhat reduced. However, if the
data are sampled too fast, successive measurements tend to be highly correlated and a num-
ber of practical problems arise such as ill-conditioning and lack of sufficient computational
resources for recording and processing the data.

Analogous ideas have been described in the study of the relationship among the sampling
time, the number of degrees of freedom and an information redundancy function of attract-
ing sets (Fraser, 1989a). In that reference it was shown that a certain characteristic (the
redundancy function) of a strange attractor may be increased (decreased) in two different
and independent ways, namely i) by decreasing (increasing) the sampling period, or ii) by
increasing (decreasing) the embedding dimension which is analogous to the maximum lag
n,. Such results seem to lend further support to the results summarised in figure 1a-b.

Similar results have been also observed for models of Chua’s circuit (Aguirre and Billings,
1994a). In that case, however, the conjectured relationships are not as sharp as for the

systems considered in this section because of the presence of the static nonlinearity in Chua's

5



circuit.

3.1 Estimated and discretised models

Discrete models estimated from input-output data obtained by sampling continuous signals
are obviously approximate representations of the original system. Roughly, there are two
main sources of errors involved in the identification. Firstly, a discrete model is being fitted to
data which were generated by a system which, in principle, is continuous in time. Secondly,
the estimated model is obtained from a finite amount of finite precision data and with no
a priori knowledge of the parameters T}, n,, n, =n,, best input type, etc. which influence
the results.

Further insight can be gained if the identified models are compared to discrete models
obtained from the original equation by analytical discretisation. In this case the first source
of errors is eliminated since discrete models are compared to discrete models with identical
sampling periods. The implicit Euler or backward difference approximation defined as

T4

can be used to obtain discretised models directly from equations (9) and (10).

Figure 2 shows the Poincaré sections of discretised and estimated models. The discretised
models were obtained using equation (11), the original differential equation (9) and making
the further approximation y(k)® = y(k — Ty)? for several values of the discretisation time, Ty.
On the other hand, the identified models were estimated from data generated by equation
(9) and sampled at T,=T,.

From this figure it is clear that the increase in T, tends to deteriorate the dynamics of
the discretised models, as would be expected from equation (11). On the other hand, the
estimated models are less sensitive to variations in T, than the discretised counterparts to
variations in Ty. This suggests that, within a limited range of sampling times, the identifi-
cation procedure tends to compensate for the increase in T, by including more terms in the
model and reestimating the parameters.

Figure 3 summarises some features of figure 2. For each model in the latter figure a
quality index was calculated taking into account both the bifurcation diagram structure and
the shape of the strange attractor obtained for A=11. Models discretised with Ta==/300
and Ty=m/15 s have also been included in figure 3.

This figure illustrates that over a certain range of values of T, the estimated models
are more accurate than the discrete counterparts. Such an improvement is achieved due to
the additional flexibility attained by incorporating some more terms and reestimating the
parameters.

Nevertheless, there are lower and upper bounds on T, and T} beyond which the discretised

o
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Figure 2: Poincaré sections for discretised and estimated models of the Duffing-Ueda attrac-
tor (A=11). (a) Ta=7/100, (b) Ta=7/60, (c) Ta==/30, (d) T,==/100, (¢) T,==/60
and (f) Ta=~/30.



Quality index

pi/300 pi/100  pi/60 pi/30 pi/15

2 1.7 11 08
log(Ts)

Figure 3: Quality index for (—) discretised and (- -) identified models of the Duffing-Ueda
oscillator. The ‘*’ indicate models discretised with Tq=/300,7/100,7/60,7/30,7/15 and
the ‘+’ indicate the best models estimated from data sampled at T,==/100,7/60, /30.

-2

models are always better than the estimated ones for the Duffing-Ueda oscillator. Thus if
T, is decreased beyond the lower bound the discretised models will gradually tend to the
continuous system since the approximation in equation (11) becomes more accurate as Tg— 0.
Besides, for oversampled data a number of numerical problems may arise in the parameter
estimation.

If T, is increased beyond the upper bound, because of the sampling theorem, the original
frequency content and consequently the information in the data about the original dynamics
will be lost and cannot therefore be retrieved by the estimation algorithm. In this case the
estimated models will, for this system, also tend to be worse than the discretised counter-
parts. 7 '

In the case of the modified van der Pol oscillator, the discretised models were unstable
for approximately Ty > 7/2000. For this oscillator, the compensation associated with the
identification procedure was verified from the fact that by including a few more terms and

restimating parameters the identified models would in many instances become stable.



4 Effects of the Sampling Time on Structure Selec-

tion and Parameter Estimation

The choice of the sampling period is usually linked to the frequency content of the data. The
data should be sampled sufficiently fast in order to guarantee that all frequency components
are well represented in the final data set. Although this is an important observation, it does
not account for a number of practical aspects such as the fact that the sampling time affects
the performance of the structure selection and parameter estimation algorithms and that
there could be significant nonlinear interactions in the data which would probably require

a faster sampling rate. The former aspect is discussed in this section and the latter will be
addressed in section 5.

4.1 Structure selection

The objective of this section is to report a few results which suggest that within practical
bounds some structure selection schemes perforrn better at lower sampling rates. For the
sake of clarity such results will be presented in the form of examples. :

In system identification the effects of oversampling are usually associated with numerical
problems during parameter estimation which arise as a consequence of the conditioning of
YT, see equation (2). In practice, however, data oversampling will also pose problems for
selecting the model structure. The following examples illustrate this point.

Ezample 4.1

In order to illustrate that for very small sampling times the structure of the model
becomes increasingly difficult to discern, consider the simple model

ay +ay=1u, (12)

and the discretisation formula

g(k) = LB = g,i’“ =79 4 eu(y (13)

where eq(k) denotes the discretisation error due to the approximation in equation (11).
Substituting equation (13) into (12) yields

a Td Tdaq
kY= —— (= Ty) + —————— u(k) + ——— e4(k
W) = e, Y T o M o, ) - 1)

Clearly, in the limit as Tq — 0 equation (14) becomes

y(k) = Zy(k) | (15)

9



which is an obvious result and illustrates that for Tg — 0 the structure becomes ‘unidentifi-
able'. m]

In practice the sampling time will not reach the limit Ty — 0. However, for small
values of T, accurate structure selection is precluded mainly for two reasons. Firstly, for
sufficiently small values of T, all of the terms of the same general form become practically
indistinguishable, for instance y(k=T,)y(k—2T,)u(k—3T;) would for all practical purposes be
equivalent to, say, y(k—2T.)*u(k —T5). It is also possible to exploit this property to improve
coarse structure selection (Aguirre and Billings, 1994c). Secondly, numerical problems arise
when T, is too small and such difficulties are reflected in poor performance of the structure
selection algorithm as shown in the next example.

Ezample 4.2
In order to gain some insight into the effects of oversampling on the error reduction ratio
defined in equation (8), this ratio will be analytically calculated for the term p(k)=y(k-Ty)
which is usually selected to compose the structure of most models estimated from data
produced by a continuous process. Thus taking m=1in equation (5) gives wi(k)=pi(k).
The coefficient of wy(k) in the auxiliary model is given by equation (7) as

N vk
g1 = Zf;l w;(k)z ) (16)

and the error reduction ratio is given by equation (8) as

Tt 91 y(k - T,)?
[ERR], = - (17)

Substituting the estimated value of g given by equation (16) into equation (17) yields

Ek z k= (-“)Wl(k) (k T
= wy (k)2
ERR|; = .
[ ]1 Zk:l y( ) (18)

Bearing in mind that wy(k)=y(k—T,) and taking the limit as T, —0in the last equation,
yields

lim [ERR); =1 . (19)

The interpretation of the last equation is simple. In the limit Ty, — 0, only one term is
necessary to explain the measured data, namely y(k - T,). This result is analogous to the
one in example 4.1. )

10



In practice T, will not be zero and therefore [ERR]; # 1. However, as shown in the

example above, if the sampling time is too short [ERR]; ~ 1. This characterises a numerically
ill-conditioned problem because

g

> [ERR|i=1, (20)

i=1
and if [ERR]; = 1 the values of ERR corresponding to the all the other candidate terms
are very small. Consequently, it becomes difficult to select the structure in such a situation.
When the data are sampled slower, the ERR values are better distributed thus facilitating
structure selection. The following example illustrates this point.

Ezample 4.3

This example uses the modified van der Pol model in equation (10). Discretised models
for this oscillator were obtained by using equations (10) and (11), and by making the further
approximations y(k)®~y(k— T4)? and y(k)*y(k— Ta) = y(k —Ta)’y(k — 2Ta). The discretised
models have the five following terms: y(k — Ta), y(k — 2Ta), y(k — Ta)?, y(k — Ta)?y(k — 2Ta)
and u(k—T4). This set of terms will be referred to as the discretised model structure (DMS)
and will be used as a benchmark to assess the adequacy of the structure of estimated models
for this system.

A set of data was obtained by integrating equation (10) and deliberately oversampled at
T, =7/200. Such data were subsequently decimated to obtain records of the same length
(N = 1000) with T, = 7/100,7/40 and 7/20. The maximum lag considered was ny = 3.
Table 1 shows the first ten terms selected using the error reduction ratio (ERR) and table
2 was obtained in the same way but for noisy data with a signal to noise ratio (SNR) of

20log(c?/c?)== 70dB, where o is the noise variance.

Figure 4 shows the Akaike information criterion (AIC) (Akaike, 1974) corresponding to
table 2. Although a clear global minimum is hardl).r recognisable in this figure, it seems that
the optimal number of terms in the models suggested by AIC(4) are 2 for T, =7/100, 2 or
7 for T,=7/40 and 5 for T, =7/20. The same values were obtained for the final prediction
error (FPE) (Akaike, 1974), Khundrin's law of iterated logarithm criterion (LILC) (Hannan
and Quinn, 1979) and the Bayesian information criterion (BIC) (Kashyap, 1977). It is
worth pointing out that the first five terms of the last column in both tables correspond to
the five terms which compose the DMS thus suggesting that in this example the data set
corresponding to a shorter sampling interval enabled somewhat improved structure selection.
This illustrates that in some cases decimating the data helps discern the important terms
in the model. In practice, however, the DMS will not usually be known and the inclusion of
a few more terms and a slight increase of the maximum lag considered often helps handle

noisy data sets better. Nonetheless, even in practical situations decimating the data slightly
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Table 1: Model structures for models estimated using different sampling times for the mod-

ified van der Pol oscillator. The noise-free case.

T,=m/100 T,=m/40 Ti=nf20
y(k—1) y(k—1) y(k—1)
y(k—2) y(k-2) y(k-2)

y(k —3) y(k=3) u(k—1)

y(k = 1)y(k — 3)u(k = 3) | y(k = y(k = 2)u(k =3) y(k—1)°

y(k = 2)*u(k —2)
y(k = 1)y(k - 3
y(k = 2y(k = 3)

y(k = 1)?u(k — 1)
y(k = 3)u(k - 3)?
y(k =1)%y(k - 3)

y(k=1)1y(k—2)
y(k = 1)y(k = 2)y(k - 3)
y(k - 1)y(k —3)°

y(k = u(k — 1) u(k = 3) y(k = 1)y(k —2)?
y(k — 2)u(k - 3)? y(k=1) y(k—2)°
u(k —3) u(k-1) y(k —1)*y(k=13)

Table 2: Model structures for models estimated using different sampling times for the mod-
ified van der Pol oscillator. The noise-corrupted case, SNR = 70 dB.

T,=m/100 T,=m/40 T,=7/20
y(k—1) y(k-1) y(k—1)
y(k—3) y(k—2) y(k—2)
u(k — 3) u(k —2) u(k—1)
y(k—2) y(k—1) y(k—1)?
y(k—1)° y(k=3) y(k —1)’y(k-2)
u(k —2) y(k —1)*u(k = 3) y(k-3)
y(k —2)° u(k —3) u(k —3)
y(k=1)2u(k=2)| y(k=10y(k=2) | y(k—1)y(k-2)°
y(k — 3)?u(k —1) | y(k = 1)y(k — 2)u(k = 3) | y(k - 1)*u(k-2)
y(k = 3)° y(k—2)° y(k = 2)y(k —3)’

12




Figure 4: AIC(4) for models of the modified van der Pol oscillator estimated from data
sampled at (—) T,=7/100, (- -) Ty=7/40 and (---) T,=/20.

seems to enhance structure selection. Similar results have been observed for the Duffing-Ueda
oscillator. 0

4.2 Parameter estimation

The objective in this section is to investigate how parameter estimates are affected by the
sampling time. As before, the parameters of the respective discretised model are used as
standards to which the estimated parameters are compared.

Ezample 4.4
This example illustrates that improved parameter estimation may be attained by using
data sampled slightly faster. To this end, equation (14) is rewritten as follows

Tdal
E) = PT84 te (k)

The least squares estimate of © is given by

0 = [P wy(k),
= Ay(k) i (22)

The bias is defined as

13
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E{6} -0,

= E{Ay(k)} -0,

- BA(UTO+ —22 o k)}-0,
a, +

Taas
R E{A () @)
where E{-} denotes mathematical expectation.

It should be noted that ey(k) is not white noise but the discretisation error and that this
error will usually have a nonzero mean and could easily become correlated with A. Conse-
quently the bias in equation (23) will not be zero and will be proportional to Taa; /(a1 + Tua,),
thus diminishing as T3 is decreased. Unlike in examples 4.1 and 4.2, here the limit Ty — 0

cannot be considered because in such a limit the matrix ¥¥7 is singular and equation (22)
would not hold. o

Ezample 4.5

This example uses the modified van der Pol oscillator. In order to verify how the sampling
time influences the accuracy of the parameter estimates, the original equation (10) was
discretised for various values of Ty. Subsequently, equation (10) was integrated to produce
data records which were sampled at corresponding values of T, to be used in the identification.
Before estimating parameters however, the structure of the identified models was set to equal
the DMS plus a set of noise terms included to guarantee unbiased estimates. Thus all the
models had the same structure and the corresponding parameters could be compared.

Figure 5a shows the parameter values of both the discretised and estimated models
for various values of Ty and T, which were varied in the range [r/200, 7/20]. The same

simulation was carried out for noisy data with SNR~70dB, the results are shown in figure
5b.

With the exception of the coefficient of the term u(k — T), all other estimated coeffi-
cients converge to the discretised counterparts as T, = Ty — 0 and diverge asT, = Ty — co.
This tendency is somewhat blurred by the noise but can still be distinguished in figure 5b.
Analogous results have been verified for the Duffing-Ueda oscillator. a

4.3 Discussion

The main objectives of the two previous sections were to investigate the influence of the sam-
pling time not only on the dynamics of the final estimated model but also on the performance

14
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Figure 5: Parameters of discretised (—) and estimated (- -) models of the modified van der

Pol oscillator for various values of Ty and T. The plots correspond to the parameters of the

following terms (from top to bottom) y(k —T5), y(k — 2Ty), y(k — T.)3, y(k — T,)%y(k - 2T,)

and u(k — T;). (2) noise-free data, (b) noise-corrupted data, SNR=70dB.
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of the algorithms used to perform structure selection and parameter estimation.

~ Inview of the results reported above it seems appropriate to infer that parameter estima-
tion and structure selection are influenced by the choice of the sampling time in antagonistic.
ways. Thus, within a practical range of values, short sampling times seem to favour accurate
parameter estimation for a given structure whilst precluding the correct selection of such a
structure. Conversely, longer sampling times appear to enhance structure selection but in
this case parameter estimation accuracy may deteriorate.

It becomes clear that if the system was adequately excited, the information needed for
performing both structure selection and parameter estimation is contained in the data. How-
ever, some results seem to support the conjecture that the information related to the struc-
ture of the model and that related to the parameters are present in the data but at different
time scales. Therefore, the sampling time can be viewed as a parameter which can be ju-
diciously chosen by the practitioner in order to place a greater weight either on structure
selection or on parameter estimation.

The conjecture that the structure of the dynamics is associated with the macro scales of
the data seems to find further support in the field of nonlinear dynamics. It is well known
that the fractal dimension of an attractor, which is a typical measure of the structure of
the attractor, can be estimated from an embedded time series (Grassberger and Procaccia,
1983). Whilst there are restrictions on the dimension of the embedding space, in theory there
are mo restrictions on the sampling time (Takens, 1980). In practice because of the finite
length and the noise on the data, the sampling time cannot be excessively large, however it
can still be chosen many times longer than what would be required for accurate parameter
estimation (Liebert and Schuster, 1989).

The results of this section must be interpreted bearing in mind that they are valid within
practical -bounds-on_the sampling time. For instance, if T. is too small the matrix ¥¥7
becomes ill-conditioned and the accuracy of parameter estimates will deteriorate instead of
improve. It should also be pointed out that the results reported are concerned with model
identification. This remark is important because in some applications such as the estimation
of correlation dimensions, optimum results are obtained when the data window spanned by
the model, that is Ty (ny — 1), is constant (Martinerie et al., 1992).

\}( he results discussed above suggest that, given a a set of ‘well-sampled data’, structure
selection could be performed on decimated data and after choosing a particular structure, the
parameters could be estimated from the original records. An alternative approach would be
to choose the sampling time as a trade-off between adequate structure selection and accurate

parameter estimation. A rule of thumb for this is suggested in the following section.
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5 A Rule of Thumb for Selecting the Sampling Time

The practical difficulty in selecting the sampling time can be appreciated by considering two
extreme situations. Firstly, if T, is too short the data become highly correlated'(singula:),
that is y(k)=~y(k — T), and a number of numerical problems due to ill-conditioning arise.
This phenomenon is referred to as redundance. On the other hand, if T, is too long adjacent
data points tend to become uncorrelated, especially if the data are chaotic. This phenomenon
is known as irrelevance (Casdagli et al., 1991; Fraser, 1989b).

Ways of determining the sampling time for nonlinear dynamical reconstructions include
the use of information theory (Fraser and Swinney, 1986), the correlation time (Albano
et al., 1988; Abarbanel et al., 1990) and the reconstruction expansion (Rosenstein et al.,
1994). These and other approaches have been briefly reviewed and compared in (Rosenstein
et al., 1994). The rationale behind these methods is that although adjacent points in the
data should not be uncorrelated, this would indicate an undesirable loss of information,
the sampling time should be long enough as to avoid overcorrelation which would indicate
that most of the information contained in a subsequent measurement is redundant. These
approaches are not without difficulties. Against the former technique it has been pointed out
that the algorithm is rather cumbersome (Liebert and Schuster, 1989) and against the latter
it has been said that using the autocorrelation function for determining the correlation time
would only take into account linear correlations in the data (Casdagli et al., 1991; Fraser,
1989b). |

This section considers a nonlinear correlation function which has been developed to detect
nonlinear correlations in the residuals of dynamical autonomous models (Billings and Tao,
1991). Consider the correlation functions

Byy(re) = E{(y(k) = y(k))(y(k = 7c) — y( )}, e=01,...,
& aa(r) = E{@*(K) -9 (k)W (k—7) =9 (k)} , 7e=01,...,  (24)

where E{-} is the mathematical expectation and the overbars indicate averaging with respect
to time. While &,, detects linear correlations, @/, was designed to detect nonlinear
correlations in the data (Billings and Tao, 1991).

The following procedure for determining the sampling time has produced improved re-
sults in a number of identification problems. First, compute the aforementioned correlation
functions using the time series to be used. In the case of input output models, the time
series corresponding to the system output should be used. Then define

Tm = min{r, 7,2} , (25)

where 7, is the time of the first minimum of ®,, and 7, is defined analogously.
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Figure 6: The double scroll Chua’s attractor.

Finally, the sampling time can be chosen as follows

Tm Tm
s (€ L —
Ly . (26)

It is noted that in some cases the upper bound on T, can be somewhat relaxed, say, /5.
The following example illustrates some features of this procedure.

Ezample 5.1

Consider the set of normalised equations governing the dynamics of Chua's circuit (Chua,
1992; Chua and Hasler, 1993)

= a(y — h(z)) mz + (mg—my) z2>1
y=z —y +z , h(z)={ mez |z |<1 (27)
z= -ﬂy miT — (mo —ml) T S -1 s

where mo=—1/7 and m; =2/7. Varying the parameters a and 3 the circuit displays several
regular and chaotic regimes. The well known double scroll attractor, for instance, is obtained
for a =9 and 8 =100/7, see figure 6. The identification of monovariable models for this
attractor estimated from each component individually has been considered in (Aguirre and
Billings, 1994a). This example illustrates the selection of the sampling time based on the
rule of thumb in equations (25)-(26).

The correlation functions in equation (24) were calculated for the three time series gen-
erated by equation (27), that is, for the data measured from the z, y and z components
sampled at T,=0.01. The results are shown in figure 7.

As can be seen from this figure, the information conveyed by the linear autocorrelat:on
function ®,,(7.) is very similar for the three components. However, ® 2 2(7c) seems to
suggest that the data measured from the y component should be sampled faster than the
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Figure 7: &, () for the double scroll calculated from the components (2) z, (¢) y and (e) z.

® 2,2 (7) calculated from the components (b) z, (d) y and (f) z. The dotted lines indicate
the 95% confidence bands.
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Table 3: Estimated values of 7, and 7, for the double scroll

Component | 7, | T
T 1.29 | 1.18
Y 1.14 | 0.59
z 1.20 | 1.11

data measured from z and z. This can also be verified from table 3. The values in this
table were obtained by multiplying T, =0.01 (the sampling time of the original data) by the
number of lags corresponding to the first minima of the correlation functions plotted in figure
7. Thus it appears that because of certain nonlinear interactions, which were not detected
by ®,,(7), in the data from the y component, such data should be sampled faster. In fact,
whilst it was possible to identify models from the z and z components sampled at T,=0.15,
that is approximately 7i/7.3, which reproduced the dynamical invariants of the double scroll
the only valid models estimated from the y component were obtained from data sampled at
T, =0.07 (Aguirre and Billings, 1994a) which is approximately Tm/8.4. Two things should
be noted i) this is an example of a rather common situation for which the upper bound on
T, can be relaxed as mentioned after equation (26), and ii) shorter sampling intervals, but

still in the range of equation (26), also yield good results.
a

6 Conclusions

The effects of the sampling time in the identification of nonlinear models have been investi-
gated. A number of results seem to support the following conclusions: 1) shorter sampling
times usually favour identifying good models with less terms, ii) if the sampling time is too
* short structure selection is hampered in spite of an increase in the accuracy of the parameter
estimates, iii) longer sampling times which degrade the accuracy of the parameter estimates
usually aid structure selection, and iv) the last two items suggest that structure selection
and parameter estimation should be traded off in practice and one way of achieving such a
compromise would be by a judicious choice of the sampling time.

A simple rule of thumb for choosing the sampling time has been investigated. Such
a rule uses correlation functions which can be readily computed from the data. Unlike
many other rules which select the sampling time based on the correlation time of the linear
autocorrelation function, this paper considers both linear and nonlinear correlations in the
data. As a consequence it has been verified that for most nonlinear systems the sampling

times suggested by nonlinear correlation functions are shorter than those recommended by
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rules based solely on linear correlations.

The results of this paper have been verified using a2 number of benchmark systems of
which the modified van der Pol and Duffing-Ueda oscillators and Chua'’s circuit have been
reported. In order to gain further insight, analytically discretised models have been used for
comparison. Although such models will not be available in most practical situations it is
believed that the results and conjectures which have been discussed are rather general and

would therefore apply to a much wider range of problems concerning the identification of
nonlinear systems.

ACKNOWLEDGMENTS

LAA gratefully acknowledges financial support from CNPgq (Brazil) under grant
200597/90-6. SAB gratefully acknowledges that part of this work was funded by SERC
under contract GR/H35286.

References

Abarbanel, H. D. I, Brown, R., and Kadtke, J. B. (1990). Prediction in chaoticﬂnonlin-

ear systems: Methods for time series with broadband Fourier spectra. Phys. Rev. A,
41(4):1782-1807.

Aguirre, L. A. and Billings, S. A. (1994a). Discrete reconstruction of stange attractors in
Chua’s circuit. Int. J. Bifurcation and Chaos, (in press).

Aguirre, L. A. and Billings, S. A. (1994b). Dynamical effects of overparametrization in
nonlinear models. (Submitted for publication).

Aguirre, L. A. and Billings, S. A. (1994c). Improved structure selection for nonlinear models

based on term clustering. (submitted for publication).

Aguirre, L. A. and Billings, S. A. (1994::1). Validating identified nonlinear models with chaotic
dynamics. Int. J. Bifurcation and Chaos, 4(1):109-125.

Akaike, H. (1974). A new look at the statistical model identification. JEEE Trans. Automat.
Contr., 19(6):716-723.

Albano, A. M., Muench, J., Schwartz, C., Mees, A. 1., and Rapp, P. E. (1988). Singular-value

decomposition and the Grassberger-Procaccia algorithm. Phys. Rev. A, 38(6):3017-
3026.

Billings, S. A., Chen, S., and Korenberg, M. J. (1989). Identification of MIMO nonlinear

systems using a forward-regression orthogonal estimator. Int. J. Control, 49(6):2157-
2189.

21






Liebert, W. and Schuster, H. G. (1989). Proper choice of the time delay for the analysis of
chaotic series. Phys. Lett., 142A(2,3):107-111.

Martinerie, J. M., Albano, A. M., Mees, A. L, and Rapp, P. E. (1992). Mutual information,

strange attractors, and the optimal estimation of dimension. Phys. Rev. A, 45(10):7058~
7064.

Moon, F. C. (1987). Chaotic Vibrations - an introduction for applied scientists and engineers.
John Willey and Sons, New York.

Rosenstein, M. T., Collins, J. J., and De Luca, C. J. (1994). Reconstruction expansion as a
geometry-based framework for choosing proper delay times. Physice D, (to appear).

Takens, F. (1980). Detecting strange attractors in turbulence. In Rand, D. A. and Young,
L. S., editors, Dynamical systems and turbulence, Lecture Notes in Mathematics, vol.
898, pages 366-381. Springer Verlag, Berlin.

Ueda, Y. (1985). Random phenomena resulting from nonlinearity in the system described
by Duffing’s equation. Int. J. Non-Linear Mech., 20(5/6):481-491.

Ueda, Y. and Akamatsu, N. (1981). Chaotically transitional phenomena in the forced
negative-resistance oscillator. JEEE Trans. Circuits Syst., 28(3):217-224.

23



