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To study the generation and control of a specific behaviour,
an important first step is to identify the neural networks that
coordinate the behaviour. Rhythmic motor patterns, such as
locomotion, mastication and ventilation, are types of
behaviours that are generated by neural circuits called central
pattern generators (CPGs) (Delcomyn, 1980; Getting, 1989;
Pearson, 1993; Marder and Calabrese, 1996; Marder, 2000;
Marder and Bucher, 2001). CPGs are further defined as
ensembles of neural elements whose properties and
connectivity can give rise to characteristic patterns of rhythmic
activity in the absence of external inputs. The desert locust has
served as a leading system for studies of pattern generation and
the control of rhythmic motor patterns (e.g. Wilson, 1961;
Wolf and Pearson, 1987; Wolf and Pearson, 1989). 

In the locust, the frontal ganglion (FG) is part of the
stomatogastric nervous system (STNS). The FG lies in the
forehead, on the dorsal side of the pharynx, in front of the brain
(Fig. 1A). It is a small ganglion connected to the tritocerebrum
of the brain by the paired frontal connectives (FC; Fig. 1B).
Posteriorly, a recurrent nerve (RN) passes from the FG along
the pharynx to the hypocerebral ganglion (HG; Fig. 1B), which
is closely associated with the corpora cardiaca. These and other
three pairs of efferent nerves (the anterior, median and
posterior nerves; APN, MPN and PPN respectively) branch
onto the dilator muscles of the gut in a rostrum to caudal order,
making the FG the major source of foregut muscles innervation
(Fig. 1B; Allum, 1973; Aubele and Klemm, 1977). To date, no

studies have examined the neural control of foregut peristalsis
and the role of the FG in generating motor patterns associated
with locust foregut movements. Descriptions of the fine
structure and neuronal organisation of the FG in locusts are
also very scarce (e.g. Aubele and Klemm, 1977). 

We report here on a series of experiments that demonstrate
the presence of a CPG network in the FG of the locust
Schistocerca gregaria. Our findings, described in this and the
accompanying paper, provide insights into the neural basis,
control and neuro-endocrine modulation of two fundamental
behaviours in the life of locusts: feeding and moulting. 

Materials and methods
Animals

Schistocerca gregaria (Forskal) were reared under crowded
conditions, in 60-litre metal cages (Hunter-Jones, 1961). The
cages were kept at a controlled temperature of 30°C, under a
12 h:12 h L:D lighting regime. Additional heat, including direct
radiant heat, was supplied during daytime by incandescent
electric bulbs to bring the day temperature to 36–38°C. Locusts
were fed daily with fresh Kikuyu grass and flaked oats. Last
larval instar and adult locusts of both sexes were used for
experiments.

Saline and chemicals

Locust saline contained 147 mmol l–1 NaCl, 10 mmol l–1
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The frontal ganglion (FG) is part of the insect
stomatogastric nervous system and is found in most insect
orders. Previous work has shown that in the desert locust,
Schistocerca gregaria, the FG constitutes a major source of
innervation to the foregut. In an in vitro preparation,
isolated from all descending and sensory inputs, the FG
spontaneously generated rhythmic multi-unit bursts of
action potentials that could be recorded from all its
efferent nerves. The consistent endogenous FG rhythmic
pattern indicates the presence of a central pattern
generator network. We found the appearance of in vitro
rhythmic activity to be strongly correlated with the

physiological state of the donor locust. A robust pattern
emerged only after a period of saline superfusion, if the
locust had a very full foregut and crop, or if the animal
was close to ecdysis. Accordingly, haemolymph collected
at these stages inhibited an ongoing rhythmic pattern
when applied onto the ganglion. We present this novel
central pattern generating system as a basis for future
work on the neural network characterisation and its role
in generating and controlling behaviour.

Key words: desert locust, Schistocerca gregaria, central pattern
generator, frontal ganglion, neuromodulation.
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KCl, 4 mmol l–1 CaCl2, 3 mmol l–1 NaOH, 10 mmol l–1 Hepes,
pH 7.2–7.4 (Abrams and Pearson, 1982; Penzlin, 1985). All
salts were obtained from Frutarom Ltd (Haifa, Israel). 

Histology and anatomy

In order to examine the structure and cellular composition
of the locust frontal ganglion, whole heads from newly
emerged adults were fixed in aqueous Bouin’s fixative,
embedded in paraffin, sectioned at 8µm, and stained with
Hematoxylin and Eosin. 

Physiology

Locusts were anaesthetised in CO2. The anterior parts of the
locust STNS were easily accessed by opening a window in the
head cuticle, cutting out most of the frons, and clearing fat
tissue and air sacs. Foregut movements were observed or
monitored by a force transducer attached to the gut wall. The
activity of a specific gut dilator muscle was recorded, using
fine (125–175µm) silver wire electrodes insulated to their tip.
The force transducer output or muscle activity recordings were
accompanied by extracellular recordings from various FG
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Fig. 1. (A) A sectional diagram of the locust head showing the relative position of the frontal ganglion (FG). CC, corpora cardiaca; HG,
hypocerebral ganglion; CA, corpora allata; SOG, suboesophageal ganglion. (Bi, Bii) Schematic drawing of the FG, the nerves leaving it and the
muscles they innervate (Bii shows an area more posterior to Bi, after Allum, 1973). RN, recurrent nerve; PPN, posterior pharyngeal nerve;
MPN, median pharyngeal nerve; APN, anterior pharyngeal nerve; FC, frontal connective; I, II and III, first, second and third branch of the FC;
1 and 3, muscles of the labrum; 33 and 34, first and second anterior dilators of cibarium; 35, 36 and 37, first, second and third dorsal dilators of
pharynx; 39 and 40, first and second lateral dilators of pharynx; 43 second ventral dilator of pharynx. (C) A frontal section through the center of
a whole-mount Hematoxylin and Eosin-stained FG. The neuronal cell bodies are in the peripheral zone, surrounding the neuropil (marked by a
dashed line). The coarse neuropil in the central core of the ganglion (marked by a dotted line) can be distinguished from the surrounding finer
neuropil. The RN and one of each of the paired nerves are visible and marked by arrows. Scale bar, 50 mm. 
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nerves using silver wire hook electrodes that were electrically
insulated with white petroleum jel (Vaseline).

For the in vitro preparation, the FG and nerves leaving it
were accessed as above, dissected out, pinned in a Petri dish
lined with Sylgard (Dow Corning, Midland, MI, USA), and
constantly superfused with locust saline at 26–27°C.
Extracellular recordings were made with bipolar stainless-steel
pin electrodes. The recording site was insulated from the bath
with white petroleum gel. 

Haemolymph was drawn with a pipette from a puncture
made in the membrane at the base of the metathoracic leg of
the chosen donor (see Results for characteristics of the donors),
and applied directly on the FG to test modulatory effects. The
FG pattern was tested before, during and after 10 min of
application, as well as after at least 30-min washout.

Data were recorded using a 4-channel differential amplifier
(Model 1700 A-M Systems), played back in real time and stored
on the computer using an A-D board (Digidata 1200, Axon
instruments) and Axoscope software (Axon instruments). 

Data analysis

Burst profiles and phase diagrams were obtained as follows.
Peak detection was performed on each signal, yielding a set of
peak times and corresponding peak amplitudes (ti, ai). From
these, cumulative peak amplitudes were calculated

Plots of the cumulative peak amplitudes as a function of
time A(t), where Ai≡A(ti), were used as a visual tool for
detecting changes in the intensity of activity. In particular, this
measure, combining event density and peak amplitudes, is
especially well suited for detecting burst onset times. A sharp
rise in slope corresponds to a sudden increase in activity. For
convenience, cumulative amplitudes were normalised
A(t)→Α(t)/A(T), where T is the estimated time at which pre-
burst activity was regained. Thus, only relative changes in
burst intensity were examined. The burst onset times were
determined from plots of cumulative amplitudes by linear
extrapolation. To quantitatively characterise burst progress in
the different nerves, FC burst onset times were used as
temporal offsets for superimposing the cumulative amplitude
plots for a series of consecutive bursts. For each burst, FC,
MPN and PPN cumulative amplitudes at the offset time were
used as the corresponding vertical offsets. The characteristic
burst profiles, Ā(t), were then obtained by averaging
cumulative amplitude plots over different bursts. For each
nerve, the following burst parameters could be extracted from
the characteristic profiles: burst onset time, end time, pre- and
post-burst inhibition and activity recovery time. In addition,
the derivative of the cumulative amplitude plots d/dt Ā(t)
corresponds to the burst energy density function and provides
a characteristic burst envelope. All analysis methods were
developed by one of us (N.C.) under a Fortran and MatLab
(Mathworks) environments.

Results
Anatomy

The locust FG is a small ganglion shaped like a somewhat
flattened pear, 200–250µm in its long axis (Fig. 1). It is
encased by a fine perineural sheath, and characterised by a
central neuropil surrounded dorsally and laterally by one or
two layers of neuronal cell bodies (Fig. 1C). The neuropil can
be subdivided into a central region of coarse neuropil and a
peripheral finer region (Fig. 1C). The cell bodies range in size
from 10 to 50µm in diameter. 

According to a previous electron microscopy study (Allum,
1973) the recurrent nerve and the frontal connectives contains
circa 2200 and 1200 axon profiles, respectively, as counted in
a section made close to their ganglion origin. The smaller
nerves have far fewer fibers (32 axon profiles counted in a PPN
section). Staining ganglion neurons by back-filling the various
nerves indicated that only a small fraction of all these nerve
fibers originate in neurons located within the ganglion (data not
shown).

The frontal ganglion controls foregut dilators 

In order to reconfirm previous work regarding the role of the
frontal ganglion in generating foregut movements (see
Discussion), we monitored foregut movements while recording
the motor output of the FG. In agreement with early results
(Allum, 1973, and references within), foregut peristaltic
activity was never observed when we either dissected the FG
out, or cut all the FG efferent nerves. Fig. 2A demonstrates
fixed synchronisation between bursts of action potentials
recorded extracellularly from the recurrent nerve (RN), and
foregut dilation monitored by a force transducer attached to the
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Fig. 2. FG motor output in vivo can be correlated to foregut
movement and to specific gut dilators. (A) Extracellular recording
from the recurrent nerve (RN) and the simultaneous output of a force
transducer (FT) connected to the esophagus wall in a fully intact
locust. (B) Simultaneous extracellular recordings from the posterior
pharyngeal nerve (PPN), and from the third dorsal dilator of the
pharynx (37) in vivo. Inset on left shows 5 overlaid sweeps triggered
by the large unit in the PPN trace, demonstrating 1:1 relationship
between this unit and the muscle activity.
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oesophagus. This result was confirmed by recordings from the
FC or PPN. Activity in the third dorsal dilator of the pharynx
(muscle 37) could be correlated to bursts of action potentials
recorded extracellularly from the PPN (Fig. 2B). We only had
limited access to the gut while recording from the nerves, so
could not correlate movements of different areas of the foregut
to activity recorded on the different nerves.

The frontal ganglion central pattern generator

In an in vitro preparation, isolated from all descending and
sensory inputs, the FG generated spontaneous rhythmic
activity. Over 90% of all in vitro preparations displayed a
consistent and robust FG rhythmic pattern that lasted for
several hours (cycle period 15.8±5.9 s, mean ±S.D. of 48
preparations, 10 cycles per preparation). In many cases
rhythmic activity was not obtained immediately but emerged
slowly and gradually (Fig. 3). We found the time of first
appearance of bursting activity to be strongly related to the
physiological state of the donor locust. In preparations from
locusts with a very full foregut and crop at the time of
dissection, or from non-feeding larvae close to ecdysis, a
robust pattern emerged after up to 2 h of saline superfusion
(1.5±0.6 h, N=10; Fig. 3). The rhythm was the fastest to appear
(10 min or less) when the ganglion was dissected out from a
locust just a few minutes after it had begun feeding.
Accordingly the application of haemolymph collected from
animals in which the alimentary canal was replete throughout
its length, strongly inhibited the FG motor output (five
different preparations, Fig. 4A). The effects of haemolymph
application varied from total inhibition, as in the example
shown in Fig. 4A, to inhibition of the bursting activity only.
Haemolymph collected from non-feeding pre-moult larvae
also inhibited FG rhythmic activity, always
giving rise to arrhythmic activity as
demonstrated in Fig. 4B (five out of five
different FG preparations and fifth instar larva
haemolymph donors). Application of
haemolymph collected from fifth instar larva just
after the initiation of feeding had no inhibitory
effect whatsoever (five different preparations,
Fig. 4C).

The frontal ganglion rhythm

Spontaneous multi-unit bursts of action
potentials could be recorded from all the FG
efferent nerves (Fig. 5). Recordings from the
bilateral pairs of nerves (FC nerves, MPN and
PPN) revealed that they all exhibited fully
synchronised activity (including both bursts and
inter-burst activity; data not shown). The activity
recorded on the APN (three preparations, not
shown) was consistent with our observations as
described here for the other nerves. APN
recordings were rare since this nerve is
exceptionally thin and delicate. In the recurrent
nerve, bursting activity was often masked by

arrhythmic background spiking activity (in four out of ten
recordings; not shown). 

Simultaneous extracellular recordings from the different FG
efferent nerves revealed fixed-phase relations in burst onset
times, consistent with a rostrum-to-caudal innervation
sequence of foregut muscles (i.e. the order FC, MPN, PPN, in
efferent nerve bursts, Fig. 5B). A similar pattern in vivo would
have resulted in a peristaltic anterior-to-posterior wave of
muscle contraction along the locust foregut. 

As shown in the cumulative amplitude plots of Figs 5 and
6, each nerve displayed a characteristic burst profile. The
temporal delineation of burst progression, as recorded
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Fig. 3. Emergence of the FG rhythm in vitro. A continuous frontal
connective recording in a ganglion totally isolated from all
descending and sensory inputs, dissected out from a locust with very
full crop and gut. (i-iv) 15, 45, 60 and 75 min, respectively, after
dissection. 
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Fig. 4. (A) The effect of haemolymph collected from a fifth instar larva with a very
full crop, on an ongoing FG rhythm in vitro, as seen in a frontal connective
extracellular recording. (B) As in A; haemolymph collected from a non-feeding pre-
molt fifth instar larvae. (C) As in A and B; haemolymph collected from a fifth instar
larvae just after the initiation of feeding. In all panels, (i) is control; (ii) haemolymph
application; (iii) wash. Scale bars, 10 s.
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extracellularly, is summarised in Fig. 7. In all our preparations
we have recorded at least one of the FC nerves accompanied
by simultaneous recordings of minor nerves, MPN or PPN or
both. Thus the FC burst was used for alignment and
normalization (see figure legend for details). The burst onset
appears in the form of intensified activity in the FC nerve
(either sudden or gradual), characterised by increased spike
density as well as spike amplitudes. This early FC nerve
activity typically coincides with strong inhibition on the PPN.
About one third of our PPN recordings showed an additional
early unit, coinciding with the early units in the FC nerve; all
other PPN units were still strongly suppressed at this phase
(Fig. 6). Bursting activity followed in the MPN and finally in
the PPN. In all nerves, bursting typically ended with a gradual
decay of activity, with MPN activity ending first or
concomitantly with FC bursting, and PPN activity ending with
a slight delay thereafter (Fig. 7). All nerves exhibited strong
post-burst inhibition and a slow recovery of inter-burst levels
of activity (with the PPN recovering first 3–5 s after the onset
of the burst, followed by the MPN, and finally by FC nerves,
which typically displayed the slowest recovery of activity,
taking as long as 15 s; Fig. 7).

Burst profiles from different experiments were found to be
robust and independent of the level of inter-burst activity and
of cycle periods (Fig. 7C). In addition the temporal relations
between different bursting units (whether recorded on the same
or different nerves) were generally conserved. Thus, while
burst durations were relatively robust (1.8±0.5 s in FC nerves,
and 1.3±0.3 s for MPN and PPN), the fraction of burst to cycle
time varied drastically (e.g. 2–33% in FC nerve bursts, N=15).
In other words, converting Fig. 7C to a conventional (linear)
phase diagram (by normalising the time axis by burst cycle
periods) would yield a smeared, highly variable burst profile,
in sharp contrast to the robust temporal description. This result
demonstrates that during a burst cycle, the phase increases
nonlinearly with time. In effect, this description translates to a
high phase velocity during the burst itself, and much slower
phase increase in the ensuing inter-burst phase. Figs 5–7 were
prepared from the recordings most suitable for the type of
analysis made. It is important to note that the results of all of
the experiments performed were examined for consistency
with the data presented. 

In addition to the above extracellular nerve recordings,
which capture the motoneuron activity in the various efferent
nerves, intracellular recordings are needed to elucidate the
structure of the underlying neural network, to locate and to
characterise the key pattern-generating neurons. In fact,
probing many FG neurons with an intracellular pipette in a
number of preparations revealed that the large majority of
neurons do not show oscillations of membrane potential or any
rhythmic pattern of activity, and are either silent or fire
tonically. Experimental manipulations with the membrane
potential of these cells (strong stimulation and
hyperpolarization; data not shown) suggested that only a small
number of the FG neurons are part of the CPG circuit. A small
number of the recorded neurons did exhibit rhythmic activity.

Fig. 8 shows examples of rhythmic inhibition or bursting
potentials, as demonstrated by intracellular recordings from FG
neurons, while a robust rhythm was recorded extracellularly.
The neuron shown in Fig. 8A corresponds to the large units
recorded extracellularly on the FC nerve. 

Discussion
The current paper presents our results on the hitherto little-

explored FG of locusts. The FG is a principal component of
the insect stomatogastric nervous system (STNS) in most
insect orders (Penzlin, 1985; Chapman, 1985). Ample previous
results have indicated that in locusts, as in other insects, the
FG is important for the control of food passage through the gut
and for crop emptying (Highnam et al., 1966; Hill et al., 1966;
Bignell, 1973). We have established the presence of a CPG
circuit in the locust FG; a spontaneous rhythmic motor pattern
was generated by FG neurons in the total absence of
descending or sensory inputs. Previous work in P. americana
described spontaneous burst activity in the STNS and
specifically in the FG (Hertel, 1978; Hertel et al., 1978; Hertel
and Penzlin, 1982; Pandey and Habibulla, 1982), yet the
function of this activity remained unclear (Penzlin, 1985). We
explored the motor pattern by recording extracellularly from
all the locust FG efferent nerves. When analysing the temporal
delineation of bursts of action potentials recorded on the motor
nerves, and considering the muscles innervated by these
nerves, the FG rhythmic pattern could be defined as fictive
feeding-related or ‘food passage’ behaviour. The pattern was
characterised by fixed phase relations in burst onset times,
consistent with a rostrum-to-caudal innervation sequence in
foregut muscles. While the FG rhythmic bursting activity was
robust and well characterised, the inter-burst tonic activity
varied in duration and intensity, both in time and from one
preparation to another, but had no apparent effect on the burst
profile itself. The two different patterns of burst activity that
were observed in the PPN signals may possibly indicate
different behaviours, which require closer investigation.

We correlated the FG motor output with foregut movements
in vivo, thus confirming earlier reports on the FG control of the
foregut. In the accompanying paper (Zilberstein and Ayali,
2002) we investigate the FG motor patterns in vivo and their
role in the control of multiple foregut behaviours. 

The locust FG contains around one hundred neurons. Are all
these neurons members of the pattern generating network(s)?
Many of the FG neurons are neurosecretory cells containing a
variety of neuropeptides (Miyoshi and Endo, 1998; Maestro et
al., 1998; Duve et al., 1999, 2000). Aubele and Klemm (1977)
described 19 neurons located in the FG that send their axons
to innervate foregut muscles via the FC and FC 1. In most CPG
systems investigated the pattern-generating circuit consists of
interneurons, though in some preparations the motor neurons
themselves participate in generating the rhythm (e.g. the STNS
of Crustacea) (for references, see Marder and Bucher, 2001).
The rather limited number of rhythmic units in our FG nerve
recordings, and our preliminary intracellular survey of FG
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neurons in which the majority of neurons proved to be either
silent or tonically active, are both consistent with the idea that
a relatively small number of FG neurons take part in the FG

rhythmic motor pattern. However, this point awaits further
characterisation of the CPG. 

The concept of neuromodulation is central to our current
understanding of central pattern generation. Our results suggest
that the FG CPG is modulated in vivo; a humoral factor
affecting foregut activity by inhibiting the FG rhythmic output
is present in the haemolymph of feeding animals, when the
entire gut is stuffed with food and the foregut should stop
pushing its content backwards, or in pre-moult larvae that do
not feed at all. Hence, in our haemolymph application
experiments, rhythmic activity was very slow to appear in the
isolated FG when the physiological state of the donor animal
was one of the above. It is nowadays clear that the nervous
system can alter the properties of CPGs, via both descending
and sensory inputs, to elicit many different motor patterns (e.g.
Harris-Warrick and Marder, 1991; Grillner et al., 1994; Harris-
Warrick, 1994; Marder et al., 1994; Ayali and Harris-Warrick,
1999). 

Recent years have witnessed rekindled interest in the insect
STNS. It has been shown to be an important source of
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(see, for instance, the return to low spiking rate between the early
PPN activity and the main burst). 



2831Locust frontal ganglion central pattern generator

neuropeptides that take part in controlling gut movements in
Orthoptern and Lepidopteran insects (Duve et al., 1995, 1999,
2000; Miyoshi and Endo, 1998; Maestro et al., 1998). The
insect STNS is also emerging as a model system for nervous
system development (e.g. Copenhaver and Taghert, 1989a,b,
1991; Ganfornina et al., 1996; Hartenstein, 1997; Forjanic et
al., 1997; Boleli et al., 1998; Gonzalez-Gaitan and Jackle,
2000). Surprisingly, with the notable exception of Miles and
Booker (1994, 1998), little research has been conducted on the
STNS neural control of gut motor patterns. The current study
will help to fill this gap, and provide the necessary
physiological basis for this promising model system. 

From an evolutionary point of view, it is intriguing to
compare the relatively unexplored insect system to the STNS
of Crustacea, specifically to the stomatogastric ganglion (STG)
of lobster and crabs (Harris-Warrick et al., 1992). The latter
has been established as a leading model system for the study
of pattern-generating circuits. It has fewer neurons (approx.
30) and, unlike our system, the STG requires chemical
modulation in order to exhibit its rhythmic motor output.
Further research is needed to elucidate other differences as
well as similarities between the two systems.

In summary, our work presents a novel CPG network in the
locust FG, and the motor patterns it generates. Together with
the adjacent paper, this is part of an investigation into the
regulation of motor patterns associated with locust feeding and

the control of moult-related gut motor patterns, and thus to fill
a gap in our knowledge and understanding of this economically
important pest insect. 
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S.D.). N=15, 14 and 5 for FC, MPN and PPN, respectively.

Fig. 8. Simultaneous extracellular recording from the FC nerve, and
intracellular recording from a FG neuron. (A) and (B) are from two
different preparations. The neuron recorded in A demonstrates
rhythmic bursting, which coincide with the large action potentials on
the FC recording. The neuron in B shows strong rhythmic inhibition
during the FC burst. 
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