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Adaptive Model Selection and Estimation
for Nonlinear Systems
Using a Sliding Data Window

W.Luo" and S. A. Billings *

Abstract

A new algorithm which provides adaptive model selection and estimation on-line
is derived based on the polynomial nonlinear ARMAX model (NARMAX). The algo-
rithm uses rectangular windowing regression procedures where the forgetting factor is
unity within a sliding data window. Variations in the model structure and the parame-
ter estimates are tracked by using a sliding rectangular window based on Givens rota-
tions. The algorithm which minimizes the loss function at every step by selecting
significant regression variables and computing the corresponding parameter estimates
provides an efficient adaptive procedure which can be applied in nonlinear signal pro-

cessing applications. Simulated examples are included to demonstrate the performance
of the new algorithm.

1. Introduction

If the structure of a system model is known a priori on-line estimation is reduced
to determining estimates of unknown parameters. In this situation, either the standard
recursive least squares algorithm (RLS) or variations of this which exhibit improved
numerical properties can be applied. Orthogonal least squares parameter estimation
algorithms based on orthogonal-triangular decomposition (QR algorithms) are known to
be superior to all other RLS algorithms and are therefore often applied in real-time sig-
nal processing applications. When the structure of a system model is unknown detect-
ing the system structure becomes a critical part of the identification procedure. Tech-
niques used for the on-line modification of the order of linear models are not easily
extended to the nonlinear case because the structure of the nonlinear models do not
satisfy the constraints required by these techniques. New algorithms are therefore
required for the on-line structure detection of nonlinear systems.

An on-line orthogonal algorithm based on an exponential windowing approach
was presented in Luo, Billings and Tsang (1994). The algorithm minimizes the loss
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function at each step by selecting significant regression variables while maintaining the
orthogonality of the vector space as each new observation was processed. Because this
algorithm uses orthogonal QR decomposition with column permutations and the effects
of old data were exponentially weighted out, stability was ensured in continuous com-
putation. A better alternative in some applications would be to use a rectangular win-
dow with a forgetting factor of 1 but to slide the window over the data set to provide
improved adaption. If the forgetting factor A is unity however this will cause overflow
in continuous computations during on-line processing based on the exponential window
approach (see Section 3 for further details) and an alternative solution must be sought.

The objective of the present study is therefore to inroduce an adaptive orthogonal
algorithm with on-line structure detection which is applicable for rectangular window-
ing regression. Because recursive QR decomposition algorithms provide numerically
stable and accurate computations with an efficient use of memory these form an ideal
basis for development of the new rectangular window method. The new algorithm can
adaptively change the model structure on-line but does not require storage of all the
regression matrix and associated orthogonal vectors. The new algorithm is different

from the exponential windowing method because of the operation of the sliding win-
. dow, that is the oldest measurement contained in the last observation window is
removed before a new measurement is added. Since the oldest measurement is elim-
inated and the newest measurement is added the new algorithm constructs a sliding
window and can produce a series of sub-models based on the data which are updated
successively in each window. The new algorithm can perform adaptive on-line model
structure detection using a forward selection method and will be referred to as the
GFSL algorithm (Givens rotation with Forward selection and SLiding windowing algo-
rithm).

The paper is organized as follows. First the NARMAX model is defined and the
recursive orthogonal transformation with a sliding window is derived. The principle of
structure detection is described in Section 4 and the procedures and initialization of the
algorithm are summarized in Section 5. A discussion in Section 6 considers the com-
putational costs and alternative algorithms. The final two sections contain numerical
results and conclusions.



2. NARMAX Model

A single-input single-output NARMAX model (Leontaritis and Billings 1985) can
be defined as

Y (O=F [y =1}y (1= )4 (1 =@ )seerstd (1 —d =11, +1) £t = 1), E(t =1 D] + E(1). ~(2-1)

where ¢ denotes discrete time, y(¢), «(+) and e(r) represent the output, input, and predic-
tion errors respectively, n,, n, and n. are the corresponding orders, F[.] is some non-

linear function and 4 is the minimum time delay of the input. The prediction errors are
defined by

e(r)=y() - 3() (2-2)

where * denotes predicted values, y(r) is the one step ahead predicted output. The
degree of the power terms in y (), u() and &() is defined by n;.

Defining
A=y (1-1), A=y (1=2), .. B, =y (t-n,)
A,y+|=u (t—d), An’.,.g:ll (t=1-d), ... A",’f"..:” (t-n,~d) ,
B = =1): By g D), e By an enZEU RS
§ =n,+n,+ne .,

then a polynomial NARMAX model with degree », can be expressed as

y()=%or) + Z K (04 + Z E K 0,048 A,

i=1 i=lisl

s § Ry
E z Z X; piac ";AI(!)AilAil e Ai"l’ ’ (2'3)
= 'r= "r=

where x denotes the unknown parameters. Transforming the lagged sequences in Eqn
(2-3) into regressors forms a pseudo-linear regression model given by

Y0 = £0:080) + €0 (0-4)

where ¢,(t) expresses the ith regression variable (regressor) which is a monomials of
lagged u(t), y(r) and/or &(1), m is the number of the regressors and 6;(t) is the unknown
parameter corresponding to ¢;(1). The regression equations at the time points 1, 2,
¢ are given by

y(1) = BNO(1) + £(1) 2-5)
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where ®(r) is the rxm regression matrix, 0(t) is the mx1 parameter matrix, y(+) and &(t)
are rx1 matrices. If the functions ¢;(.) are chosen properly, the polynomial model (2-4)
can arbitrarily well approximate any continuous F[.] in (2-1) (Chen and Billings 1989).
Various possibilities for parameterizing F[.] exist including the extended model set
NARMAX models which may involve functions such as absolute value, exponential,
logarithmic, sgn(.) etc. (Billings and Chen 1989). Since the linear-in-the-parameter pro-
perty is preserved several efficient identification algorithms have been developed (e.g.

Liu et al 1987, Chen and Billings 1988, Chen et al 1989) for this class of NARMAX
model.

A NARMAX model with an adaptive or changing structure can be defined by
extending the definition of m in Eqn (2-4) to be m(r). Such a model will be time-
dependent not signal-dependent (Billings and Voon 1987). To match the dynamics of
the nonlinear system under test the identification based on the NARMAX model often
involves power and cross-product terms of the inputs, outputs and noise. In the initial
stage of processing many candidate regressors may emerge but most of these are often
insignificant or linearly dependent. On-line structure detection can therefore be applied
to determine which regressors should be included in the model at a particular time
point. Like most nonlinear models, the structure of the NARMAX model does not
satisfy the shift-invariant property which allows successive expansion of candidate
variables and therefore techniques which utilize these properties for on-line
modification of the model structure cannot be used. This excludes most of the well
known algorithms derived for linear models. It becomes necessary therefore to derive
new algorithms for adaptive on-line structure detection and parameter estimation for
nonlinear systems which can only be described by nonlinear models.

3. Recursive Qr Decomposition with a Sliding Window

In the GFEX (Givens rotation with Forward selection and EXponential window-
ing) algorithm (Luo at al 1994) the estimates of system structure and parameters can
be considered as the result produced from a new measurement and a prior information.
The latter contains previously processed data which is expressed concisely in an aug-
mented matrix. At the time instant ¢ this matrix is given by [R(:-1) v, (1-1)], where
R(t-1) is an mxm upper triangular matrix and v, (t—1) is an mx1 column matrix. This
matrix and the new measurement at time ¢ contain all the information in an exponen-
tial window up to time r. If the data contained in the window were unweighted this

window would become rectangular. To obtain accurate solutions in this latter situation
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and to avoid overflow in orthogonal decomposition the oldest measurement contained
in the matrix [R(/-1) v, (1-1)] needs to be removed before the new measurement is
added. This leads to the implementation of a sliding window method and forms the
basis of the new algorithm presented in this study. At a specific time instant an aug-
mented matrix produced by deleting the oldest data will be referred to.as the
backward-system and an augmented matrix produced by adding the new measurement
will be referred as the forward-system at this time instant. The quantities correspond-
ing to the two systems will be marked with the subscript f and b respectively.

3.1 Forward-Operation

Suppose that there are r-1 observations of the system y(r—1)=®(r-1)8(:-1) which
contains m regression variables. Augmenting the -1 regression equations with a zero
element denoted O, and a 1xm zero row vector O, yields

[y(r-—l):\ _ l:fb(t—l)
0, | 7| O

Premultiplying the above equations by a ¢xr orthonormal matrix Q(-1) (i.e.
Q" (1-1)Q(:-1)=I) yields the Qr orthogonal decomposition

8(1-1)

Yalt=1)
v(t=1) = |V, (t=1)| =
0,

R(r-1)|,
01_;_,"}9(:—1) + Q7 (1-1)e(r-1) (3-1)
0,

where v, (¢t-1) and v,_,_, (r-1) have dimensions mx1 and (t—1-m)x1 respectively, O,_,, is
a (1-1-m)xm zero matrix, £(r-1) is the residual vector.

When the new measurement data at time r, ¢(r) and y(r) (where ¢(r) is an 1xm

regression matrix and y(r) is the output at time ) are added to improve the previous
estimates, the regression equations can be written as

v(r—1) R(t-1)| O
Victom (=1 |20y o1om |80 =1)+Q7 (1-1)e(r—-1)+| O |, (3-2)
y(r) o(r) E(1)

where O, and Oy are mx1 and (1-1-m)x1 zero matrices respectively, and e(r) is the a
priori prediction error defined by £(t)=y(t) - ¢(t)8(t-1). Choose a rx: orthonormal
matrix Q,(r) to update the QR decomposition so that

Vi (1)

V([) = |Vi-1-m (t) =
v (1)

R(t) |.
Oy-1-m |B() + QT (1)E() (3-3)
0,
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where v, () is the ¢’ th element of v(t), the mxm upper triangular matrix is defined as

ra@) 20 ()
0 ) . .. ram)

RO=| 0 ] (3-4)
0 ...0 r,,,,;(.r)

the orthonormal matrix Q(/)=Q(:-1)Q, (1) is given by
Q) =[qi(t) q:(t) - qu(t) Qua(t) - -- q(1)] (3-5)
and the residual vector becomes

E,(1)
Er—;—m (1) L]
£(r)

e(t) =

where the ¢’ th element of (1), e(t), is the residual (the a posteriori prediction error)
defined as e(r) = y (1) - ¢(1)8(r). The estimation of 8(r) is easily achieved by solving the
triangular system R( ¥0(1) = v, (¢). This shows that removing the equations between the
(t-1-m)’ th and (+-1)" th row of (3-3) does not affect the solution. The residual sum of
squares (RSS) can easily be obtained from

RSS (1) = lle()IF = lly(OIP=lvem (OIF = ¥7 (1)y(1) = Vi (0 )V (1) (3-6)

and can therefore be used for on-line structure detection which will be described later.
If the orthogonal decomposition is performed row by row in the transformation from
Eqn (3-2) to (3-3) the equations between the (t-1-m)’ th and (r-1)’ th row of (3-2) do
not need to change when the new upper triangular matrix R(r) and the new column
vector v, (1) are obtained. The operation which eliminates ¢(r) to a zero row and

correspondingly transforms y () to v, (1) can be executed in an augmented matrix form
and is expressed as follows

R(r-1) Vm(r-1) R(t) Vm(t)
$(r) y () 0, v()
Because the orthogonal transformation is performed row by row the orthogonal matrix

Q. (1) does not need to be stored and therefore neither does Q(r) (where Q(:):]i[Q,-(i )
i=l

so that the recursive orthogonal decomposition can still be performed. When the aug-
mented matrix system is used to express the above orthogonal transformation neither
Q. (t) nor Q(r) needs to be expressed explicitly, but the changes in R and v,, can clearly
be observed and the continuous computation is easily executed. If new measurement
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data need to be added to improve the estimates this augmented matrix system is easily
used by putting each data set at the (m+1)’th row of the augmented matrix and then
transforming this row of data. After the new data are processed the augmented matrix
is updated successively and a recursive transformation is performed. At the beginning
of every step v,(r) can be ignored and can be replaced by the I1x1 zero matrix 0,. Con-
sequently the result of Eqn (3-3) can be rewritten in the form of an augmented matrix
for continuous computation, which is given in

R(t) Va()
[ 0, O, ] 3-7
To illustrate this consider the following matrix

R,,(t=1) v, (-1
C, = (3-8)
L
o(r) y(r)

where C; is a (m+1)x(m+1) matrix which includes the new measurements ¢(s) and y(1)]),
R.,(t-1) and v, .. (r-1) contain information in the past w,-1 data up to time -1 and w, is
defined as the size of the observation window (namely, the length of data to be pro-
cessed at every computational step). Using the Givens rotation (Gentleman 1973, Gen-

tleman 1974) the triangularization of (3-8) can be implemented using the following
procedure:

For k=12....m,

e =Ncfu + (D) (3-9a)
Cr [

fe==3 fs === (3-9b)
£k Bf %

For p=k k+1,...m+1,

» k=
Crkp = Crxp fr: +£f(.m41-)l.p f.r (3'9(:)
Ef(ffz +lp = ~Crup fs + Ef(fr;l)l.p fc (3'9d)

where ¢f,,.,=[¢() y(1)], is the last row of C,. This orthogonal QR transformation is
performed row by row. For example the transformation of the i’ th and j’ th row is
presented as follows

row 830, O, €1 ik BF i ktln on BF d i &% Oyua O Crypctioen s onilF fmal

i » .
row J: 0- T 0. EfJ_k, Ef.j,k+l' T Ef.j.mﬂ =2 0, - 0. 0 - Ef'j-*"'] [P Ef.j}ﬂ"'l
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where * denotes the new quantities after transformation. Finally the matrix

Rw,(t) vwf,,,(r)
C; = (3-10
= 0, 0, )

is obtained where wa(r) and v,.,f,,(r) contain the information in the w, data window up
to time r. The right-hand side of (3-10) represents the forward-system at time ¢.

The transformation operation of the GFEX algorithm (Luo et al 1994) is a for-
ward operation similar to the transformation of (3-8). The above method only differs
by using R, (t-1) and v, ,(-1) instead of the two corresponding quantities in an
exponential window (e.g. R(-1) and ¥,,(¢-1)) and using a unity weighting factor in an
observation window. As mentioned above if the forgetting factor A is unity (a rec-
tangular window) a forward operation will cause overflow in continuous computation
(the size of a rectangular window becomes infinite). This follows from the formula (3-
9a). For example in every computational step the first diagonal element of the new tri-
angular matrix R(t) is always computed by squaring the first element of the new meas-
urement [¢(:) y(r)] and then adding this to the square of the first diagonal element of
the previously formed R(-1). When A=1 all quantities in the triangular matrix do not
decay at every computational step so that the first diagonal element ry, will tend to
become infinite. By using a finite rectangular window this problem can be overcome
by removing the oldest data from the matrix (R, (r=1) V. »(=D] which was formed in

the forward-operation at time r-1 using w, data up to time r-1 . Since the complete
regression matrix cannot be stored but only w; records of the latest inputs, outputs and
residuals some methods to backdate the window must be developed.

3.2 Backward-Operation

To delete data from the augmented matrix, Chambers (1971) used the reverse
operation to add a row of data and Golub (1969) gave a method in which the row of
data to be deleted was multiplied by a factor ¥=1 and then orthogonally transformed to
form a backdated matrix.

Inspection of (3-9) shows that the procedure for deleting a row of data can be
considered as the reverse implementation of adding a row of data. Suppose [¢(r) y(1)]
is required to be eliminated from the resulting matrix C/, the problem is to find ¢/,
from ¢}, and ¢f%0,, p=k...m+1. First [6(:) y(1)] is put into the m+1 th row of C;.
Rearranging (3-9) forms the following operations.



For k=1,..m,
Crae = N(es w) = (/500 (3-11a)
foals g G (3-11b)
[ Er ke
For p=k k+1,...m+1,
Crip =G up = ity £ 1 fe (3-11c¢)
g ==Chap fs +efial, L (3-11d)

In sliding window algorithms, the oldest measurement [¢(r-w;+1) y(t—w,+1)] which
needs to be deleted is put in the m+1 th row of C; and then using (3-11) the matrix

. (R Vi m(0)
=1 o, 0,

(3-12)

can be obtained, where R,, (1) and v,, ,(t) correspond to w,-1 data up to time ¢ (these

matrices or variables with the subscript # are associated with deleting the oldest meas-
urement). The right-hand side of (3-12) is the backward-system at . This method is
simple but the operations of adding and deleting are not uniform and therefore it is not
easy to implement. Therefore another deleting procedure will be derived as follows.

After deleting [&(r-w,+1) y(t-w;+1)], the sum of squares of the outputs can be
expressed as

Yoy (0¥, (1) = ¥ (13 (1) = yHt=wi+1) (3-13)

= (@, (0B @, (1B(1) = (B(r-wi+1)B(1 ) $l1-wi+1)B(1)

Writing the above in matrix form yields
You, (1)

o y(-w+l) o o(t—w;+1

>, (1)
!
[y, () o y(;-w,+1);[ }=6T(r NP (1) 0 ¢ (t=wi+1)] Je(:)

Where o (a’<1) denotes an operator which is not used in the computational subroutines
(3-16) but as a marker. Further

Yo, (1) o, (1)

= 0(r)
o y(t-wi+D)| o dt-w+1)

Orthogonally transforming wa(:} and &, A1) yields

VWIJT‘([) wa(!) 0

E3

vwf Wy—m ({) = 0“"[_'" é{[ )+QT (I )wa ('r )+ 054 L] (3‘14)

ay(:-w,+l)J o o(r—w,+1) Oy b
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where Q7(¢) is the orthogonal transformation matrix, O,,_, is a (w,—m)xm zero matrix,
Vu, m (1) and Vo - (1) ATE of dimension mxl1 and (w;-m)xI, Ew, (1) is the residual vector,
O, and O, are the zero vectors with dimension mx1 and (w,-m)x1, and &, (1) is a

prediction error defined as

£ 5 (1) = (w14 =W +DB(1)

The deleting procedure can now be performed on a concise form of (3-14)

R () Vum(0)
(3-15)
o ¢ -w+1) o y(t-w+1)
by defining
R, (1) Vum()
= Q=wir) y(r-wi+1)
and

¢ =En 9= Jc, .

Thus the arithmetic for retriangularizing C, is to choose b. and b, in (3-16) so that the
elements of the m+1 th row become zero. Such a computation which transforms C,
into a backward-system C, defined in (3-12) can be performed as follows.

For k=12...m,

Ch, 1 = \[Ch, ke = (Ch mr1 k) (3-16a)

( because cp wx = Ch e + (0 Chmi1 )" )

(k—1)

Co kk ® Cp m+lk
b. = : (B o= iz gy ) (3-16b)
Cb, kk Ch, Hk
where
E_b(:;nlll-k
by=— (3-16¢)
4 kb
For p=k k+1....m+1,
b tp = b ap D = Chimiig s (3-16d)

L] e s k-1
( because ¢y 4y =Cp sp be + A Chimbp b5, )



(k=1)
Mty

( Eb”.zn-il,p: '—an,kp b:‘+u

Finally C; = C; .

3.3 A Uniform Formula for the Two Operations

be . but store ¢y g, by—chmtipbec).

(3-16e)

Combining (3-9) with (3-16) provides a uniform formula for adding and 'dcleting

a row of data. Define the matrix

C; for adding a row
C= C,, for deleting a row

and the arithmetic coefficient

1 for adding a row
w, =

—1 for deleting a row °

Then for k=1.....m,

e = Veg + () we

o

(k=1)

_(-:)l'k £m +1.k
dee= =5 dss= :
Cik Lk

and for p=k....m+1,

. (k=1)
_C_kp = _(::kp dn.‘ + _‘:m‘\-i-i.p d.:.s‘ W,

ey
Cm+lp = ~Chp dss W, + Cmtlp

(3-17a)

(3-17b)

(3-17c)

(3-17d)

(3-17¢)
(3-171)

Since the adding and deleting operations using (3-17) are simple and uniform, this
method will be selected as the computational procedure for the new GFSL algorithm.

4. On-line Structure Detection

At time , the GFSL algorithm deletes the oldest measurement data using (3-17)
to produce a backward-system and then adds the newest measurement by means of the

same formula to produce a forward-system, i.e.

R, (1) Vum ()
0, 0,

(4-1)
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which includes the information over the w, data up to time ¢ in the observation win-
dow. Since the system structure at ¢ is unknown, the computation has to involve all
candidate variables and some of these variables may be linearly dependent so that the
regression matrix ®, (1) may not be full rank. This means that d)If(r)tb,,f(r) may be
singular and there may no longer be a unique solution. In this situation ®, (1) can still
be decomposed, but R, (1) is a real upper triangular matrix with zero diagonal elements
and m, positive diagonal elements and the row vectors of R, (1) corresponding to the
zero diagonal elements become zero vectors. The method for on-line structure detec-
tion (Luo et al 1994) can be readily applied to this forward-system to determine the

sub-model available to time .

To match the condition of the finite window (the size of the window is w,),
rewriting (3-6) yields

RSy, 0t) = Y8, () Yoo, (0) = VD (1) Vau i, 1(8) 4-2)

where the subscript w, denotes the quantities relative to a forward-system which
includes the information of w, data up to time ¢, m,(r) is the number of the selected
regressors in the sub-model at time r, m,(t) is less than the number of the candidate
variables, m. The quantities with the subscript m,(r) indicates that they are associated
with the value of m,(r). Dividing (4-2) by yIfwa gives the normalized RSS (NRSS),
given by

T
wamj (I‘l(’ )vwf.m‘(r)(!) m,[z)

=1- 1)ERR,, (1) , 4-3
Yo, Oy (1) E( Wit @3

NRSS\u, i t) = 1 -

where ERR, ;(1)= v.ff',-(r)f wa(t)rwa(t). This is the error reduction ratio (ERR) of the
orthogonal vector Qi which is obtained by transforming the first i columns of @, (1)
and v, ; represents the projection of the output in the direction of the ith orthogonal
vector, q,, ;. The value of v,ff',- can easily be used to select significant regressors from

all the candidate regression variables by using a forward search procedure so that the
selected variable minimizes NRSS, ;(r) at the j’th selection step. The selection will be

continued for m,(r) steps until

NRSSwf.mJ[I)(t) < ﬁs 1 (4'4)

where £, is a pre-set tolerance. If m, (1) orthogonal vectors are selected, this means that
the first m,(r) columns of @, (1) are determined as significant regressors.
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To ensure clarity the notation "(t)" and subscript w, will be ignored in the
remainder of this section.

At the j’th selection step all candidate variables ¢,, p=/....m, are considered ini-
tially. Choose the candidate variable with the maximum of v%,), p=j...m, as the j’th
optimal regressor so that the RSS; can be minimized. Such a computation for 55,2(,) can
only use the columns of R, r,, p=j....m, which have the following form

— . = . . s . R T
r,=1Iry ry i rop 0 0 .

and v,, p=j,...m. First set v;yv; and two auxiliary variables rS=r;, and v =v;. Cal-
culate v;(, using the following procedure:

For i=j+1,..p,

i e =1
iy =N+ (4-52)
=1
3 5 r. r.
J 5 Bl i) ) ip ]
Vie) = Vi) o tVi T (4-5b)
itp) Jjp)

Finally v}, = (v})% For example, when v, is the the maximum of all the vip)s & is
selected as the j’th optimal regressor. Then exchange the positions of r= and rf~" in
RU-D to form RU-D", where the matrices with the superscript (j-1) indicate the forms of
the (j-1)'th selection step. Since the permuted RY™"" is not triangular, a reorthogonali-
zation procedure must be applied to retriangularize the augmented matrix

RU-D® VUV
[ 0, 02] (4-6)

where vU~ is the orthogonalized output vector produced in the (j-1)'th selection step.
The new augmented matrix

RU) v
[01 02] @-7)

can easily be formed by applying a Givens transformation (3-17) with w,=1 to from the
j’th tow to m’th row of (4-6). The selection process is continued until (4-4) is
satisfied.

At every selection step the procedures include the selection of the optimal regres-
sors, the permutation of the columns of R and the retriangularization of the augmented
matrix. Although the operation is only performed in R and v,, the effect is to select
the optimal regressors in the regression matrix ®.
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5. Computational Procedures and Initialization

To completely describe the implementation of the new GFSL algorithm, a sum-
mary of the procedures will be given in this section. The initialization of the algorithm
will also be discussed.

Suppose at time r, the forward-system at time -1 is given by

[R.,f(t—l) vw,m(r—l)}

01 02 (5'1)

the operations of the GFSL algorithm during the computational interval at time ¢ can
be described as

GFSL Algorithm
(i) If 1 <w,, go to Step (ii); otherwise perform the back-operation. To delete the

data at time r-w, from (5-1), first put [é(r=w,) y(t-w;)] in the m+1 th row of (5-1) to
form

(5-2)

wa(l—l) wa,m("_l)
o(t=w;)  y(t—wy)

Then with w,=-1, apply the orthogonal transformation procedure (3-17) to achieve the
backward-system

[Rw,,(r—n vw,,,,,(r-l)}

0, 0, (5-3)
(ii) Add the data at time ¢ in (5-3) to form
Rw (f"l) Vi ,.m(!—l)
b b
[ L ONES{( } (5-4)
Setting w,=1, using (3-17) retriangularizes (5-4) to form the forward-system
RO v (1)
g0 50 5

.....

using (4-5).

(iv) Based on the result of Step (iii), perform the permutation of the columns of
R.‘jf‘”(x) and then the corresponding retriangularization.

(v) Compute NRSS,, ;(t) which is defined as

NRSS,, j(t) =1~ iERR,,ﬂ-(:) (5-6)
i=| "
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where

vt

ERR, (1) = ————no .
/ Y2 () ¥, (1)

G5-7)

If NRSS,, (1) satisfies the pre-set tolerance, namely, NRSS,, L) <&, the selection is ter-

minated; otherwise utilize some statistical tests to check the selection and then decide
whether to return to Step (iii) to involve more regressors. Suppose that m,(¢) regressors

have been selected, the new forward-system is rearranged based on the contribution of
the regressors to the output as

@ o Reame® o e ()]

0
wa(f) Vw[.rn(;)_ . . rwf;n:(l)m_'(t)“) vwf.m:(:)(’)
0, 0, |~ 0 . ,
0 0 0 |

{m, (1))
“s

(m, (1))

where R"f(') =R (t) and vwf_,,,(.r) = Vu,'m ).

(vi) Using back-substitution calculate the parameters 8;(t), i=l..m. (1), from
Ry, m, (1) which is the top-left triangular portion of the above matrix and Vu, i, 1)(1)

which contains the first m, (1) elements.

(vii) Compute the residual at the time instant ¢

m(1)

8=y = T 0008, ().
i=l

In the initialization of the GFSL algorithm ‘let all the elements in R, (0) and

Vu, . (0) equal a small positive number to prevent division by zero.

The sub-models which are generated at different time points may be different,
therefore, the candidate variables should be sufficient to describe the dynamics of the
system under test in a wide range of operation. Since the GFSL algorithm can select
significant regressors on-line it allows new candidate variables to be added or some
useless candidate variables to be removed on-line. These operations can be realized by
means of using some "empty" variables and modifying the dimension of the aug-
mented matrix in the computational process, just like the GFEX algorithm (Luo et al
1994).
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The range of the size of the window, w, can be wide and depends on the
knowledge about the system under investigation, e.g. the system dynamics, the selec-
tion of the sampling interval and the computational facilities. Roughly speaking, the
faster the system structure varies, the smaller w,. If the forgetting factor A is chosen

between 0.98 to 0.995 in exponential windowing algorithms for a system the asymptotic

memory length N, is 50 ~ 200 based on the concept of N, = —IT (Clarke and

1-

Gawthrop 1975). As a reference w; should be selected to be larger than 50 for the same
system. If the computations becomes unstable w, should typically be increased to pro-
vide more data in the window. This will be discussed in more detail later. Conversely
a large w;, can lead to smooth estimates but may produce large estimation deviations to
a sudden changes. If w, is very large and the values of the candidate variables are also
large a scaling procedure should be adopted to reduce the amplitude of the signals to
be processed and hence to avoid overflow in the computations which may arise
because this situation is similar to the computations of the GFEX algorithm with A=1.

6. Properties of the GFSL Algorithm

The sub-models produced by the GFSL algorithm are local models based on the
data window at specific time points. As old data are removed and new measurements
are added the sub-models change and the local windowing effect is relatively obvious.
However when the previous exponential windowing algorithm (GFEX) is used the data
in an observation window decay exponentially. The sub-models from the GFEX algo-
rithm therefore weight out the effect of old data and may better reflect the present sys-
tem state. )

The computation of adding a row using the Givens rotation method is numerically
stable, but the deletion procedures described in (3-11) and (3-16) are potentially desta-
bilising, even though there are no roundoff errors in the deletion process. For example,

in (3-16), ¢, u is computed from the square root of the difference between two

numbers and then used as a denominator to produce b, and b,. Since ¢, x and ¢*7)

are always stored in limited precision they cannot be recovered as in infinite precision
and hence the difference between them will not be exact. If the elements in the row to
be deleted are large so that ¢, « approaches zero, the deletion operation may cause
numerical instabilities. Such problems usually happen in circumstances where the size
of the window, w, is small but the amplitude of the signals to be processed changes
rapidly. Fortunately, most of applications with rectangular windowing methods use
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relatively large w, values.

The above deletion procedures involve m subtractions in computing the diagonal
elements of R, at every computational interval and the instability of the algorithm

may increase following the increase in the number of candidate variables. Golub and
Styan (1973) suggested a stable method for deleting a row which only involves one
subtraction in the computation for the diagonal elements of R, , but requires 9m?2

multiplications and 2m-1 square roots. Considering the computational cost and com-
plexity, it is better to use this method to process cases where roundoff errors are likely
to be serious. Although this method is efficient, the sliding window methods should
use relatively large windows and are best suited to systems where the difference of the
amplitude of signals is not very large. This is because the stability of the operation is
still limited by the'condition number of R, (). It is better to monitor the occurrence

of instabilities by measuring some important variables, e.g. ¢ g in (3-16).

In respect of the computational cost, it is difficult to give an exact comparison
between the GFSL algorithm and the off-line orthogonal algorithms when they are
applied in the rectangular windowing case, because the computational cost is always
associated with the structure detection. Roughly speaking, the larger w,, the more the
computational savings using the GFSL algorithm. For example, when 10 regressors are
selected from 20 candidate variables in a computational interval, the computational
cost of the GFSL algorithm will be lower than the off-line modified Gram-Schmidt
algorithm (Chen et al 1989) if w, >50. Compared with the exponential windowing
algorithm (GFEX) which only has the adding operation, the GFSL algorithm requires
more computation because of the deletion operation, but the cost is not very much
more than that of detecting system structure.

7. Numerical Results

The GFSL algorithm is suited to slowly time-varying systems and works best
with large windows. The results from two typical examples will be presented below to
illustrate this algorithm.

Experiment 1: a simulation system

This is a slowly time-varying system described as

0.5 z(t=1) + u(t-1) . 1-250 th point
0.4 (t=1) + u(t=1) + 0.05u*(1~1) 251 =500 th point
202103 20-1)+ 09u(1=1) + 007562(=1) 501 =750 th point

0.2 z(t=1) + 0.8u (1=1) + 0.1u>(r-1) 751 — 1000 th  point
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yt)=z(t)+e(t) .

In the test, the input signal u«(r) was an independent uniformly distributed sequence
with zero mean and variance 1.03, and the noise signal e(r) was Gaussian white with
zero mean and variance 0.01. The input and output signals are illustrated in Fig. 1.
1000 data generated by the above system were processed using the GFSL algorithm
with the initial specification n =n,=n=2, n=2, =001, w,=200. The sub-models at the
250, 500, 750 and 1000 th point are shown in Table 1. The predicted output and residuals
plotted in Fig.2 also show that the fitting is quite good. Since ; is usually unknown a
priori, it is possible to miss some regressors which make a very small contribution
when E, is larger than the optimal cutoff. See for example the case at the 500°th point
where u?(r-1) is missed. In contrast, a small & may lead to the appearance of
insignificant terms in a selected sub-model, e.g. y*¢-1) at the 900’th point (Fig.3d). But

such terms usually make a very small contribution to the output and emerge randomly.

Inspection of the residuals (Fig. 2b) shows that the errors always rise at the
beginning of every variation in the system structure and then reduce gradually. From
this the effect of the movement of the sliding window is evident. The curves of the
parameters look smooth and exhibit the change in the system structure and parameters.
When the contribution of u*-1) at the 500’th point increases this term is selected in
the sub-model.

The on-line validity tests with a sliding window (Appendix) shown in Fig. 4 pro-
vide the validity of the sub-models. The tests use the smoothed values of the means
with an average factor of 1.25 times the length w, and t=15. It is observed that p.()
rises in the interval between the 250 to 500°th point due to the missing of u?(t—1). There
are several large jumps in the plots of p ., and p ... Most of these appear in cases
when the data in the window Belong to more than one system'étructure. In such a case
the basic assumption in deriving the tests cannot be satisfied. This causes the results of
the tests to fluctuate locally. Nevertheless, most of the portions of the plots are within
the confidence intervals.

Experiment 2: a large pilot scale liquid level system

A description of this system is given by Billings and Voon (1986b). 1000 data are
used in the present experiment and the input and output are illustrated in Fig. 5.

A time-varying NARMAX model was fitted using the GFSL algorithm with
n,=n,=n=2, n,=2, £=0.0001 and w,=150. The number of candidate variables is 28. The
results are shown in Fig. 6, 7 and Table 2 and indicates that the estimator can track the
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1000
changes in the system. At the 1000°th point Y e(r) is 2468 and the sub-model only

=1
involves 6 terms. As a comparison, a global model is shown in Fig. 9, 10 and Table 3,
this was produced by the off-line classical Gram-Schmidt algorithm with the initial
parameters n,=n,=4, n=0, n;.;, AIC =4.0 (Akaike’s Information Criterion). The off-line

estimator selects 15 terms from 165 candidate variables and results in
1000
RSS=2.571(=Y &(r)). Although there is no large difference between two values at the last

1=l
point, the structure of the global model is more complex than that of the time-varying
model. The result of the global model shows that the first two terms, y(r-1) and u(s-1),
make large contributions to the output (totalling 98.65%). The result at the 1000th point
of the time-varying model shows that the same terms make a 97.65% contribution in the
last window. The curve of the estimated parameters (Fig. 7) illustrates that these two
terms are always selected in the sub-models over all time. The variance of the residu-
als o2 (2.404x107) can be compared with the result (2.571x107*) produced from the off-
line estimator. This also approaches the result (2.018x107%) produced from a recursive

prediction error parameter estimator in which the system structure has been determined
(Chen and Billings 1988).

Ignoring the instability at the initial stage the on-line validity tests shown in Fig.
8 suggest that the time-varying model is acceptable. It is also observed that the curves
of p» and p ... have several peaks. The fixed sub-models at these points may not be
reasonable due to changes in the system. Another reason could be related to the basic
assumption of the tests. For this, the analysis is similar to Experiment 1.

8. Conclusions

A recursive orthogonal gr algorithm based on a rectangular sliding window and
referred to as the GFSL algorithm has been derived. This algorithm uses a unity
weighting factor over a window of data and adaptively adjusts the model structure on-
line. In continuous computation a series of sub-models over a sliding window are
obtained and only a small amount of memory space is required. Compared with the
previous exponential windowing algorithm this new GFSL algorithm requires data
deletion at each step and this incurs additional computations. This small additional cost
has to be offset by the improved detection of changing model structure. When the size
of the sliding window is relatively large, the computational cost for updating the esti-
mates in a window is lower than that of the off-line orthogonal QR algorithms.
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The algorithm determines the contribution that the candidate variables make to
the output to determine which variables should be included in the final model before
the corresponding parameter estimates are updated. Since the information in an obser-
vation window is represented concisely in the augmented matrix, the completeness of
the regression information can ensure the correct determination of the system structure.
If the system structure does not change over time the resulting parameter estimates will
converge to the true values in the corresponding rectangular window.

Because the GFSL algorithm uses stable Givens rotations, the numerical perfor-
mance is similar to the exponential windowing algorithm in most applications. But
when the size of the window is relatively small and the signals change rapidly, the
data deletion procedures can sometimes cause numerical problems. The GFSL algo-
rithm is therefore more suited to slowly time-varying systems where the input-output
signals are relatively smooth and larger windows can be employed.

Acknowledgments

SAB gratefully acknowledges that part of this work was supported by SERC
under grant GR/H/35286.



- 3] .

Table 1: Experiment 1 (Simulation System, Time-Varying Model)

t=1

¥ (1) = 9.549729E +00

point terms 0 8 ERR
u(t-1) | 1.000000E+00 | 1.006801E+00 | 7.560013E-01

250 th | y(r-1) | 5.000000E-01 | 4.894617E-01 | 2.394044E-01
u?(t-1) none none ¥
u(t-1) | 1.000001E+00 | 1.008868E+00 | 8.194872E-01

500th | y(r-1) | 4.000001E-01 | 4.153543E-01 | 1.714760E-01
u*(t-1) | 5.000000E—02 none *
u(r=1) | 9.000001E-01 | 9.061748E-01 | 8.907980E-01

750 th | y(r—1) | 3.000001E-01 | 3.001955E-001 | 9.290199E-02
u*(t-1) | 7.500000E-02 | 7.536118E—02 | 1.055724E—02
u(t-1) | 8.000001E-01 | 7.926466E-01 | 9.280992E-01

1000 th | y(r=1) | 2.000001E-01 | 2.029505E-01 | 4.196139E-02
u*(t-1) | 1.O00000E-O1 | 9.237280E-02 | 2.203432E-02

t =1000 w, =200

&= 0.01 e'e/y’ y= 8.867051E-03

1000

ol = 9.267196E-03

Table 2: Experiment 2 (Liquid Level System, Time-Varying Model)

1000

1=l

Y €¥(1) = 2.467572E+00

ol = 2404027E-03

point term b ERR
y(t-1) 7.187055E-01 9.479078E -01
1000 u(t=1) 3.907416E-01 2.857187E-02
constant —4.657357E-02 3.893125E-03
u(t-2) -1.299308E-01 1.126658E —03
y(t-Nu(t-1) -2.027587E-01 6.353696E —04
y(1-2) 1.590202E-01 3.707633E-04
T = 1000 L = 150
E, = 0.0001 eTe/y’ y= 6.026616E ~03
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Table 3: Experiment 2 (Liquid Level System, Global Model, CGS)
term ) ERR St.Dev.
y(r-1) 7.085734E-01 | 9.679613E-01 | 3.556876E-02
u(t-1) 3.884508E-01 | 1.854159E-02 | 1.247766E-02
u(t-2) -8.500008E—02 | 3.367434E—-03 | 1.359262E-02
y@-1)y(-2)y(t-3) | -2.881762E-02 | 1.084866E-03 | 5.630327E-03
y(t=Du(t-1) -3.518114E-01 | 7.035443E-04 | 3.157156E-02
y(=Dy(t—4)u(t-2) | -2.742458E-01 | 1.069390E-03 | 4.316852E-02
y(1-2) 2.593803E-01 | 1.882639E-04 | 3.379767E-02
y(t-2)u(1-2) 3.137017E-01 | 2.081952E-04 | 5.555111E-02
y(t-2)u(t=3) ~1.969853E-01 | 1.245256E-04 | 5.406829E-02
y(t=Du(e=Du(t=2) | -1.887223E-01 | 1.159556E—04 | 3.118323E-02
y (t=2)u (1—4) 1421650E-01 | 1.026571E-04 | 2.761783E-02
yHr-1) -3.645250E-02 | 8.059901E-05 | 1.085798E-02
u’(t—4) —4.763843E-02 | 4.487067E-05 | 1.332959E-02
y-Dy(t—du(=3) | 1.335944E-01 | 3.938991E-05 | 3.223927E-02
yXr=u(r-1) 1.093884E-01 | 8.891241E-05 | 2.907003E-02
n = 1000 No. of terms = 165
criterion A/C=4.0 e efy’y = 6.278502E-03
RSS = 2.570706E +00 ol  =2.571030E-03
Appendix

On-line Model Validity Tests with Sliding Windows

Because the weighting factors are unity in the sliding window estimation the
choice of on-line model validity tests depends on the size of the window w,, the
dimension of memory space and the limit of computational time in every interval.
Assume that the maximum number of the lags to be used is t,.,,. When the latest
w;+Tmsx T€cords of inputs and residuals are available and the computational time avail-
able is sufficient, the off-line validity tests (Billings and Voon 1983, Billings and Voon
1986a) can be applied. If w; is relatively large and the memory requirements and com-
putational time for the off-line tests are excessive, the on-line validity tests for
exponential windowing algorithms (Luo et al 1994) may be considered. In such an
implementation, although the weighting factor A is unity in a observation window, the
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calculation for the forgetting factor m of the validity tests cannot use m = 1/(2-}),
because substituting A=1 into the above equation yields n=1 and hence the asymptotic
memory length N, (N, =n/(1-n)), which is equal to the window length, becomes
infinite. This is clearly not correct for the sliding window case because the number of
data sets in a sliding window is always finite. Therefore if the size of the window w,
can be designed as the asymptotic memory length N, the forgetting factor n can be

W
W;+1‘

time is limited but the memory space is sufficient to store the latest w;+Tm., records of
the input and residual, a set of on-line model validity tests with sliding windowing can
be developed. This represents a compromise between completeness of the validity tests
and complexity of the computation. The basic assumptions are that in a wide interval

determined using n = For example, when w;=100, n=0.99. If the computational

the means of the samples are close to zero and the means of the squares of samples do
not vary greatly. Such conditions often exist in cases where a large window is applied
to systems which vary slowly and smoothly.

Similar to the on-line validity tests for exponential windowing methods, a new set
of functions are defined by taking the average of the off-line correlation functions (Bil-
lings and Voon 1983, Billings and Voon 1986a), which are associated with finite lags
and the w; data samples up to time t and are given as

1 T
MWt) = — 3 W, (k.
Pus (Twy 1) T‘”Eo Ak wylt)

where 1 is the number of the lags and

|

Wanlkwit)=— 3% ali-k)b(i) .

Wi izt 41
When the observation window slides over the data the newest measurements can be
successively used in the tests and the oldest samples can be deleted from previously
formed windows. From the results of these tests, it is possible to observe whether the
fitted model is adequate or not in on-line identification. The normalized functions of
the five validity tests are given as (the subscript s denotes normalization)

Pes(Twit)  Pee, (TWi )

Pee, (Twy 1) = W Owt) Pee, (0w 1) (A-1)
pu E(T,W{ o ) pu!—:r (T.W{ 9r)
ue (T.W ,f) = = A-2
P el( I V,L[Juu (O'WI oA )\PEE(O-Wf A ) -\jpuuf(O,w, J )pa’(O.w, o ) ( )
PecesT Wi 1) Petew), (TW1.1)
pe(m),(Ta“’r J)=

: R s (A-3)
\/LPCHE(O‘HJ[ o )lymt (O,H’r [ ) Vpﬁ-ﬂr (O~‘W.' of )puur (O-WJ -I) %



where

< D=

P, :rg(T,Wi t) puz,er(‘t.w, +)

V\PHZIHE'(O:WI Jf )—q,ss(o‘wf o ) N VPRZ"JZr’ (Onwl 9’) pf_g'(o.w; ,!)

ﬁuz'c’(‘t'wi -I) =

P, 22T Wy 1) Puze (TW11)

b, 22, (Tw ) =

VY2, 20w 1) ¥ 200w, 1) VPuz,> Owit) Pever (Owy,t)

-1

Pes, (Twit) = (3 E(El) ) = ET—w))e(t—w,) + E(E)

i=t—w,

Bl oo —_— —_—
Pue, (TwWist) = (3 ugli)eli) ) = ux(t—wp)e(t—w;) + u(1)e(r)

l=l'-wl

-1
Pete), (Twid) = (3, D(i)eli) ) = D(1—wyye(t~wyy + D(1)e(r)

i=r—w|,

- R e
Pz (Twit) = ( 3, CHi)E(i) ) = Colt=wy)e(t—w;) + C1e(r)

i=r-wt

=1
Puzer Twil) = (X Coli)(€Xi)-25,()) ) = Cli—w ) €Xt—wy)-€2 (1=w)) )

i=l—w|,

+ CdN( et )-eX (1))

=1
Pee, Owt) = (X €Xi)) — e2(t-w)) + £2(r)

=r —WJ

=1
Pus, Oy ) = (3 u(i) ) — u(t=w) + u(t)

l=l—wl

(A-4)

(A-5)

=1
P, Qi) = (3 il ()Y ) = (uX—w)-iZ tmw) )+ (w22 () )

I=|'—Wi

-1
P Owit) = ( T (€D ) - (-w )LD ) + (X022 0) )

i=t=w;

—._LT " —.__1_1 w ——'.—__1_1 , "
£i) = v E)E(t k), ui)= THEOM(! k), D(i)= = EDE(I—I(—I)M(J‘-k—I)

1

w

— 1 & . — p i i
COr oy W01 & 0ene 3 W), Ei=t 3 )

1 1 =i+l U1 =imw+l]

The symbol T denotes the time average and the symbol ‘ denotes that the values have
had the mean removed.
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The nine instruments with the subscript r in Eqn. (A-1 - A-5) provide a measure
of the model validity for the recursive computation with a sliding window. The five
correlation functions involve nine recursive operations and twelve calculations for

means (&), u(i) D(i), C<(i), w? (i) and &, (i), i=t-wy, t). These average values can also

be computed recursively so the computational cost is reduced. For example, when w, is
relatively large, the calculation of ef.’(i) can be obtained using

(- 2
0 =een- ), 20
W L]
For cases where w, is a relatively small value the means should be replaced by the
smoothed values calculated over a length of 2 ™ 4 times w,. Typically t is usually 5 ~

20. Therefore, the implementation of these tests not only has low computational cost
but also requires small memory space.

Based on the results of the off-line model validity tests (Billings and Voon 1983,
Billings and Voon 1986a), the values of the functions Pee, (TWil)y  Pue,(Twit),
Petew), (TW 1)y P2, (Tw ) and P o (tw, ) all lie within the range from -1 to 1. If the
fitted model is adequate at time r, Pee, (TW 1) should be near zero and the other func-

tions should be zero. If the size of the window is large the standard deviation of the
correlation is 1/Yw, and the 95% confidence intervals are defined as approximately
+1.96/\w;.
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