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Frequency Response Functions for Nonlinear Rational Models

H. ZHANG, S.A. BILLINGS and Q.M. ZHU

Dept. of Automatic Control and Systems Engineering, University of Sheffield.

Abstract: A recursive algorithm which maps a general class of nonlinear rational model, defined
as the ratio of two polynomial functions, into the frequency domain is derived using the harmonic
expansion method. The new algorithm provides, for the first time, a direct analytic map from the
time domain rational model parameters to the higher order frequency response functions. Com-
plex nonlinear time domain behaviours can be analysed and interpreted in the frequency domain
and simulated examples are included to illustrate the concepts involved.

1. Introduction

Ever since Norbert Wiener applied the Volterra functional series to nonlinear system
analysis (Wiener, 1942; 1958), the Volterra/Wiener theory of nonlinear systems has
been extensively studied and has become well known to both scientists and engineers.
The theory characterises nonlinear systems using either the Volterra kemnels in the
time-domain or equivalently by a transformation of the Volterra kernels into the
frequency-domain. The latter are commonly called generalised frequency response
functions (GFRF) and represent obvious extensions to the well known linear frequency
response functions. The GFRF of a nonlinear system provides an intuitive representa-
tion of the frequency domain properties of the system and many nonlinear phenomena
can be studied using this approach. The initial development of these concepts was con-
ducted in the late 1960s and early 1970s (Brillinger and Rosenblatt, 1967; Bedrosian
and Rice, 1971; Bussgang, Ehrman and Graham, 1974) but progress was been hindered
by the difficulties of obtaining the GFRF for practical systems. The classical method of
estimation utilises multi-dimensional correlation or FFT techniques and has often been
limited by the complexity of multidimensional windowing and smoothing, the require-
ments for special inputs and very long record lengths(Schetzen, 1980; Vinh et al, 1988;
Kim and Powers, 1988).
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An alternative indirect approach is to estimate a time-domain model from the sampled
input-output data and then to use this model to derive the GFRF(Billings, Tsang and
Tomlinson, 1988). The model used for the identification is usually a polynomial NAR-
MAX or Nonlinear Auto-Regressive Moving Average with eXogeneous inputs model
(Leontaritis and Billings 1985). The main advantage of using a NARMAX model
instead of direct estimation based on the Volterra series is a large reduction in the
number of parameters and the length of data set required for identification. The non-
linear GFRF can then be computed by extending the ideas of the probing method to
derive the map from the NARMAX model to the GFRF’s. The probing method has
been used by several authors for simple examples (Bedrosian and Rice, 1971;
Bussgang, Ehrman and Graham, 1974; Chua and Ng, 1979a, 1979b) but the analysis
becomes awkward as the order of nonlinearity increases. Peyton-Jones and Bil-
lings(1989) extended these concepts and developed a recursive algorithm for comput-

ing the GFRF for the identified nonlinear polynomial models.

Two classes of NARMAX models have been widely studied, the polynomial NAR-
MAX model and the rational NARMAX model. The polynomial NARMAX model is
well known and can be estimated with relative ease. The rational NARMAX model,
which is expressed as a ratio of two polynomials, is much more different to estimate
but has better extrapolation properties and can approximate a much wider class of
severely nonlinear systems with only a small number of model parameters(Sontag,
1979; Billings and Chen, 1989; Billings and Zhu, 1991). Although the excellent
approximation properties of the rational model have been well known and exploited in
static function approximation for many years these results could not be extended to the
dynamic system case because of the inherent problems of noise and bias. These prob-
lems arise because of the denominator terms in the rational model and are not present
in numerator only expansions such as polynomial models. Recent work on the
development of new parameter estimation routines for the rational model have led to
the introduction of a new class of algorithms which can accommodate these
effects(Billings and Zhu, 1991; 1993; Zhu and Billings 1991; 1993). The restrictions
which currently limit frequency domain analysis to mildly nonlinear and polynomial
systems can therefore be lifted by studying the frequency domain properties of the

rational model.



In the present paper a recursive relationship is derived which provides a direct map
from the parameters of a time domain nonlinear rational model to the generalised fre-
quency response functions. This provides, for the first time, the opportunity to study
how complex nonlinear time domain effects are characterised in the frequency domain.
Generalised frequency response functions up to arbitrary order can be readily com-
puted for severely nonlinear systems. Because the resulting algorithm is essentially just
an algebraic relationship the structural form of the map is exposed and all the disad-
vantages of the classical FFT type algorithms such as multi-dimensional windowing
and smoothing, and excessive data lengths are avoided. The paper begins in Section 2
with definitions of the Volterra series and the associated GFRF. The general form of
the rational model is presented in Section 3. The harmonic expansion method for com-
puting the GFRF’s is formalized and investigated in Section 4 as the foundation for the
derivation of the recursive algorithm for computing the nth order GFRF in Section 5.

Simulated examples are given in Section 6.

2. Nonlinear System Representations in the Time and Frequency Domain

The classical input/output representation for nonlinear systems is based on the Volterra

functional series expansion(Volterra 1930)
y&) =Vu@®] =3 y,0 (1)
n=1

which relates the system output y(f) to the input u(f) by the nonlinear causal operator

V. The n-th order output of the system y,(r) is defined by

0= [ o [ b D Tl dy n>0 @
— =1

—

and A,(") is known as the nth order Volterra kernel. The kernel 4,(-) can be recognised
as a generalised impulse response function of order n with the linear case given when
n=1. The Volterra series has been extensively studied by numerous researchers over
many decades(Billings, 1980), but the most recent study has focused on the frequency

domain description which is defined in terms of the multiple Fourier transform of 4,(-)

H (o, - - jo,) = J e J' h (T, T, g ATt - HO,T) dt, - - - dt, (3)
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This alternative description is commonly called the nth order generalised frequency
response function(GFRF) or simply nth order transfer function(Zhang and Billings,
1992). Notice that (3) reduces to the standard linear transfer function H,(jw,) for the
case n=1. The importance of the higher order GFRF's has been realised since the early
1960s (Brillinger, 1965; Bedrosian and Rice, 1971) because of the role this plays in
the frequency domain analysis of nonlinear systems. Both h,() and H,()) provide
invariant descriptions and are independent of the excitation. Indeed, since the n-th
order impulse response h,() and n-th order transfer function H,(-) are Fourier
transform pairs eqn.(2) may also be written as

oo oo

= —— [ - [ HGoy, jo) TIUGw) dOF ™" da; ()
n)" . el i=1

where U(jw;) represents the input spectrum.

Observe that in eqn.(2) the nth order kernel A,() and hence associated transform H,()
are not unique in the sense that changing the order of the arguments may give different
kernels but will still yield the same output y,(1). For convenience of analysis it is com-
mon practice to define a symmetrised function by summing the asymmetric function

over all possible permutations of the arguments and dividing by the number to give

HSGo, jo) = = % Hey jon) 5)

n! :
* all permutations
of w - - ©,

This symmetric GFRF is then unique and independent of the order of the arguments.

3. The Nonlinear Rational Model and System Identification

In this paper we will consider a class of nonlinear discrete-time models which are
called nonlinear rational models. The whole class of nonlinear rational models can be

expressed in a general form as

Y, (5:6,.y,u)

"0 X0y ©

where Y (:8,y,u) and Y, (5:0,.y,u) are used to denote polynomials in the numerator



and denominator, respectively. These are defined as

< Mol m Ka 14 p+q
Y, (60, yw =YY X Ok Kprg) TTyG=kD) Il u(t—k,-)} Q)
m=1 kykp =1 =1 =p+1

and

My | m
Yb(raeb1Y’u) = E LE]
m=0

where M, and M, are the maximum degrees of nonlinearities, K, and K}, are the max-

Ky p ptq
E Bp,q(kli e ’kp-yq) Hy(rdki) n u(t_ki)] (8)
=1 ;

ki ko =1 i=p+1

imum lags in the input and output, a(-) and B(*) are the parameters associated with the
various terms in the two polynomials (corresponding to the parameter sets 8, and 6,

respectively), p+q = m; and

K K K
S =3 X
ki k=1 k=1 k=1

Notice that the lower limit on the first summation of Y, is zero, which implies a
nonzero constant term Boq may be included in the denominator. In the present analysis
a d.c. component or offset in the model expression is excluded from the the numerator

polynomial Y, on the assumption that the d.c component can be removed from the

data.

Consider a specific nonlinear rational model to illustrate the notation

1.94y(1=1) = 0.93y(t=2) + 0.0102(+=2) + 0.3u(t=3)
1 + 0.42y(-Du(t-=2) + 0.02y*(+-1)

y() =

This may be obtained from the general form (6) by setting the coefficients as
0g,(3) =0.3; aol) =194 o o(2) = —0.93; too(1,1) = 0.01;
Boo =15 By 1(1,2) =0.42; PBaol.D = 0.02; else 0, (), Bpg() =0

with K= 3, Ky= 2, M= My=2.

Nonlinear rational models provide compact representations of complex nonlinear
effects and are vastly superior to standard polynomial expansions. The simple rational

model

_ 1
YO = T3 -1y

-5-



for example provides an efficient representation of the complex polynomial representa-

tion
y@®O =1-u(-1)+ u(r—l)z— cee 4 M(f—l)b’— ‘o

which includes an infinite number of terms.

While the properties of the rational model have been recognised and exploited in static
function approximation dynamic rational model have been totally neglected until very
recently. The dynamic rational model can be identified by using either a prédjction

error algorithm(Billings and Chen, 1989) or an extended least squares routine(Billings
and Zhu, 1991).

4. Computing the Frequency Response Using the Harmonic Expansion Method

Consider a time-domain model M(-) which is expressed as
M6,y ,u)=0 ®)

where M(") is a functional of the input u, output y and 6 is the set of model parame-

ters. In the discrete-time case, u and y contain both the current and previous sampled

values so that
u= {u()u(t=1), - -}
y = ployi=1).- - - }

It is important to note here that the main assumption of previous analysis by Peyton-
Jones and Billings(1989) that there is an explicit y(f) term in the model expression (9)
is no longer necessary in the present study. In the model expression M(") all the out-
puts have been eliminated by substituting the Volterra functional representation (4) into

the expression to give
M(:0, H,u) =0 (10)

So that y is now replaced by the GFRF’s H = {H|,H,, - - - } in the equation. For some
special cases the H(-) may be obtained directly by manipulating equation (10) but for
most nonlinear systems this is not a realistic approach since equation (10) will be a

very complicated integral equation. However, for a wide class of nonlinear systems,

-5 -



the problem can be simplified by expanding the equation for some specialised input. In
the case of the harmonic expansion method the input is a sum of R complex exponen-
tials defined as

R .
u(t) = 3 & (11)
r=1
The spectrum for this input is
R
Ujw) = Y 2nd(jo—jo,) (12)
r=1

Applying the above input to the Volterra series representation (4) and performing the
integration, the output y(f) becomes

N R . . Jlo+ +0, )t
o =% X Hio, --Jjo,) € (13)
=l el
N i .
. . jlw, + +w, ¥
= 2 z Y  Ho, o Jo) e
n=1 all combinations all permutations

of R frequencies  of w, - - -,
laken n at a time

In order to find the n’th order GFRF H, (") it is convenient to consider the special case

=n so that there is only one non-repetitive combination of frequencies {w®,, . .. .}
among all the possibilities. In other words, the right hand side of the above equation
can be divided into two parts: a part containing distinct frequency combinatdons and a
part containing all the repetitive combinations. Clearly the H,(*) with non-repetitive but
different permutations of arguments will only appear in the first part. So that eqn. {13)

can be expressed as

-

-
Y Hoy, o, O
all permutations

N afml...m”

y([) — E — ) j(m’|+ G +m,"): (14)
r=1 Yy HYja,-Jju) é
all repetitious
Lcombinafions Anth order

If the symmetric GFRF is used all the H,(-) with different permutations of argument

will be the same and y(f) then becomes



1

Tt - o Ao
yn=2 ‘ ) j(@,+ ) (15)
=l Y o Jjo,) € " "

all repetitious

Lcambina! ions nth order

Substituting eqn.(11) and (13) into (10) yields the following harmonic expansion equa-
tion

M(r; 6, Hw,) =0 (16)
where @, implies {@;, " -~ ,wg)} (R=n for computing H,). M() will contain many
exponential terms but we are only interested in the term with non-repetitive frequen-

cies & +0.)X Because eqn.(16) holds for any ¢ and the arbitrarily chosen variables

(@, . . . @), the coefficient of @ ) ghould be zero. That is
EH[M(r;B, H,m,)] =0 (17}

where E€,[] is used to denote the operation of extracting the coefficient of

@)X Eor a given expression the operator € actually implies a two-step

operation: '

i). Substitute the harmonic input (11) and the corresponding Volterra expansion (13)
of the output y(f) into the given expression;

i) Extract the coefficient of @+ FO) from the resulting expression.

For example, €,[y(1) ] can readily be written as

o 24 HIS™(jay, -+ J®) or n! HYM(joy, * -+ JO,)
all permutations
of @ " W,
according to eqn.(15). All the GFRF’s, H,(") i=1,2,..., appearing in equation (17) have
non-repetitive arguments and they can be found by solving this equation without listing

all the terms.

In order to illustrate the use of the harmonic expansion method for obtaining the

GFRF’s from rational models, consider a simple example

_ au(t-2) + a,y(t=1)
YD = 5 51 + byy(-1)

(18)

-8 -



The above model can be re-written in the form M() = 0 as
ayu(t=2) + ay(t-1) - by (Ou(t=1) = by(O)y(=1) = 0 (19)

In order to find the GFRF up to 2nd order from the above time-domain model a two-

exponential input is used
u(t) = &' + & (20)

where ®; and @, are arbitrary frequencies. The system output in terms of the Volterra

model, up to 2nd order, can then be given from eqn (13) by
Jo Hay) = 20 HE™Goyjoy) &7+ HIT(0j0) 0+ HY" () €7
+ HyGoy & + Hyjoy) € @)

where all terms of order higher than two are ignored since they are not relevant when

just computing H, and H».

Substituting for the input u(f) and output y(f) in the model expression (19) using (20)
and (21) yields

al[ oD eim:(:—z)] " 02[2,_ Hom G ooy OHOHED 4 Hg G jay) 90D +
sm(jeaggans) €D + HyGoy) ¢ + Hi(Gw0) g - by +
J“’"-“’”]-[Z! H™ (o, joy) &€+ HE(j0jon) SO HY () €7 +
H,(jo,) ¢ + H\(o) e"‘”ﬂ‘] ~ b2[2! HE™ (o, o) €00+ HTT(jon) e +

HE™janjoy) 2% + HyGay) 7" + Hy (o) e"°’=’]- [25 Hg™ oy O+

(]

HE™ ooy jooy) €200 + HE(jop @) A0 g oy &0V + Hyion) e"“’f("”] =

Now both H,(-) and H, (") explicitly appear in the above harmonic expansion equation.
The first order frequency response function H () can therefore be obtained by equating
the coefficients of either ejm'{r) or /M 1o zero. The coefficient of eim‘(’), for instance,
is

_n; ' _
ale L + azHl(j(Dl)e P g 0



so that

. ar j
H(joy) = = —=¢ o (22)

The second order GFRF H,() can, in a similar way, be obtained by extracting the

coefficients of @+ and equating these to zero to yield
a2 H?"(joj0) e — p, [‘-’_jmlH (o) + €7H 10031)]

- by [H 1(]'031)3ij1H 1) + H lOmZ)Hl(jml)e-jml] =0

So that
H?m(jmhj(nz) = o) [blHl(ju)l)e_jm:+b LHLU(OZ)G_jm'
2 )
+ boH, (0 H (jo)e 7 + bZHIUml)HIUmE)e‘J"”'] (23)-
1

=g [blﬁl(fwne""" + by Hy ()@ + baH (0 H (0 + bzﬁlowomciwgef“*]

In order to evaluate the higher order GFRF’s H, (") the above procedure can be contin-
ued by applying more exponentials as the input and considering higher order terms in
the output. However, the work rapidly becomes unwieldy as the order increases, even

for this particularly simple example. Hence an easier and more efficient algorithm

needs to be developed.

The model class under consideration is the nonlinear rational model given by eqn (6).
Rewrite eqn.(6) as

M) = Y, (£0,5.y.14) — y(OY(50,.4) =0 (24)
Now the model expression M() becomes a polynomial in u(f), y(f) and the lagged
values u(t—k), y(t—k), k=0.1,2,.... The desired frequency response functions H, () for the

rational model can then be found by applying the operator €, to the model expression

M according to eqn.(17). In order to solve equation (17) it is important to investigate

some properties of the operator €, for this class of models.
Remark 1: M() may consist of many parts. All these parts may generate an

- 10 -



JOF T+ o The coefficient of the final @7 +0.) 1< the sum of the contribu-

tions from all these parts. This suggests that, for the rational model class at least, €.l

is a linear operator, that is

E,,[CIM[(-) + cM() ] = clﬁn[Ml(-)] % c:E,,[MZ(-) ] (25)

This is significant because the effect of each term in the time-domain model can there-

- D,
fore be considered as a seperate contribution to the term SOt .

Remark 2: It is known that M[-] consists of various polynomial terms. All these poly-

nomial terms can be divided into three types: pure inputs, pure outputs and

K
input/output Cross product terms which are generally expressed as TT ult=kp,

=1

K
TT y(—k) and ﬁ y(t=k;) l_i u(t—k;), respectively. The effect for each of these after

=1 =p+1

applying the operator €, is given by

Z e—j(m.k,+ Cee k) K=

all permutations

K Ofﬂ); T @D,
=1
Y, H, (o, JO,) K<n
all permutations
K of @ - W,
€, {H :V(t_ki)] = 0 K>n &)
=1

and

. X H{ﬁ (- k)} { u(t—k;-)} p+q<n
W aof,r;:n:nfxt-a:iam =p+1
{ﬁ y(t—=k;) ri u(r—k,)} 0 (28)

=p+1 L p+ 9>

where H, ,() denotes the contribution to the nth order €, by a p degree nonlinear term

iny. Thisis a recursive formula

n—p+1 :
Hap() = § HO™ (e, + + + JOIH i pey (@is * ** JOp) gHor ok (0g)

5 14, =



The recursion finishes with p=1 and H, (o, - "~ Jj®,) has the property
H, Gy, - Jo,) = H,(joy, - Jo,) FRBES +0,)k) (30)

A linear output term, for example, would produce a contribution

Sn[y(t—kl)] I T e ook gasym(jy, . . . JjOo,)
all permutations
Of Wy W,
= gt e sodhppemie, L 0

Eqgn’s (26), (27) and (28) can be obtained by replacing u(-) and y() with (11) and (13),
respectively, and then extracting the coefficient of A@* )N contained in the
expression. A more detailed analysis may be found in Peyton-Jones and Billings(1989).
All the above formula will be directly used to derive the GFREF for the nonlinear

rational models in Sec.5.
The following important conclusions follow from the expressions in Remark 2.

Remark 3: The terms with m’th degree of nonlinearity can not produce an
AL +0.) yorm with less than m (m>n) non-repetitive frequencies in the harmonic
expansion. In other words, the m’th nonlinearity in y(f) and u(r) can not contribute to
€,, n <m, although this will make a contribution (recursively) to all the higher €,

where n > m.

Remark 4: It follows from Remark 2 that among all the polynomial terms only the
linear output terms, that is y(r=ky) k,=0,1.2,...N, produce a term Ot ith
H, (") appearing as 2 coefficient. All the other terms can only produce terms with lower
order H,("), i<n, as the coefficients. Extracting all such terms out of M(") yields

K
En E Cl‘O(kl) y(t_kl) = —En[ Mm}ter(,) ] (31)

k=0

where ¢, o(ky) denotes the paramelers associated with the linear output terms in the

model. The left hand side takes the form

2 PP =



K . _
n! Efl.o(kﬂ e“}(fﬂl*' e,k Hiym(imp . Jmn)

k'|=1
or
: —j(wy+ -+ HO)ky prasymy; .
E ECI.O(kl) e Hﬂ (](01» © Jmn)
all permutations k=1
Of w w,

Now in the case of R=n H,(-) will only appear in the left hand side of the equation.
All the H,(") on the right hand side will be of lower order, i.e. i<n. Hence for the
rational model class the equation can be solved recursively starting with H(-) and
“incrementing to higher orders. This will be confirmed during the derivation of the next

section. This conclusion is also important for defining the conditions of existance of

the GFRF for nonlinear systems.

Remark 5: It is observed from Remark 2 that the contributions from all three types of

terms are in the form of an all-permutation-sum of the form >, . It will there-
all permutations
of w - - - @,

fore be convenient to define the symmetry of the operator €, as
asym
&l = > & [ (32)
all permutations
Of W) - W,
asym i . @+ -« -+ . :

where €, is the coefficient of any single ¢ term. Notice that there 1s also
a all-permutation-sum on the left hand side of eqn.(31) which contains H, () if the
asymmetric GFRF is used. Since HS™(-) is given by taking the average of any asym-
metric function over all poss:ibk: permutations of its arguments(see (5)), an asymmetric
GFRF HZ7?™(-) can be obtained by considering only the asymmetric coefficient of

ej(m‘-t- R’ 4 or

K T - .. . aS'Vm
Z Cl.o(k}) e"f((ﬂﬁ +W, k| H‘;S.‘fmoml, Ceejw,) = - En [Morher(_)]
k[=].

In this case the three types of polynomial terms yield

sl & Aok ok gy
Ss [H u(r—k,-)} = 0 o 33)
i=1

« |8 =



asym| K Hn,p(jmlv e Jmn) K<n
n {H y(r—k;)} = { 0 K> n (34)

=1

and

Ea:n {IEI y(r—k,-)]'ezw {pﬁ u(t—k.-)l p+qsn
i=1 i=p+1
[IE[ y(t—k;) ﬁ u(r—k)] 0 (35)

=p+l1 pre> n

5. Algorithm Derivation for the General Form of Rational Model
It should be possible to derive the frequency response functions H,(-) for the rational

model eqn (24) by applying the operator €,[-] to the model expression. This problem
can be simplified by dividing all the monomials of the two polynomials of the rational
model into three parts, a part consisting of pure input nonlinearities, a part consisting
of pure output nonlinearities and a part generated from input/output cross-product-type

nonlinearities, such that

Y,(r, 8, yu) = Y, (n0,w) + Y8, + Y5 0,y, y.0)

Yb(n ea Y':u)

1

Yo (t; 0, u) + Yu(5 0, y) + Y, (15 0,y Y1)

The model (24) is then split out into many parts. Because the €, is a linear operator
each part can be considered seperately and then the results can be combined together

as

£ [ Boo ) - ¥ ) | =7 [verr | -

e bV, w] - € bov,eo. ] - & poviee,, ] 69

The evaluation of each of the individual terms in eqn. (36) is considered as follows.

- 14 -



5.1. Linear output terms [ﬁo,oy(:) - Yﬁ”e“’(°)]

This sub-class of terms, which contains only the linear output terms corresponds to
p=1, g=0 in Y, and the constant term in Yy, is the simpliest part in the model expres-
sion. These terms are of the form y(r—k;) with k;=0,1,....K,. When the Volterra expan-
sion (13), or more intuitively (15), is substituted for y(r) the discrete time lags k; do

not alter the term /(@ " ¥o!

but only the coefficients of exponential term. Hence
the contribution from the linear output terms can readily be written as

m 5. Kc .
€, [Bo.oy<r>-Yﬁ“°’(->] = [Bo.o— 3, 01y olky) €7k ]Hﬁmoml,...Jmn) (37)
k

=1

5.2. Other terms in YJ""(")

Using the results of Remark 2 the contributions from all the other terms in the numera-
tor polynomial of eqn.(6) can easily be derived according to the type of the terms. The
only thing to mension is that, for each term type (pure input, pure output and cross-

product) there may exist a number of terms of the same type, although it is a simple

matter to add them together, again, because of the linearity of €.

The contribution of pure input numerator nonlinear terms

M, K, q

Y, (0,u)= Y Y, Ogqlky, - - - k) TTul=kp) (38)
= =1

m=g=1 k.k=1

to the harmonic expansion equation is simply

asym K —j(w ky +..4 ©,k,)
e, [Ya(t;ﬂu, u)] = ¥ Ogulkp ke T (39)
ki k=1

Thus a pure n-th order term in u(r) contributes only to the n-th order operator €,

The pure output numerator nonlinear terms are given by

Mn Kﬂ' p
Y0, = Y 3 ool k) Tk (40)
=1

m=p=1 kj.h=1

and the combined contribution from all such terms is
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asym

n K
8)1 [Ya(rveyl Y)] = E E ap‘O(klv e 1kp) Hn‘p(jmh T Jmn) (41)

=1 k.k=1

where the recursive formula H,,(-) is given by (29). Also notice that the uppermost

limit on the first summation has been reduced from M to n since an(-) =0 forp > n.

The largest sub-class of polynomial terms which contains only pure cross product

terms corresponds to p=0,g#0, in equation (7), giving

M, m—] K,
Y (50, yu) = X 3 X 0k Kpy) IE[)’ (¢=k) ﬁ Himk) (#)
m=l p=l kikpe=l i=1 =p+l

Eqn.(28) in Remark 2 suggests that the contribution from the cross-product terms can
be obtained by multiplying the ¢’th order contribution from the pure u(f) component

with the (recursive) (n—g)’th order contribution from the pure y(f) component within

the major summator. That is

asym

€, [Ya(t:euy, y,U)] = (43)

n-1 n—q K, .
= FErE —‘j(ﬂ),._ lkpc-]+"-+mnk ) : e o e
E E Z‘ anq(Ll’ ’kP"'q) e T = Hn—qp(]mb Jc’)n—q)
=1 p=l k.k=1
where the exponential factor relates to the input part of the nonlinearity and the recur-
sive factor H,_, () to the output part. Notice that the upper limits on the summations

have been lowered as before because €,[-] =0 for m = p+q > n, and H,,,(’) is gen-

erated using the recursive relation (29).

5.3. Denominator output terms E:S'vm I:y(f)Yb(r;By, y)]

The full class of denominator output terms can be expressed as

M, K,
YOY(0,Ho) =3 T 3 Bpolky -+ k) Ty
i=1

m=p=1 kK=l
M, K, P
= 2 Y, Bpotky, « - o k) YO Ty(=kp (44)
m=p=1  k,k=1 =1

These can be treated just as the (p+1) degree pure output terms in Remark 2. The
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contribution from each individual term will be

HE™ () = 3 HE oy, - -+ O o @iy © * * ) €O OV (45)

i=1

where the (p+1)’th lag of y(?), kpﬂ, is zero. The above formulae can also be written

seperately in order to avoid notational confusion
HIME) = 3 HE™(aoy, - JopHi (i, *  * J05) (46)
=1

where H,, () is given by eqn (29). The contribution from this whole sub-class of terms

is therefore given as

m n—1 K,
E:W [)’(f)Yb(ﬁeya Y)] = X Y Bpotky - -+ kp) Hy g1 (05 + J@)
m=p=1 kK=

n—1 K, n— i ) . .
= Z E Bp.O(kl’ T ’kp) f H?.rym(]ml‘ e J(Di)Hn-x'pUmx'+l’ e J,) (47)
mep=l k=l p=r

where the upper most limit on the first summation has been reduced from M, to (n—1)

since H,, ,,1(")=0 for p>n-1.

5.4. Denominator input terms €, [y(r)Yb(r;eu, u)]

These type of terms can be expressed as

My K, q
y(OY,(1:8,,H,®,) = y(1) X Y Boglky, -+ kg TTuG=k)
=1

m=g=1 k.k=1

M, K,
= T Y Byl - k) YOT TuG—) (48)
=1

m=gq=1 k.k=1

The contribution to €,[-] by these terms must be made jointly by y(¢) and the ¢ degree

nonlinear terms in u(¢). Thus the contribution from each individual term is given by
4 kit - - . .
ﬁD.q(kl ’’’’’ kq)e (W gur kit +m"kq}Hn—q.1(jml""Jmn—q) —
- kit - - Lk ; .
Boy(kprrik e 7 Omemtbit ORI (o, )

and the combined contribution from this sub-class of terms will be
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1

E:sym [y(r)Yb(r; 0., u)] =5 E Bo(kinkp)e Okt 0, kq)Hn_q(jml,...J(o,,_q) (49)
a=1 k,.k,,—lb

5.5. Denominator cross-product terms E:S'vm [y(r)Y,,(na,,,, Y,“)]

The general form for these type of terms is

My m-1 K,
YOYy(t8 Hoyw = 3 8 3 Brglk -+ dipng) y(r)ﬁy(r—k) ﬁu(r~k> (50)

Again the gth degree pure input part can only produce g nonrepetitive frequency com-

binations from {®;,...,0,), the remaining part required to generate the term

POF AN provided by the (p+1) degree terms in y(#). Hence

€, [y(t)Yb(r;Buy, y,u)] -

n—l n
- S : :

E Z Bp q(kla o p+q) € gl R P)Hn-qﬁ](]wl""t]mn—q) (51)

=l p=l kkp=l

where the lag associated with y(f) should be zero. Following the analysis in section

5.3, H, 4+ () can be written seperately as
n—g-p . . ) .
Hm ,p+]() f H?Sym(j(ol' s Jmi)Hn-—q—-".p(I(DH—l’ e J(Dn-q) (52)

where H, ,(-) is given by eqn.(29).

5.6. The final recursive algorithm

All the component parts of eqn.(36) have now been individually evaluated. Substitut-
ing all these, eqn’s ((37), (39), (41), (43), (47), (49) and (51), into eqn (36) gives the
final expression for the GFRF of the rational model eqn (6) as

K, . o
ﬁo,o _ Zal,o(kl) e'J(mr" +W,)k H.?lrym(jwl’ e J@,) =
k|=1

X —j(wky + 0+ 0uk)
+ 3 ogulky, k) et 2
khk,:i
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n Ka
+ Z Z ap.O(kl’ T 'kp) Hn_p(jml’ T J[’Jn)
=2 kyk=1

=1 Ka §
(D p gt Ko+t WK ; ;
+ E ’E E ap.q(kl' T ’kp+q) e F(Qngrikpe+et @ peq) Hn—q.p(-’ml‘ G Jmn—q)

=1 =1 kky =1

n—1 K,

(@ g1 K 0,K . L
i E{ ) kE lﬂﬂ.q(kl’ bl ,kq)e J(@Wpger kit t @ )Hn*q(]ml! J(Dn—q)
= 1K=

n-1 K, n— ) . ) )
- Z E ﬁ .O(kl’""kp) i H?‘n‘m(’ml’"'JO)J‘)Hrr—i.pUmHl’“-Jmn)
p

m=p=1 kk=1 =1

1 1 K ;
ST T B Buall g O A
: A q
=l p=1  kk.~L

o . . .
X HEPM(jy, - - JOPH o, (01, * * * J0pg)

=1

where from eqn (29)

n—p+1 asvmy . ' ' i
Hn.p(') = E Hf ’ Oml’ e J(Ur')Hn—i,p—l(/miH’ T Jmn) e

=1

(53)

Notice that eqn (53) yields the asymmetric GFRF. It is a simple matter to obtain a

unique symmetric GFRF by applying the relation

— ; 1 ' .
HYGoy, - o) = — X HPGoy, - o))
e aun permutations

of iy - @,

as described in Section 2.

(54)

Now we can re-derive H,(-) and H,(-) for the simple example eqn (19) using the recur-

sive formulae (53). For the case n=1

~2j ; ay _;
/N = H(jop) = - —e7™
as

p —jw
—a,H (jo)e ™ = ae

For the case n=2
—a,e T DI o, ) = —baHa 2(j0j@y) — bie V" Hy y(jooy)

= —boH, (joH (jeo) — byHy(joy)e ™
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so that
. 1 . ’ . -
H37"(joyjw,) = 'a—[bzﬁj(lmx)HlUm‘?) - biH,(jwy)e sz]
2
After symmetrisation

HY"(jo,jos) = ‘2'(11—1 [blHl(i(Dl)f-’jm' L 2

byH ()¢ + by (o) Hy (e + szlcioniowz)e’"’“]

These are identical to the results derived by hand in Section 4 (see eqn’s (22) and

(23)).

Because all the terms in the numerator and denominator appear seperately in egn (53)
the evaluation of the GFRF’s is relatively straightforward and not as complicated as
the general expression suggests. Eqn (53) can be used both to evaluate numerical
values for the GFRF's or to derive general analytical expressions for the frequency

response functions for given rational model systems.

Inspection of eqn. (53) shows that the denominator, or the poles, of the frequency
response are determined by the linear output terms in the numerator and the constant
term in the denominator of the rational model. Therefore for the system egn (6) to
generate transfer functions there must exist at least one non-zero linear output term in
the numerator, or there must be a non-zero constant term in the denominator. The
zeros, the numerator of the first order (linear) frequency response function H,(jw) is
dependent only on the pure linear input terms in the numerator polynomial ¥,(*) of the
rational model. Hence it is quite straitghforward to write H,(j®) by inspection from the

model as

K. .
3 o (ke
k=1

Hy(jw) = = (55)

Boo— 2 ‘flw(f’fi)f—’-jmki
k=1

Finally it is interesting to note that the GFRF for the standard polynomial model is just

a special case of eqn (53) given by setting Y,(-)=1 in eqn (6) to yield
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K, ;
) I E al.O(kl) e‘J(mﬁ’ Ttk H:S_vm(jmb e Jmn) =
kl=1

K, ] '
+ 2 G'O,n(kl' §5 vkn) e‘]((lhkl + o+ k)

ky k=1
n K,
& Z Z ap.O(kl’ e *kp) Hn,p(jmlv ce o JO,) (56)
p=2 k=1
=1 n-q K (gt ey ot Do) . .
+ E E Z ap,q(kl’ Ce . ’kP'HJ) e g+l Fpe Prq Hn—q.pomlv i Jmn—q)

=l p=1 kpk, =l

6. Example

As an example consider the following modified Van-der-Pol equation,
Dy()) + 24w, (1 = Y0 Dy(t) + wy(d-u(®) = 0 (57)

The nonlinearity in this system is induced by the damping term so that for small dis-
placements the damping is positive (limiting), and for large displacements the damping
is negative (self-exciting). Thus the system has a stable node at the origin, with a
domain of attraction which lies within the (unstable) limit cycle. Evaluating the GFRF
directly from eqn (57) using the relationship for continuous-time polynomial nonlinear
differential equations given by Billings and Peyton-Jones(1990), the first order fre-

quency response which depends only on the linear terms

1

H.( —
U= G e e + (0P

(58)

The gain and phase of H (") are plotted in Figure 1(a) and (b) with the values {=0.01
and @, = 45n. The linear frequency response exhibits a resonant peak at a frequency
of 22.5Hz.

The nonlinear damping term of eqn (57) however generates frequency response func-

tions for orders 3 and higher(note that H,=0). In the third order case

20w, y (o +Hwy+ws) H(jo)H(jw)H (jws;)

Hiy(jwjaj03) =
30, 3 @2 + 200, (0, H@rHW3) + (O H®yHw;)2

(59)



which is illustrated in Figures 2(a) and (b) by fixing w;=0,.

Now consider the effects of converting eqn (57) into a discrete-time expression using

the backward difference scheme

dy(®) _ Y = y(=1)

dt h (€0)
and
dy(n _ YO -y _ y0) = 2y(t=1) + y(=2) 61
dr h h?

where & is the sampling period and all the indices f on the right hand side of the eqn’s
(60) and (61) are discrete time intervals. Substituting eqn (60) and (61) into the
continuous-time Van-der-Pol equation (57) yields

LV([) - 2)’0—1) + V(f—z)] 4 2{_'&) (y(r)?_ _ 1)
h? "

[v(®) —hy(t-l)l + 0y(O)-u@) = 0(62)

Rearranging gives

ot o(Ly(r=1) + 0 o(2)y(1=2) + 0t 1 (O)u(?)
o = A 63)
Bog + B2.0(0.,0)y(1) + Ba o(1,0)y(+—1)¥(#)

with
o o(1) = 2+28w,h; 92 =-1; 0t 1(0) = h%;
Boo = 1402k 25w, Bag(0.0) = 20w,k Bag(1.0) = —28w,h;

Eqn (63) is a typical nonlinear rational model expression which can be considered as a
discrete-time approximation for the Van-der-Pol equation. Although there may be
better ways of discretising the Van-der-Pol equation the approximation of Eqn (63)
allows us to verify the expression for the GFRF of rational models by comparing the

results obtained with the exact expression given by eqn’s (60) and (61).

The first order (linear) frequency response obtained from eqn (33) is

0,1 (0)

H(jw) = . .
: Boo — &y o(1)e7® — o o(2)e™®

h?.
) ' ' 64
1+w2h2-2Lw h—(2+20 @, h)e 7@ + =40 (64)
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As expected there is no nonlinear coefficient in H;. The second order GFRF is zero
because when n=2 there are no terms which make a contribution to the right hand side
of eqn (53). This is in agreement with the original system. For the third order case,
eqn (53) yields

[Bo.o — 0y (D7) al,o(z)e“lf"“’“’“’**“’“)]melJm:ng =

= Ba,0(0,0)H3 3(j@j2,jtd3) — B o(1,0)H3 3(j1Jj@2,j003) (65)

The contributions from the two pure output terms By D(O,O)y"'(r) and B, o(1,0)y(t-=1)y(5)

in the denominator of the model egn (63) are given by the recursive relation (29) as
B1.0(0,0)Hs 3@, jeajevs) = B o(0.0)H, (@) H  (j0)H 1(j03)
and
Ba.o(1,0)H3 3(jed1 Jj®2@3) = B o(1.0)H, (jo)H 2.3(1'032J033)€-jm'
= B o(LOYH, G H on)H g™
= Bao(LOH o) H H, g)e ™™
After applying the symmetrisation by (5), the symmetric GFRF is obtained as

[(B2.0(0.0) + Bao(1,0)(€7 ™ +e 7 +e ) 31H, (jw ) H (jwg)Hy (jas)

H?m(-) = i(0)+WA+0)5) —2 (W +W+HD3)
Boo — 0y o(1)e 7Y — g o(2)e” T

o (7 +e 731 H (o DH (i) H 1 (j03) (66
) 1+m2hz-—2Cmnh — (2L ke OOy Oz :

Both Hl eqn (64) and H; eqn (66) are plotted, in terms of gain and phase, in Fig.3, 4,
5 and 6 for the sampling frcquenc1es F=1/h'= 1k and 10k Hz, respectively. Compar-
ing these plots with the true frcqusncy responses of the original system Fig.1 and Fig
2 shows that the discrete estimates are converging to the correct GFRF as the sampling
frequency increases. Ideally the frequency response of the discrete-time model, eqn
(63), should be the same as that of the original system provided the discretisation is

adequate and the sampling frequency is small enough.

In this example the analysis was only evaluated up to the third order but the recursive

algorithm eqn (53) places no reswriction on the order of the computed frequency
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response. A comparison with the original Van-der-Pol equation clearly demonstrates

that the expression for GFRF of nonlinear rational models is correct.

7. Conclusions

An algebraic expression for the generalised frequency response functions for a large
class of severely nonlinear systems has been derived from an identified time-domain
rational model. This expression enables the frequency response behaviour to be related
to the structure and parameters of the corresponding time-domain model. The fre-
quency response functions exhibit invariant characteristics of the underlying system,
regardless of the form of time-domain model, and it should therefore be possible to
re-construct nonlinear differential equation models for practical systems from an

identified discrete-time model.

Combining the parameter estimation techniques with the new frequency response func-
tion algorithm for rational models provides a powerful procedure for analysing a large

class of severely nonlinear systems.
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Fig.1 H | for the original system: (a) Gain, (b) Phase.
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Fig.5 H  for the rational model with sampling frequency 10k Hz:
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