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Directed Depth-Based Complexity Traces of
Hypergraphs from Directed Line Graphs

Lu Bai and Edwin R. Hancock
Department of Computer Science
University of York
York, YO10 5DD, United Kingdom

Abstract—In this paper, we aim to characterize hypergraphs
in terms of structural complexities. To measure the complexity
of a hypergraph in a straightforward way, we transform a
hypergraph into a line graph which accurately reflects the
multiple relationships exhibited by the hypergraph. To locate the
dominant substructure within a line graph, we identify a centroid
vertex by computing the minimum variance of its shortest path
lengths. A family of directed centroid expansion subgraphs of the
line graph is then derived from the centroid vertex. We compute
the directed depth-based complexity trace of a hypergraph by
measuring directed entropies on its directed subgraphs. The novel
hypergraph complexity trace provides a flexible framework that
can be applied to both hypergraphs and graphs. Experiments
on standard (hyper)graph datasets demonstrate the effectiveness
and efficiency of the new complexity trace.

I. INTRODUCTION

There has recently been an increasing interest in the use of
hypergraph models for higher order learning. A hypergraph is
a generalization of a graph. Unlike the pairwise nature of edges
in a graph, hypergraph representations allow a hyperedge to
encompass an arbitrary number of vertices, and can hence cap-
ture multiple relationships among features. To exploit existing
graph based methods for learning higher order models, Agar-
wal et al. [1] have performed hypergraph clustering by parti-
tioning a weighted graph obtained by transforming the original
hypergraph using a weighted sum of hyperedges to form edges.
Wachman et al. [2] have developed a hypergraph kernel by
enumerating similar walks on two hypergraphs. Zass et al.[3]
and Duchenne et al.[4] have separately applied high-degree
affinity arrays (i.e. tensors) to formulate hypergraph matching
problems using different cost functions. Both methods address
the matching process in an algebraic manner but become
intractable to compute if the hyperedges are not suitably sam-
pled. Shashua et al. [5], [6] have performed visual clustering
using tensors to represent uniform hypergraphs (i.e. those
for which the hyperedges have identical cardinality) extracted
from images and videos. Their work has been complemented
by He et al’s [7] algorithm for detecting number of clusters
in a tensor-based framework. Similar methods include those
described in [8], [9], [10], [11], [12], in which tensors (uniform
hypergraphs) are used to represent the multiple relationships
between objects. One limitation of most existing methods for
hypergraph characterization is that they are usually restricted to
uniform structures and cannot be applied to hypergraphs with
arbitrary relational orders. To address this shortcoming, Ren et
al. [13] have exploited a set of polynomial coefficients obtained
from the hypergraph Ihara zeta function for characterizing
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nonuniform hypergraphs. Unfortunately, the computation of
the hypergraph lhara coefficients tends to be computational
burdensome.

To overcome the limitations of existing methods for hy-
pergraph analysis, we present a novel framework for charac-
terizing hypergraphs based on computing complexity traces as
a function of depth. This is effected by constructing a depth-
based representation of a hypergraph obtained from its directed
line graph. Depth-based representations of undirected graph
structures are powerful tools of characterizing their topological
structures [14], [15]. One approach is to gauge the information
content flow through a family of K layer expansion subgraphs
of a graph, these increasing K layer subgraphs can be located
around a vertex having a maximum topology distance K.
By measuring the heat flow complexity of each subgraph,
Escolano et al. [15] have shown how to use this approach to
characterize each casual trajectory of a graph leading a vertex
to the graph by using the minimal enclosing Bregman balls
(MEBBs). Then the thermodynamic based depth complexity
of such a graph relies on the variability of the different
trajectories from each vertex to the graph. Unfortunately, this
method establishes expansion subgraphs around each vertex
and then measures the inefficient intrinsic complexity measure
on each subgraph. As a result, the thermodynamic based
depth complexity measure can not be efficiently computed.
To overcome this shortcoming, Bai and Hancock [16], [17],
[18] have developed a fast depth-based complexity trace for
a graph. They decompose a graph into a family of centroid
expansion subgraphs around a centroid vertex having a shortest
path length K, the resulting complexity trace is computed
by measuring entropies on the expansion subgraphs. Since
the depth-based complexity traces can efficiently compute the
entropy based complexity measures on a small set of expansion
subgraphs rooted at the centroid vertex, this method can be
computed in polynomial time.

Unfortunately, straightforwardly computing the complexity
trace of a hypergraph tends to be elusive since a hyper-
graph may exhibit various relational orders. Therefore, to
construct a depth-based complexity trace for a hypergraph
which can precisely capture hypergraph structural information,
we consider transforming a hypergraph into a directed line
graph using the Perron-Frobenius operator [13]. The Perron-
Frobenius operator can represent both uniform or nonuniform
hypergraphs characteristics and can also accurately reflect the
multiple relationships exhibited by hypergraphs. Hence, the
directed line graph representation for a hypergraph provides a



convenient framework for complexity analysis.

We develop a new directed depth-based complexity trace
for hypergraphs. For a hypergraph, we commence by trans-
forming the hypergraph into a directed line graph. We establish
a family of directed expansion subgraphs around a centroid
vertex derived from the directed line graph. The directed
complexity trace of the hypergraph is computed by measuring
the directed von Neumann entropy on the family of directed
expansion subgraphs. Our new hypergraph complexity trace
method provides a flexible framework that can be applied to
both hypergraphs and graphs. We perform experiments on sev-
eral bioinformatics and computer vision datasets. We empiri-
cally demonstrate that our hypergraph complexity trace method
not only readily accommodates nonuniform hypergraphs but
also easily scales to large hypergraphs. The performance of
our framework is competitive with complexity based graph
methods and other hypergraph based methods in the literature.

II. DIRECTED LINE GRAPHS

A hypergraph is wusually denoted by a pair set
HG(Vy, Ey) where Vi is a set of vertices and Ep is a
set of non-empty subsets of Vy called hyperedges. To obtain
the complexity traces of a hypergraph, we first describe how
to establish a directed line graph for a hypergraph using
the Perron-Frobenius operator [19], [13]. The reasons for
using this graph representation for a hypergraph are twofold.
First, pairwise-order representations for hypergraphs enable the
graph based complexity analysis to be applied to hypergraphs.
Second, the directed line graph avoids the order ambiguities
that arises from the straightforward expansion-based or clique-
based graph representations of a hypergraph [13].

Furthermore, we also give the definition of measuring the
von Neumann entropy on directed (sub)graphs.

A. Directed Line Graph

The clique expansion graph GH (V, E) for a hypergraph
HG(Vy,Ey) can be obtained by connecting each pair of
vertices in e; through an edge for each hyperedge e¢; € Fy,
and the vertex and edge sets are

{ Vo = Vi

Eq = {(ua U) ce; | e; € EH}. M

It is important to stress that there are potential multiple edges
between two vertices in GH(Vg, Eg) if the two vertices
are encompassed by more than one common hyperedge in
HG(Vy, Ey). Suppose there are p hyperedges encompassing
two vertices in HG(Vy, Eg). The p hyperedges induce p
edges separately between the two vertices in GH (Vig, Eg).

For GH(Vg,Eg), the associated symmetric digraph
DGH Vg, E4) can be obtained by replacing each edge of
GH (Vg, Eg) by a directed edge pair in which the two directed
edge are inverse to each other. Finally, the directed line
graph Gp(Vp, E p) of the hypergraph HG(Vy, Ey) can be
established based on the symmetric digraph DGH (V, Eg).
The vertex set Vp and edge set E p of the directed line graph
GD(VD7§D) are defined as

{ Vp = Eg;

Ep={(uo), (vyw); € Bax Bq|i#j}. @

where the subscripts ¢ and j denote the indices of the hy-
peredges from which the directed edges (u,v) and (v,w)
are induced respectively. It is important to stress that unlike
the edge set E of an undirect graph G(V,E), Ep is a
set of directed edges of the directed graph Gp(Vp, Ep).
The adjacency matrix Ty of Gp(Vp, Ep) is the Perron-
Frobenius operator of the original hypergraph. For the (i, j)th
entry of Ty, Ty (i,j) is 1 if there is one edge directed from
the vertex ¢ to the vertex j in the directed line graph, and
otherwise it is 0. Unlike the adjacency matrix of an undirected
graph, the Perron-Frobenius operator for a hypergraph is not
a symmetric matrix. This is because the constraint in Eq.(2)
arises in the construction of directed edges. Specifically, any
two directed edges induced by the same hyperedge in the
original hypergraph are not allowed to establish a directed edge
in the directed line graph.

B. Theoretical Properties

Based on [13], [20], the directed line graph and its Perron-
Frobenius operator for a hypergraph have several interesting
properties. These properties include: a) the directed line graph
accurately captures the multiple relationships with arbitrary
relational orders such that it can be used to characterize
either uniform or nonuniform hypergraphs, b) comparing to
the (hyper)graph adjacency or Laplacian matrix, the Perron-
Frobenius operator spans a higher dimensional feature space
where it may expose richer (hyper)graph characteristics, and
c) the directed line graph represents a (hyper)graph in a
complete manner such that it naturally avoids the information
loss arising in the spectral truncation [9] or the clique graph
approximation [21]. As a result, the direct line graph and its
Perron-Frobenius operator can offer us an elegant way for
hypergraph complexity analysis which can not only capture
precise hypergraph complexity information but can also reflect
richer characteristics of hypergraphs.

Time Complexity: The transformation from the hypergraph

HG(Vy, Ey) into the directed line graph Gp(Vp, E D) re-

quires O(|Vpl|?) operations, because it relies on the \EdJ

edges of DGH (Vg, E4) and needs to establish the |Vp|

(IVp] :%Ed\) pairs of entries in the adjacency matrix of
D)

Gp(Vp, O

C. Von Neumann Entropy of Directed Graphs

In our study, we require an entropy measure on directed
(sub)graphs. We consider to use the approximated directed von
Neumann entropy defined in our previous work [22]. Suppose

Gp(Vp, E'p) is a directed graph with vertex set Vp and edge

set Ep C Vp x Vp, then the structure of this graph can be
represented by a |Vp| x |Vp| adjacency matrix A as follows
(where |V| is the number of vertices in the graph)

o1 ifG,j) e Ep
A = ’ 3

p(i:7) { 0  otherwise. )
The in-degree and out-degree of vertex vp.; are

Vb Vb

din (i) = _Z Ap(5,1),  dout(j) = Z Ap(i,§). @)



We can approximate the von Neumann entropy of a directed
graph (a strongly directed graph) in terms of the in-degree and

Out'degree Of the \/ertices as
{ }

&)

The approximated directed von Neumann entropy H{X
contains two terms. The first is the graph size while the second
one depends on the in-degree and out-degree statistics of each
pair of vertices linked by an edge. Moreover, the computational
complexity of these expressions is quadratic in the graph size.

1 1
HSD -1 — -
vy Vol 2IVp|* 2

vp;i,vp;j)EED

Time Complexity: For the directed graph Gp(Vp, Ep), com-
puting the directed von Neumann entropy H 5% (Gp) requires
O(|Vp|?) operations, because it needs to visit all the |Vp|*
pairs of entries in Ap to compute the in-degree and out-degree
of each vertex. o

III. CENTROID EXPANSION SUBGRAPHS

In this section, we give the definition of computing the
hypergraph depth-based complexity traces from the directed
line graphs. We commence by introducing the directed centroid
expansion subgraphs of a hypergraph. Then we develop a di-
rected hypergraph depth-based complexity trace by measuring
how the directed von Neumann entropies vary on the directed
subgraphs.

A. Directed Subgraphs from the Centroid Vertex

To compute a depth-based complexity trace for a hyper-
graph, we require a family of subgraphs of increasing layer size
on its directed line graph. To locate the dominant subgraphs
within the directed line graph, we propose to identify a centroid
vertex which has the minimum shortest path length variance to
the remaining vertex. Around the centroid vertex, we derive a
family of directed centroid expansion subgraphs each of which
has an increasing maximum shortest path length K from the
centroid vertex. Unfortunately, straightforwardly identifying
the centroid vertex and establishing the expansion subgraphs
based the shortest paths on a directed line graph tends to ignore
certain topological information, because a path may not exist
between two vertices in a connected directed line graph. To
overcome this problem, we identify the centroid vertex and
establish the directed centroid expansion subgraphs through
the undirected line graph of a hypergraph. The undirected
line graph Guyr(Vyr, Fyr) of a hypergraph HG(Vy, Exr)
can be obtained through replacing each pair of inversely
directed edges in its directed line graph Gpr(Vpr, E pr) by
an undirected edge.

For the undirected line graph Gy (Vyr, Eyr) of a hy-
pergraph HG(Vy, Ey), we commence by computing its
shortest path matrix S¢g,,, using the Dijkstra algorithm. The
mean vector Vi for Gy (Vyr, Eur) is a vector having the
same vertex order as Sg,,, and each element Vj;(i) =

ZL‘;UIL ! Sau(6,9)/ VoLl represents the average shortest path
from vertex v; to the remaining vertices. The centroid vertex

v; for Gy (Vur, Eyy) is identified as follows
Vurl
0 = argmin Y [Sey, (i5) — Var (D). 6)

j=1

Let Ngé be a subset of Vi, satisfying
NE ={ueVyr | Say, (bc,u) < K}. (7)

For the hypergraph HG(Vy, Ey) with the centroid vertex 0¢
on its undirected line graph Gyr(Vyr, Eyr), the K-layer

directed centroid expansion subgraph Gpx (Vpk; € px) on

its directed line graph Gpr(Vpr, F pr) has the vertex set
Vi and edge set £k as follows

{ ]ﬁ?K ={ueNZ};
Epk = {(u,v) € Epyr, [{(u,v) C NJZ (u,v) € EUL}%.

(®)
Note that there is a strict order for any pair of vertices (u, v) €
Epk. The number of directed centroid expansion subgraphs
is equal to the greatest length of the shortest path from the
centroid vertex to the remaining vertices of the undirected line

graph GUL(VUL, EUL).

B. The Directed Complexity Trace of A Hypergraph

Definition 3.1 (Directed complexity trace)For a hypergraph
HG(Vy, Ep) and its directed line graph GDL(VDL,ﬁpL)
and undirected line graph Gy (Vur, Fur), the directed com-
plexity trace CTP is an L™ dimensional vector defined as

CT? = [Hp(Gp1), + »Hp(GpK), -+, Hp(Gp pmax)]".
)
where L™?* is the greatest length of the shortest paths
from the centroid vertex o to the remaining vertices in
Gur(Vur,EuL), Gpk is the K-layer directed centroid ex-

pansion subgraph of Gpr.(Vpr, Epr), and Hp(Gp ) is the
entropy of the directed subgraph Gp . We use the directed
von Neumann entropy defined in Eq.(5) in our study. ]

Note that, the L™&*-layer directed centroid expansion
subgraph is the directed line graph itself, and the dimension
of a hypergraph complexity trace vector is thus equal to the
greatest layer L™?*. However, the complexity trace vectors
for hypergraphs of different sizes may exhibit various lengths.
To compare these hypergraphs by using complexity trace
vectors, we need to make the vector lengths uniform. This
is achieved by padding out the dimensions of the complexity
trace vectors. Hence, for complexity trace vectors CT.” and
CTP of two hypergraphs HG,, and HG) with dimensions p
and q respectively, where p > ¢, we use the g-th element value
of C'Ty, as the added padding value for the extended ¢ 4 1-th
to p-th elements of CTy.

C. Discussions of the Complexity Trace

Since a hypergraph is a generalization of a graph and such
a graph can also be transformed into a directed line graph, the
construction of the directed complexity trace for a graph is just
a special case of our method. On the other hand, the complexity
trace for a graph can be directly constructed from the original
graph by identifying the centroid vertex and establishing the
centroid expansion subgraphs on it. However, the proposed
directed complexity traces for a graph through its line graph
can capture richer characteristics of complexity than those
obtained from the original graph, because the Perron-Frobenius
operator can extract (hyper)graph characteristics in a higher di-
mensional feature space than that of the original (hyper)graph.



The proposed complexity traces for (hyper)graphs focus on
measuring how the entropy based complexities of their sub-
graphs from the line graphs (i.e. graphs transformed from
the original (hyper)graphs) vary with increasing layer size.
Such complexity traces reflect high dimensional depth-based
complexity characteristics of (hyper)graphs and can be used
for (hyper)graph clustering or classification. By contrast, the
depth-based complexity measure in [15], the Shannon entropy
measures in [23] and the von-Neumann entropy measure in
[24] are based on the global structure of the original graph, and
only provide an uni-dimensional complexity characterization.

D. Analysis of Computational Complexity

Suppose the directed line graph Gpr,(Vpy, E Dp1L) extract-
ed from HG(Vy,Eg) has n vertices. The computational
complexity for constructing the directed complexity trace for
HG(Vy,Ey) are governed by the following processes. 1)
The construction of the directed centroid expansion subgraphs
which involves using Dijkstra algorithm to compute the short-
est path matrix to locate the centroid vertex and implementing
the transformation from the hypergraph HG(Vy, Ep) into
the line graph. Dijkstra algorithm takes time O(n?). The
transformation to the line graph has time complexity O(n?).
As a result the construction of the representation requires
time complexity O(n?). 2) The computation of the directed
von Neumann entropies for the directed centroid expansion
subgraphs from Gpr(Vpr, Epr). These entropies require
time complexity O(n?L™%®). As a result, computing the
directed complexity trace for the hypergraph HG(Vy, Ey)
requires time complexities O(n2L™).

IV. EXPERIMENTAL EVALUATIONS

We demonstrate the performance of our new directed
complexity trace method on three standard graph datasets
abstracted from bioinformatics databases. These datasets are:
MUTAG, CATHI1 and CATH2. The MUTAG dataset consists
of graphs representing 188 chemical compounds. The maxi-
mum, minimum and average number of vertices are 28, 10
and 17.93 respectively. The CATHI dataset consists of proteins
in the same class (i.e Mixed Alpha-Beta), but the proteins
having different architectures (i.e. Alpha-Beta Barrel vs. 2-
layer Sandwich). CATH2 has proteins in the same class (i.e.
Mixed Alpha-Beta), architecture (i.e. Alpha-Beta Barrel), and
topology (i.e. TIM Barrel), but in different homology classes
(i.e. Aldolase vs. Glycosidases). The CATH?2 dataset is harder
to classify, since proteins in the same topology class are
structurally similar. The protein graphs are 10 times larger in
size than chemical compounds, with 200 — 300 vertices. There
are 712 and 190 testing graphs in the CATH1 and CATH2
datasets. The maximum, minimum and average number of
vertices are 568, 44 and 205.70 respectively (for CATH1), and
568, 143 and 308.03 respectively (for CATH2). Beside the
graph datasets, we also test our proposed complexity trace on
a hypergraph dataset abstracted from the COIL image database.
The hypergraph dataset consists of 162 hypergraphs extracted
from 162 images separately in the COIL image database. The
COIL image database consists of images of 100 objects. In our
experiments, we use selected images for three similar cups,
three similar bottles and three similar pieces of vegetable.
For each object we employ 18 images captured from different
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Fig. 1. Evaluation of Interior Complexity Traces and Stability.

viewpoints. Then the hypergraphs are extracted from each of
these images using the feature hypergraph method [13]. The
maximum, minimum and average number of vertices of the
(hyper)graphs in the four (hyper)graph datasets are 28 (max),
10 (min) and 17.93 (ave) for MUTAG, 232 (max), 3 (min) and
109.60 (ave) for PPIs, 126 (max), 2 (min) and 32.63 (ave) for
ENZYMES, and 549 (max), 213 (min) and 412.50 (ave) for
the hypergraph dataset.

A. Evaluation of Interior Complexity Traces

We commence by illustrating the representational power of
the proposed directed complexity traces of hypergraphs. We
demonstrate that these can be used to distinguish hypergraphs.
The evaluation utilizes 36 hypergraphs abstracted separately
from the images of a box and a cup in the COIL image
database. For each object we use 18 images captured from
different viewpoints. The hypergraphs for individual images
are established by using the feature hypergraph method. For
each hypergraph, we construct the proposed complexity trace.
Fig.1 (a) shows the mean values of the directed complexity
traces using the directed von Neumann entropy. In Fig.1
(a) the x-axis represents the order of the K-layer directed
centroid expansion subgraph for each hypergraph, while the
y-axis represents the mean entropy value as a function of
the expansion subgraph order. Here the blue and red lines
represent the mean entropy values of complexity traces for
the hypergraphs abstracted from the box and cup objects
respectively. The main feature to note is that the mean entropy
values of the complexity traces from the different objects are
quite dissimilar.

B. Stability Evaluation

To evaluate the stability of our directed complexity trace
method, we explore the relationship between the hypergraph
edit distance and the feature distance resulting from our
complexity trace vectors for hypergraphs. The evaluation u-
tilizes one randomly generated seed hypergraphs. The seed
hypergraph has 400 vertices. For the seed hypergraph, we
apply random edit operations to simulate the effects of noise
by deleting a fraction of vertices. The feature distance of the
original seed hypergraph HGg and its edit operated noise
corrupted counterpart HGp is defined as their Euclidean
distance

dsp = \/ (CTs — CTE)" (CTs — CTg), (10)

where CTs and CTg are the complexity traces of HGg and
HGE. Fig.1 (b) shows the effects of hyperedges deletion on
the complexity traces. The x-axis represents the fraction of



TABLE 1. CLASSIFICATION ACCURACY COMPARISONS ON

HYPERGRAPHS (IN %)

[ Datasets [[ Cups [[ Bottles [[ Vegetables |
DCTV 100 100 100
TLS 92.31 83.44 82.91
TNLS 55.27 90.00 71.96
HCIZF 100 — —

vertices randomly deleted (from 1% to 35%), and the y-axis
represents the value of the Euclidean distance dgs r between
the original seed hypergraph HGg and its noise corrupted
counterpart HGg. It is clear that the fluctuation is small. This
implies that the proposed complexity trace method is robust
even when the seed hypergraphs and their centroid vertices
undergo relatively large perturbations.

C. Experiments on Image Hypergraphs

Experimental setup: We illustrate the performance of our
directed complexity trace method on a hypergraph classifica-
tion problem. The hypergraph dataset for testing is abstracted
from the COIL image database. We also compare our method
with several alternative state of the art hypergraph based learn-
ing methods. These methods include 1) the Thara coefficients
for hypergraphs (HCIZF) [13], 2) the truncated Laplacian spec-
tra (TLS) and truncated normalized Laplacian spectra (TNLS)
[21]. We compute the feature vectors of testing hypergraphs
using our method and the alternatives respectively. With these
feature vectors, we then perform 10-fold cross-validation using
the Support Vector Machine (SVM) Classification associated
with the Sequential Minimal Optimization (SMO) [25] and
the Pearson VII universal kernel (PUK) [26] to compute the
classification accuracies of our method and the alternative
methods. We use nine samples for training and one for testing.
All the SMO-SVMs and their parameters were performed and
optimized on a Weka workbench [26]. We repeat the whole
experiments 10 times. We report the average classification
accuracy in Table 1.

Experimental Results and Evaluations: From Table.1
it is clear that our method achieves the greatest accuracies
over all image datasets. 1) Our method outperforms TLS
and TNLS which use spectral information for hypergraphs.
The reason for this is that our method based on the line
graph of a (hyper)graph captures richer (hyper)graph char-
acteristics than the (hyper)graph spectral representations and
also avoids the spectral truncation arising in TLS and TNLS.
2) For the hypergraphs extracted from the images of the
cup object, the maximum and minimum number of vertices
are 310 and 213 respectively. Here the accuracy of HCIZF
is competitive with that of our method. Like our method,
HCIZF also relies on directed line graphs, and exploits richer
(hyper)graph characteristics. However, for the hypergraphs
extracted from the images of the bottle and vegetable objects,
where the maximum and minimum number of vertices are 549
and 305 respectively, HCIZF is intractable for characterizing
the hypergraph structures. The reason for this is that the
computation of the underlying Ihara coefficients tends to result
in infinities even for hypergraphs of moderate sizes. In contrast,
our directed complexity trace method can easily scale to these
large hypergraphs.

D. Experiments on Graphs

Experimental setup: We evaluate the performance of our
method on a graph classification problem. The graph datasets
for testing are abstracted from bioinformatics databases. We
also compare our method with alternative state of the art graph
based learning methods. The comparative methods include
1) the Weisfeiler-Lehman subtree kernel (WL) [27], 2) the
von-Neumann thermodynamic depth complexity (VNTD) [15],
3) the von-Neumann graph entropy (VNGE) [24], 4) the
Shannon entropies associated with the information functionals
fV (FV) and fF (FP) [23], and 5) the Ihara coefficients
for graphs (GCIZF) [13]. For the Weisfeiler-Lehman subtree
kernel we compute the kernel matrix of each dataset, we
perform the kernel Principle Component Analysis (kPCA) on
the kernel matrix to embed graphs into a feature space as
vectors. For other methods, we calculate the feature vectors
or feature values of testing graphs. With these feature vectors
or feature values, we also perform 10-fold cross-validation
using the SMO-SVMs described in Section IV-C to compute
the classification accuracies of our method and the alternative
methods. We repeat the whole experiments 10 times. We report
the average classification accuracies for each method in Table
2. We also report the runtime to establish graph feature vectors
or feature values of each method in Table 2 under Matlab
R2011a running on an Intel(T7500) 2.2GHz 2-Core processor.

Experimental Results and Evaluations: 1) Clearly, our
method outperforms all the alternative methods. Key to the
effectiveness of our method is that our directed complexity
trace method probes a graph from its line graph which can
reflect richer graph characteristics in a higher dimensional
feature space, and generates a multi-dimensional complexity
characterization from the substructure complexities of the line
graph. On the other hand, the alternative methods are based on
the original graph. In particular, the entropy based complexity
measures (i.e. VNGE, FV and FP) are just computed based
on the global structure of the original graph, and only provide
an uni-dimensional complexity characterisation. 2) Although
GCIZF is also based on a line graph representation, it is
outperformed by our directed complexity trace method on each
of the datasets studied. This is because the directed centroid ex-
pansion subgraphs allow our method to capture a depth-based
information that GCIZF cannot convey. Moreover, similar to
the HCIZF, GCIZF is also intractable for characterizing the
large graph structures. 3) The runtime of our complexity trace
method is clearly faster than that of the alternative depth-based
complexity method VNTD. It is also competitive with GCIZF,
the fast subtree kernel WL and the fast entropy measures
VNGE, FV and FP. The reason for this efficiency is that the
required graph entropies in our method can be computed in
polynomial time.

V. CONCLUSION

In this paper, we have shown how to construct a directed
depth-based complexity trace for a hypergraph. Our method is
based on transforming a hypergraph into a directed line graph,
which not only accurately reflects the multiple relationships
exhibited by the hypergraph but is also amenable to complexity
analysis. By neglecting the directed edges of the directed line
graph, we have identified a centroid vertex, and thus obtained a
family of directed expansion subgraphs around the vertex with



TABLE II. CLASSIFICATION ACCURACY COMPARISONS ON GRAPHS

(IN %)

[ Datasets [[ MUTAG [ CATHI [ CATH2 ]
DCTV 86.17 98.79 78.94
VNTD 83.51 — —
VNGE 85.10 98.45 75.78

FV 84.57 96.76 76.31

FP 85.63 96.91 76.31

WL 84.57 98.17 73.15
GCIZF 80.85 — —

[ Datasets || MUTAG || CATHI | CATHZ
DCTV 1”7 16732 107507
VNTD 19'53” > 1lday > lday
VNGE 1”7 1” 1”7

FV 177 1277 5”

FP 177 1277 5”

WL 1”7 27417 517
GCIZF 1”7 > lday > lday

increasing layer size. The complexity trace of a hypergraph has
been constructed by measuring how the required entropies of
these subgraphs vary with increasing layer size. Experiments
demonstrate the effectiveness and efficiency of our method.

Our future work is to develop a new hypergraph kernel by
using the depth-based hypergraph complexity traces. In [16],
we have developed a framework of computing depth-based
complexity traces for graphs. In [28], we have developed a
family of Jensen-Shannon kernels for graphs using the Jensen-
Shannon divergence. By computing the Jensen-Shannon di-
vergence between the depth-based complexity traces for a
pair of graphs, we have shown how a fast Jensen-Shannon
subgraph kernel for the graphs can be computed [29]. It
would be interesting to develop a new hypergraph kernel
by computing the Jensen-Shannon divergence between the
hypergraph complexity traces for a pair of hypergraphs.
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