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Abstract

Particle dynamics in a channel flow are investigated using large eddy simulation and a Lagrangian

particle tracking technique. Following validation of single-phase flow predictions against DNS

results, fluid velocities are subsequently used to study the behaviour of particles of differing shape

assuming one-way coupling between the fluid and the particles. The influence of shape- and

orientation-dependent drag and lift forces on both the translational and rotational motion of the

particles is accounted for to ensure accurate representation of the flow dynamics of non-spherical

particles. The size of the particles studied was obtained based on an equivalent-volume sphere, and

differing shapes were modelled using super-quadratic ellipsoid forms by varying their aspect ratio,

with their orientation predicted using the incidence angle between the particle relative velocity and

the particle principal axis. Results are presented for spherical, needle- and platelet-like particles at

a number of different boundary layer locations along the wall-normal direction within the channel.

The time evolution and probability density function of selected particle translational and rotational

properties show a clear distinction between the behaviour of the various particles types, and

indicate the significance of particle shape when modelling many practically relevant flows.

Keywords: Large eddy simulation, particle, shape, orientation, quaternion
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1 Introduction

Particle-laden turbulent flows occur in numerous industrial, environmental and

biomedical applications and processes, with most of the particles of practical

interest being non-spherical and of various aspect ratios. Although a considerable

number of papers have appeared on the motion of particles in channel flow, the

focus has in general been on the forces acting on spherical particles and the

exchange of momentum between the particles and the carrier fluid. For the

dynamics of non-spherical particles, the most common assumption is to use

volume equivalent diameters and shape factors to modify the drag coefficient of a

sphere, neglecting the associated rotational motion and the torques inherent in the

motion of non-spherical particles. This approach is common in commercial

computation fluid dynamic codes. This over-simplifies the problem, however, and

is not able to accurately predict the motion of large non-spherical particles and

their interaction with the carrier flow [1]. Greater success has been achieved [1, 2]

when the complete behaviour of non-spherical particles in turbulent flow is

accounted for, with this requiring that (i) the lift and drag forces as a function of

particle size, shape and orientation, (ii) the rotational motion caused by different

torque terms and (iii) particle preferential orientation all be addressed.

Numerical studies on the dynamics of non-spherical particles are rather scarce.

Yin et al. [1, 2] considered shape factor- and orientation-dependent drag and lift

forces, and particle rotation, in modelling biomass as cylindrical particles in the

design of wall-fired burners using co-firing of biomass. The authors implemented

a modified Ganser [3] drag coefficient, where the particle size was quantified

using the equivalent volume diameter, the particle shape characterized using the

particle sphericity, and the aspect ratio, and the orientation dependence accounted

for by using the projected area. The profile lift coefficient considered was

proportional to the drag and the dependence on the orientation was given by the

so-called ‘cross-flow principle’ [4]. Yin et al. [2] validated their model by

comparing its predictions with data from experimental studies of the motion of a

cylindrical PVC particle in initially stagnant water, in which the undisturbed water

became non-uniform under the effect of the settling of a large PVC particle. The

authors [2] reported excellent agreement with data, while Yin et al. [1] found that

the cylindrical particle trajectories differ significantly from those of perfect

spheres of the same equivalent diameter.

Zastawny et al. [5] investigated the effect of the shape of spheroidal particles with

aspect ratios of 1.25, 2.5 and 5.0. The authors derived correlations of drag, lift and

torque coefficients based on the models applied in [1, 2], and direct numerical

simulations. They reported that for a flow with a shear Reynolds number of 300,

the drag coefficient of a prolate spheriod with an aspect ratio of 1.25 increases by

up to 20% (depending on the orientation to the flow) compared to the drag

coefficient of a sphere. For a prolate spheroid with an aspect ratio of 2.5, the

authors reported that the drag coefficient could decrease by up to 37%, and

increase by up to 75%, depending on the orientation of the flow. Zastawny et al.’s

[5] application of DNS for non-spherical particles further validated the models

and algorithms used in [1, 2], demonstrating that such models can be applied to

both cylindrical and ellipsoidal particles.
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Marchioli et al. [6] analysed the dynamics of fibres dispersed in a low Reynolds

number channel flow. Prolate ellipsoidal particles with varying aspect ratio E (a

measure of their elongation) and Stokes number (a measure of their inertia) were

used to simulate the deposition of rigid elongated fibres. The authors observed

that quantitative properties of the fibres’ motion differed significantly when

compared with those of spheres with equal Stokes number.

Tian et al. [7] studied the transport and deposition of ellipsoidal fibres with

different sizes and aspect ratios in a circular pipe flow in the laminar flow regime.

The authors also studied the effectiveness of using available equivalent sphere

formulations for characterizing the motion of ellipsoidal fibre particles in the

laminar flow. These formulations were all based on the concept that the average

mobility of the fibre can be expressed in terms of the mobility of its three

principal directions. The frequently used equivalent spheres examined in [7] were

the equivalent volume diameter sphere, the equivalent Stokes sphere and the

equivalent aerodynamic sphere. The authors reported good agreement between

their model predictions of fibre deposition in these flows and experimental

measurements, as well as with available empirical correlations. Both the particle

aspect ratio and the equivalent sphere formulation were found to have a

significant influence on the fibres’ motion and deposition.

In summary, Yin et al. [1, 2] focused on cylindrical particles in a stagnant flow

field, while Marchioli et al. [6] and Tian et al. [7] considered prolate spheroids in

low Reynolds number flow, based on the approach of Zhang et al. [8].

Additionally, Zastawny et al. [5] also considered a range of prolate spheroids. To

the authors’ knowledge, there are no works on particles with a wide range of

aspect ratios involving oblate, spherical and prolate spheres in moderate or high

Reynolds number flows.

In this work, therefore, both the translational and rotational motions of oblate and

prolate spheres are used to study non-spherical particle behaviour in a turbulent

channel flow. This involves solution for both the linear and angular momentum of

the particles using shape- and orientation-dependent drag and lift coefficients. The

predictive approach developed is of particular relevance to nuclear reactor

applications where, for example, corrosion products from boiling water reactor

components can be transported into the reactor core by the cooling water, where

they can deposit on the outside of fuel pins to form CRUD (an acronym for Chalk

River unidentified deposit or corrosion residual unidentified deposit). Due to its

low thermal conductivity, once deposited CRUD can additionally interfere with

cooling water circulation, and hence be responsible for local temperature increases

that can further accelerate CRUD formation rates, leading to localised corrosion-

induced failures. Also, if these radioactive deposits break loose and circulate

through the plant, they can ultimately result in safety hazards for plant workers.

Individual CRUD particles are small, from 0.1-2.0 m, but these generally

agglomerate into larger inertial particles with a wide range of sizes and

morphologies, varying from needle-like, through near-spherical to platelets or

flakes [9].

These particles are modelled in the present work as non-spherical particles using

super-quadratic ellipsoid forms [10], parameterised by a, b, c and E=c/a;

respectively representing the aspect ratios in the x, y and z directions in the



canonical frame of

of the parallel and

ellipsoids are consi

in Table 1, with

particles, respective

Table 1: Parti

Spher

; cba

2 Equations

2.1 Large eddy

The continuity a

momentum are dec

scale) fields using

formulation used

resolved scales are

where ijij s 2
sub-grid scale (SG

stress term require

approach [12] whi

and the resolved

allowing different

Test-filtering was

computed model pa

2.2 Kinematics

A schematic diagr

reference are shown

ordinates, ,[xx

of the particle, an index, and the aspect ratio de

nd normal particle diameters [11]. Three spec

onsidered: a sphere, and oblate and prolate sphe

th the latter representing platelet (disk) and

tively [11].

article shapes used in the simulations based on super-qua

1

222























c

z

b

y

a

x

phere Oblate Pr

1; E 1;  Ecba  ba

ons of Motion

ddy simulation

and Navier-Stokes conservation equations

decomposed into resolved (large-scale) and unr

using a top-hat filter as this fits naturally into

d for solution. The filtered forms of these

are given by:

0




j

j

x

u
,

 
ijij

jij

i
j

i

xx

p

x

u
u

t

u


















 1

,

and jijiij uuuu  represent the kinematic

(SGS) stress tensors, respectively. The unknow

quired to close these equations was modelled

hich represents the SGS stress as the product

d part of the strain tensor, and is based on

nt values of the Smagorinsky constant at diff

as performed in all space directions, with no

l parameter field.

ics

gram of an ellipsoidal particle and the correspondi

shown in Fig. 1 (left), where ],,[ zyxx ar

],, zy  is the particle co-ordinate system wi

4

o defined as the ratio

special cases of super-

spheroids, as illustrated

nd rod-like (needle)

quadratic forms.

Prolate

1;  Ec

ions for mass and

unresolved (sub-grid

nto the finite-volume

se equations for the

(1)

(2)

tic viscous stress and

unknown sub-grid scale

led using a dynamic

oduct of a SGS viscosity

on the possibility of

different filter levels.

no averaging of the

responding frames of

are the inertial co-

with its origin at the



5

particle centroid and its axis being the principal axis, and ],,[ zyx x is the co-

moving co-ordinate system with its origin coinciding with the particle centroid,

and its axes being parallel to the inertial frame of reference. The transformation

between the co-moving frame and the particle co-ordinates is expressed as

xAx  [13]. The transformation matrix ][ ijaA can be expressed in terms of

either Euler angles or quaternions [13]. The Euler angles represent the direction

cosines of the particle axes in the inertial frame, as shown in Fig. 1 (left).

Previous investigations, e.g. [8], have shown that the use of Euler angles is very

inefficient because of the singularity problem that occurs whenever the azimuthal

angle of the particle is 0 or ʌ. The use of the four Euler quaternions overcomes

this problem, with the particle rotational dynamics determined in terms of the

Euler quaternions ),,,( 0321 qqqqq , provided the quaternions satisfy the equality
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Figure 1: Schematic of co-ordinate system and orientational angles of particle with respect to

particle major axis z' (left), and distance between centres of pressure (Cp) and of mass (Cm) of

particle, xcp, and incidence angle between (u-v) and particle major axis z', Įi (right).
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2.3 Translational and rotational dynamics

A force F applied on a particle away from its centroid simultaneously changes two

properties of the particle: the linear motion of the centroid and the angular motion

around the centroid. The former is governed by the Newtonian equation:

v
x


td

d p
(5)

LDp
d

d
FF

v


t
m (6)

where ],,[ pppp zyxx and ],,[ zyx vvvv represent the particle position and

velocity vector, respectively, mp is the mass of the particle, FD and FL represent

the drag and profile lift forces acting on the particle, and t is time. The effect of

gravity was not of interest, hence it was neglected. The aim was therefore to

minimise the number of degrees of freedom by keeping the simulation setting as

simple as possible, and to allow particle interaction with the flow structures alone

to influence the particle motion (as employed by a number of authors, e.g. [6]).

The drag and profile lift forces resulting from particle orientation are given,

according to [2], as:
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where u = (ux, uy, uz) is the fluid velocity vector at the particle centroid, z' is the

direction of the particle major axis in the inertial frame, and AD and AL are the

particle areas normal to the direction of the drag and lift forces, respectively. The

effective areas AD and AL can be expressed as a function of the particle incidence

angle, Įi, between the particle slip velocity, (u-v), and the particle principal axis,

z', see Fig. 1 (right), as [2]:
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The drag coefficient CD has been measured for a wide range of particle shapes, but

is not commonly available in terms of a functional relationship with the Reynolds

number, and the orientation and geometric parameters of the particle for which it

ideally should be. One way to deal with this problem is by using the sphericity

factor, S, and the volume equivalent diameter, dVeq, as geometric parameters and

introducing orientation dependency in drag correlations using the effective area

normal to the direction of the drag force. Chhabra et al. [14] compared five of the 
most promising drag coefficient correlations with data, considering 1900
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experimental data covering a wide range of particle shapes and hydrodynamic

conditions. Based on the overall mean and maximum percentage errors, these

authors recommended that the drag expression proposed by Ganser [3] is the most

appropriate method for determining CD, with this expression having an overall

error, against those data, of only 16%. The Ganser [3] drag coefficient expression

is therefore used for CD in Eq. (7), as given by:
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where /|| Vp eqdRe vu  , and K1 and K2 are coefficients that model the particle

shape for spherical particles, or the particle sphericity and orientation for non-

spherical particles. 5.0

D )/4( Adn  is the equal-projected area circle diameter.

The particle orientation is accounted for in the drag force in Eq. (7) by AD, the

particle projected area normal to the direction of the drag, and by the drag

coefficient CD. The projected area on which the drag is based, given in Eq. (9), is

expressed as a functional relationship of the incidence angle Įi and the particle’s

dimensions a, c. Using an analogy from the aerodynamic theory of wing sections

it is possible to define the incidence angle, Įi, the angle between the principal axis

z' and the direction of motion, represented as the particle slip velocity, (u-v), see

Fig. 1 (right). At every time step (or iteration), a new Įi is based on the

instantaneous particle orientation. Mathematically, the new Įi is obtained from the

transformation of (u-v) with the third row of the elements of the orientational

matrix A of Eq. 3. The projected area may be several orders of magnitude

different from one orientation to another. The drag coefficient also varies

significantly depending on the orientation. In CD, Eq. (11), the dynamic equal-

projected area circle diameter, dn (Eq. (12)) is a function of AD and has to be

updated for every incidence angle, Įi. The lift coefficient CL in Eq. (8) is

determined such that the ratio of lift to drag forces satisfies the relationship [2]:

|cossin|
||

|| 22

D

L
ii

C

C
 (13)

Hence, a common approach used in the literature is to assume that the profile lift

is proportional to the drag, and that the dependence with the orientation is given

by the so-called ‘cross-flow principle’ [4, 15]. Based on this, the approach of Yin

et al. [2] has been adopted, with the limitations of this approach discussed in detail

elsewhere [4]. Essentially, however, the approach is valid for Reynolds numbers

up to 10
3
, although due to the scarcity of data at high Reynolds numbers, it is

assumed that the cross-flow principle is valid for all Reynolds numbers.

Rosendahl [16] reported that the validity of this principle held for different super-

elliptic particles up to a Reynolds number of 1500. Mando and Rosendahl [4] also

carried out sensitivity analyses on the lift/drag coefficient ratio at different

Reynolds numbers with data from Rosendahl [16] and Hölzer and Sommerfeld

[17] for a spheroid with relatively low aspect ratio, observing that the cross-flow

principle provided a reasonable fit to data at Reynolds numbers in the Newton law
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regime, with the maximum lift/drag ratio diminishing as the Reynolds number

decreased. Based on this, the approach described is adopted, in which the validity

is reported for Reynolds number up to 1500.

The rate of change with time of the principal components of the angular velocity

),,( zyx  Ȧ is given by the Euler equation as:

cbcba
a

a IIT
t

I 


)(
d

d
 (14)

where (a,b,c) = (x',y',z'), (y',z',x') and (z',x',y') are the principal components of the

torque, Ta, the moment of inertia, Ia, and the angular velocity, Ȧa. The net torque

acting on the particle is caused by the non-coincident centres of mass and of

pressure, T1, and the torque due to the resistance on a relatively rotating body, T2,

which always act to attenuate the relative rotation. T1 is given in the particle frame

of reference as [2]:

)]()[( LDcp1 FFzAT  x (15)

The components of torque T2 in a non-uniform flow field were derived by Yin et

al. [2], and it is given in the absence of fluid rotation with respect to the x-axis in

the particle frame of reference as:

42

fD64
1

,2 )2(2 caC xx   T (16)

The components of T2 in the other two axial directions are obtained similarly to

Eq. (16). Note that when cos Įi > 0, T1 will change its sign, such that T1 = −T1,
while the resultant sign in Eq. (16) takes the same sign as that of )( pf ȦAȦ  .

The distance between the particle centres of mass and pressure, xcp, was derived

from airfoil theory in which the centre of pressure is approximately located a

distance of one quarter of the chord length behind the leading edge for a multitude

of profiles, and is valid for inclination angles in the range 0-15
o
. Yin et al. [2]

suggested a modification of the expression for shapes with smaller aspect ratios

relative to airfoils, and for inclination angles larger than 15
o
, and hence defined xcp

as a function of the aspect ratio and incidence angle as:

|cos|)1(25.0
3)1(3

cp iecx  (17)

Lastly, the time derivative of the quaternions may be expressed as a function of

the particle angular velocity, ),,( zyx  Ȧ , in the particle reference frame as:
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Lastly, it should be noted that there is coupling between the translational and

rotational motion. In Eq. (15), the torque due to the non-coincident centres of

mass and of pressure, T1, is a function of the hydrodynamic force in the inertial

frame which is transformed to the particle frame by the transformation matrix A.

For each time or integration step, the transformation matrix is obtained from the

new quanternions, and these quaternions are subsequently used to obtain new

values of Įi, AD, dn, CD, FD and T1. This is also the case for the torque due to the

resistance on a relatively rotating body, T2.

3 Numerical Solution

The channel flow shown in Fig. 2 has the configuration: inertial co-ordinates

(x×y×z), computational domain size (2h×2hʌ×4hʌ) and grid nodes (81×80×80) in

the wall normal, spanwise and streamwise directions, respectively. The Reynolds

numbers ReĲ(=huĲ/Ȟ) and Reb(=hub/Ȟ) were 300 and 4910 based on the shear

velocity, uĲ=0.235 ms
-1
, and the bulk velocity, ub؆3.855 ms

-1
, with the channel

half width h=0.02 m, kinematic viscosity Ȟ=1.57×10-5 m
2
s
-1
and density ȡf=1.3

kgm
-3
. The mesh spacing was uniform in the y and z directions, but stretched in

the x direction by a hyperbolic stretching function. Non-dimensional values of

parameters associated with length, velocity and time are presented in wall units (
+
)

following normalisation with uĲ and Ȟ. Periodic boundary conditions were used in

the streamwise and spanwise directions. In the streamwise direction, a mean

pressure gradient was imposed as a source term to drive the flow in order to

maintain a constant mass flow rate. To avoid laminarisation of the flow, an initial

simulation at high Reynolds number was carried out and the resulting solution

used to initialise flow at ReĲ=300. The computed mean wall shear stress was

monitored and flow statistics were sampled once the shear stress became

statistically steady. The computational domain, fluid and particle properties were

chosen to be in line with the direct numerical simulations, and Lagrangian particle

tracking of spherical particles, in a channel flow performed by Marchioli et al.

[18], used for validation purposes below.

Figure 2: Computational domain

The computations were carried out with the BOFFIN large eddy simulation (LES)

code [19]. The code implements an implicit finite-volume incompressible flow
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solver using Cartesian co-ordinates and a co-located variable storage arrangement.

Time advancement is performed using an implicit Gear method for all transport

terms with variable time step, and the overall procedure is second-order accurate

in space and time. For the convection terms an energy conserving discretization

scheme is used and matrix pre-conditioned conjugate gradient methods are

employed to solve the equations for pressure and velocity. The code has been

applied extensively in the LES of reacting and non-reacting turbulent flows, e.g. 
[20, 21], and further details of the computational algorithms can be found in [19].

The particle equations of linear and angular momentum were both integrated

using a fourth-order Runge-Kutta scheme, with the particle integration time for

translation and rotation equal to 10
-1

and 10
-3

times the LES time step,

respectively. The particles were initially randomly distributed over the

computational domain, while their initial orientation was fixed as ș0 = 60
o
and

0=ȥ0=0. During each time step, the fluid flow field was first updated and then

interpolated to the particle position using a trilinear interpolation scheme, with the

velocity at the particle position then passed to the Lagrangian particle tracker. The

initial linear velocity vector of the particles was set equal to the fluid velocity

vector at the particles’ position, while the angular velocity was set to zero. Similar

to the fluid flow, periodic boundary conditions were imposed in the streamwise

and spanwise directions to reintroduce particles exiting these boundaries back into

the computational domain. The channel walls were assumed to be smooth, and

perfect elastic collisions at the wall were applied. Not many realistic particle-wall

interaction models for ellipsoidal particles are available in the literature. In the

absence of such models, the well-known interaction model for spherical particles

was assumed. When a particle wall-normal distance was less than or equal to half

the particle equivalent volume diameter, the particle collision condition was

assumed to be met. The sign of the particle velocity component in the wall normal

direction is changed following collision, while other velocity components remain

unchanged; the angular momenta remained unchanged as well. This method

oversimplifies the physics of particle-wall interaction for an ellipsoidal particle,

however, it is has been adopted elsewhere in the literature, e.g. [22], and provides

a reasonable approach in the absence of more realistic alternatives.

Three types of particle shape representing a disk, a sphere and a needle-like

particle were considered, with all the particles having an equivalent volume

diameter to a sphere with a Stokes number 125eqp,  St . Table 2 gives the

values of all the particle shape and size parameters used in the simulations. The

particle principal axis is taken as the z-direction with its aspect ratio as c. The size

of the particles in each direction is given by dVeq=2a(E)
1/3
, with b=a and c=aE.

Only the particle simulation parameters given in Table 2 were used in deriving the

results presented below. Also, only the filtered velocity field was employed in

calculating the particle acceleration, thus neglecting the effect of the sub-grid

scale velocity fluctuations on that acceleration. At a low Reynolds number,

however, Armenio et al. [23] reported that the unresolved velocity field was found

to have a limited effect on the statistics of inertial particles. Therefore, the neglect

of sub-grid scale velocities, in the near-wall region in particular, can be expected

to have a limited influence on the results for the case of a low ReĲ=300 flow with

high inertia St =125 particles.
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The different shaped particles were injected into the flow at low particle volume

fraction, i.e. p=6.310-5, hence particle-particle interaction effects were

neglected given that p=<10
-3
.

Table 2: Characteristics of the particles used in the simulations.

Case Shape Ĳp,eq+ dVeq / ȝm S E

1 Disk 125 114 0.418 10
-1

2 Sphere 125 114 1.000 10
0

3 Needle 125 114 0.588 10
1

4 Results and Discussion

Sensitivity studies were performed varying the number and distribution of

computational nodes, and the time steps, used in the computations, and these

studies demonstrated that the discretisations employed in deriving the results

presented below resulted in turbulence and particle statistics, in those regions of

the channel of interest, that were independent of the resolutions used. It should

also be noted that a greater number of nodes was used in the LES of the channel

flow than in comparable studies [24, 25], with close to DNS [18] resolution in the

near-wall regions.

LES results are first compared with DNS predictions [18] for the single-phase

flow in Fig. 3(a) for the streamwise mean velocity, including established

theoretical law of the wall profiles. Figure 3(b) contains a similar comparison for

the root mean square (rms) of the velocity fluctuations in all three co-ordinate

directions, with Fig. 3(c) giving results for the shear stress. There is good

agreement between the LES and DNS results which gives confidence in the

present computations of turbulent channel flow at moderate Reynolds number.

However, the overall LES approach used tends to over-predict the DNS mean

velocity profile near the log-law inner-layer region, as shown in Fig. 3(a). There is

also a slight disparity between the LES and DNS results for the rms of the

velocity fluctuations in the three co-ordinate directions, in Fig. 3(b), but only a

minor under-prediction of the shear stress peak magnitude within the buffer layer,

as shown in Fig. 3(c). The rms and shear stress results given in Figs. 3(b) and 3(c)

are resolved values which were computed directly from the predicted

instantaneous velocities. Consideration of the contribution of sub-grid scale

fluctuations may improve these comparisons, as would increases in the grid

resolution used in the computations. Nevertheless, the results shown are

sufficiently accurate to warrant their use in the studies of particle transport in this

flow reported below.

Particles with the three aspect ratios given in Tables 1 and 2, considered to

represent a disk (E=0.1), and spherical (E=1) and needle-like (E=10) particles

following the Loth [11] classification, were next introduced into the flow. In order

to monitor the effect of shape on particle behaviour, two groups of simulations

were carried out. The first group involved the dynamics of single particles, with

the three spheroids initially released from the channel inlet plane at two different
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wall-normal positions (x
+
=0.96 and 300) and at a fixed spanwise location

(y
+
=930). The three particles had the same relaxation time, 

eq 125, on the basis

of equal equivalent volume diameter and equal mass. The starting positions

chosen along the wall-normal direction are significant in wall-bounded turbulent

flows as they respectively represent locations near-wall and at the centre of the

channel.

Figure 3: Validation of LES of channel flow at ReĲ=300 against DNS: (a) streamwise mean

velocity with established theoretical law of the wall profiles (solid lines), (b) rms of velocity

fluctuations and (c) shear stress.

Sample trajectories of the three spheroids are presented in Fig. 4, with the time

history of the particle centroid position along the wall-normal and spanwise

directions given for particles injected at the two locations noted above. Results in

this, and subsequent figures, are given up to values of t
+
=700, although it should

be noted that continuing the simulations for longer times did not affect the

conclusions reached below. The results of Fig. 4 provide a means of determining

the deviation of non-spherical particle behaviour from that of spherical particles in

a channel flow. Broadly speaking, the sphere, disk and needle-like particles all

have similar paths at the beginning of the simulation, but separate from one

another with time. Interestingly, the trajectories of the disk and needle-like

particles are characterized by a high dispersion when compared to that of the

sphere.

The differences in dispersion between the spherical and non-spherical particles are

large in the wall-normal and spanwise directions close to the wall. Even after

t
+
=700, the spherical particle has only moved an average distance ǻx+ (Fig. 4 top
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left) and ǻy+ (Fig. 4 top right) of less than 10, while the non-spherical particles

have covered average distances of ǻx+ and ǻy+ greater than 100. This is even the

case in the homogeneous spanwise direction (Fig. 4 top right) where notable

differences in particle behaviour occur for the three shapes. Close to the centre of

the channel (Fig. 4 bottom) these differences between the spherical and non-

spherical particles are less evident, although significant variation still exists

between the trajectories of the three spheroids. These results demonstrate that

accounting for particle shape and orientation significantly influences the way

particles translate under the influence of external forces in a channel flow.

Figure 4: Time history of particle trajectories in the wall-normal (left) and spanwise (right)

directions, all monitored from initial positions x
+
=0.96 (top) and x

+
=300 (bottom).

Figure 5: Time history of incidence angle between particle relative velocity and particle major axis

z' monitored from initial positions x
+
=0.96 (left) and x

+
=300 (right).

Figure 5 shows the incidence angle, an indication of the orientation history of the

non-spherical particles, monitored from initial positions of x
+
=0.96 (left) and 300

(right), giving samples of non-spherical particle behaviour under the action of
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aerodynamic forces and torques in the turbulent channel flow. The incidence

angle values for the non-spherical particles are seen to oscillate around Įi = 90
o
,

while that of the sphere is constant at 90
o
and hence not included in Fig. 5. As

shown later in terms of a probability density function (PDF) plot, this dominant

orientation (Įi = 90
o
) is the stable equilibrium state, as also reported in [2] for the

motion of PVC particles in a non-uniform flow field. There is also similarity in

the frequency and amplitude of the incidence angle monitored from both initial

positions in Fig. 5, except at the beginning of the simulation (t
+
<120) when the

particles close to the wall are still within the viscous sub-layer (Fig. 5 left). Figure

6 shows the angular velocities with respect to the particle minor axes x' and y' for

the non-spherical particles, an indication of the rotation history, again monitored

from initial positions of x
+
=0.96 and 300. As rotation is shape and orientation

dependent, it is not considered for the spherical particle. These results demonstrate

that non-spherical particles show a similar rotation history, though in opposite

directions, for both particle minor axes x' and y'.

Figure 6: Time history of particle angular velocity with respect to particle minor axes x' and y'

monitored from initial positions x
+
=0.96 (left) and x

+
=300 (right).

The second group of simulations involved monitoring 100,000 particles with

initial positions randomly distributed within the channel. In these simulations, the

particles were sampled in three regions: the near-wall (x
+
=0.96 and 5), the buffer

region (x
+
=11.6 and 30) and at the channel centre (x

+
= 300), with the results

presented in the form of probability density functions below. The simulations of

the multiple particles were run for t
+
~ 25,400, with statistical sampling to derive

the PDFs shown carried out after t
+
= 125 at intervals of t

+
= 10, resulting in time-

independent statistics. It should be noted that the sample volume used was

relatively small, and hence the variation of particle parameters might also be

expected to be small. However, when the influence of particle rotation is

considered, a significant level of variation in the PDFs of those variables

monitored is anticipated.
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rmsp,pp /)( uuu  rmsp,pp /)( uuu 

Figure 7: PDF of normalised wall-normal particle velocity, sampled at x
+
=11.6 (left) and x

+
=300

(right).

rmsw,ww /)( aaa  rmsw,ww /)( aaa 

Figure 1: PDF of normalised wall-normal component of particle acceleration, sampled at x
+
=11.6

(left) and x
+
=300 (right).

PDFs of the normalised wall-normal particle velocity, rmsp,pp /)( uuu  , are shown

in Error! Reference source not found., with results for the normalised wall-normal

component of the particle acceleration, rmsw,ww /)( aaa  , shown in

Figure 1, both sampled at locations of x
+
= 11.6 and 300. A semi-logarithmic scale

is used for the PDFs to emphasise the shape of the tails. It is seen that the PDF of

the particle wall-normal velocity in the buffer region is less symmetric with

respect to 0 than the PDF of the particles at the channel centreError! Reference

source not found.. Also, although there is some similarity between the frequency

of the particle velocity for the two non-spherical particles, differences are

apparent between these particles and their spherical counterparts. These

differences are seen at both sample locations, although they are less significant at

the channel centre. The peak in the PDF of the normalised wall-normal velocity is

also clearly higher for the spherical particles at both locations, implying an

increased probability of finding spherical particles with a zero wall-normal

velocity. These results imply that it is likely, with further simulation time, that

particle preferential concentration at the walls of the channel will vary depending

on the particular particle shape, although further work is required to quantify such

effects. For the normalised wall-normal acceleration results of Fig. 8, differences

between the different particle types are less apparent than for the wall-normal

particle velocity. The tail of the PDFs is therefore similar for all the particles,

although differences do occur between the various shapes, especially at the peak

values where w w w,rms( ) / 0a a a  .
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i (deg) i (deg)

Figure 9: PDF of particle incidence angle, Įi, for the disk and needle-like particles, sampled at

x
+
=11.6 (left) and x

+
=300 (right).

PDFs of the particle incidence angle i for particles with E=0.1 and E=10, again

sampled in the buffer region and at the channel centre, are shown in Error!

Reference source not found.. The incidence angle is a measure of the particle

orientation that is included in the drag and lift force calculations. Both plots are

symmetrical with respect to i = 90º. The results demonstrate that the non-

spherical particles assume orientations with incidence angles ranging from 0
o
to

180
o
, although i = 90º is the most probable for situations where the fluid rotation

is neglected, as previously observed in the results of Error! Reference source not

found. and in [2] for settling cylindrical particles in a non-uniform flow.

rms,/)( xxx    rms,/)( yyy   

Figure 2: PDF of normalised particle angular velocity with respect to the minor axes x,

rms,/)( xxx    (left), and y,
rms,/)( yyy    (right), for disk (top) and needle-like (bottom)

particles. Series (S1, S2, S3, S4, S5) = sample location (x
+
= 0.96, 5, 11.6, 30, 300).
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Normalised particle angular velocity probability density functions at five wall-

normal locations (x
+
= 0.96, 5, 11.6, 30, 300) are shown in

Figure 2 with respect to the particle minor axes x' and y', and for disk and needle-

like particles. The plots show, for both particle shapes, that the angular velocity

takes on a distinct shape with respect to the boundary layer region. In all the plots,

therefore, the angular velocity components with respect to both particle minor

axes show the largest peak values at the mean of the distribution for sample

locations closest to the wall. In the buffer region, at x
+
=11.6 and 30, the PDFs

show similar, although lower, peaks, as well as similar distribution tails in both

the x' and y' directions, for both particle shapes. Towards the centre of the

channel, where the particles experience less shear from the fluid flow, the PDF of

the angular velocity shows a symmetric profile. As the non-spherical particle size

was characterised by the volume equivalent diameter, dVeq, the particles have equal

volume, density, mass and Stokes number. This is likely the reason for the small

differences observed between particle types, with in some cases no difference at

all in the particle properties being apparent. In addition, the non-inclusion of fluid

rotation in computing the particle torque due to resistance may have led to similar

particle rotational distributions in the buffer region and at the turbulent core, with

the differences at the near-wall due to particle collisions with the solid surface.

Figure 3: PDF of particle Reynolds number, Rep, sampled at x
+
= 5 (upper left), 11.6 (upper right)

and 300 (bottom).

Particle Reynolds number probability density functions sampled at three wall-

normal locations are shown in

Figure 3 for the three shapes of particle. Small differences are observed at the

channel centre, with the dissimilarity in the values of the Reynolds number

increasing towards the channel wall, with the non-spherical particles showing

significant differences from the spherical particles at x
+
= 11.6, and with the disk-

like particles clearly showing the largest values at the location closest to the wall.
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The Reynolds number is also higher for all particles in the buffer region where the

relative velocity between the particles and the fluid is greater than at the channel

centre where the slip velocity tends to zero.

Figure 12: PDF of particle drag coefficient, CD, sampled at x
+
= 5 (upper left), 11.6 (upper right)

and 300 (bottom).

Lastly, Error! Reference source not found. shows the associated drag coefficient

PDF, again sampled at three wall-normal locations. Particles with the same

volume equivalent diameter at similar wall-normal locations necessarily have

similar Reynolds numbers but different drag coefficients, with their shape and

orientation contributing factors to this difference. The needle-like particles are

seen from these results to have increased drag compared to the equivalent

spherical particles, while the disk-like particles have in turn an increased drag

relative to both other particle types. In addition, it can be seen that the difference

in the value of the drag coefficients increases greatly with increasing particle

Reynolds number. This implies that the drag coefficient is more influenced by

particle shape and orientation at high Reynolds numbers, i.e. the largest

differences occur at the channel centre. Also, as the particles have the same

volume, and exhibit similar value of Rep (Fig. 11) but differences in the drag

coefficient (Fig. 12), it is clear that it is differences in particle rotation, due to

shape, that cause the increase in drag coefficient as well as its variation.

5 Conclusions

Large eddy simulation and a Lagrangian particle tracking scheme have been used

to study the influence of shape, and by extension orientation, on particle

behaviour in a turbulent channel flow. The LES, with a dynamic sub-grid scale
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model, has been shown to produce results for a low Reynolds number flow that

are in acceptable agreement with a DNS of the same channel flow. Resolved

velocities were subsequently used to study the behaviour of particles of differing

shape, assuming one-way coupling between the fluid and the particles, with both

translational and rotational motions of the particles considered by solving

Newton’s and Euler’s equations of motion using a fourth-order Runge-Kutta

scheme.

Overall, the simulations have demonstrated that the shape of a particle has an

influence on its dynamics within the turbulent channel flow considered, and that

particle shape should be taken into account when designing and optimising

industrial systems where non-spherical particles are prevalent. The inclusion of

particle shape and orientation in the formulation of the Lagrangian particle

tracking approach has therefore shown, both in terms of the behaviour of single

and multiple particles, that the dynamics of non-spherical particles differ from the

corresponding behaviour of spherical particles with the same equivalent volume

diameter and the same mass. For the wide range of applications where differing

particle sizes and morphologies are of importance, and for the nuclear reactor

applications of specific interest in the work described, models that account for

particle shape and orientation are clearly necessary if reliable predictions of

particle dispersion, deposition and re-suspension from solid surfaces are to be

made. The present results also call into question the use of a spherical particle

assumption in modelling such particle-laden flows since particle rotation and

orientation causes variation in the drag coefficient.

As previously noted, for low Reynolds number flows it has been found that the

unresolved velocity field has only a limited effect on the statistics of inertial

particles [23], and hence these effects can be justifiably excluded for the case of

the low ReĲ=300 flow and high inertia particles considered. However, for particles

with lower Stokes numbers, which will not filter out a large spectrum of turbulent

structures, it may be anticipated that sub-grid scale fluid velocities will have a

more significant impact on particle translation and rotation. Future efforts will

therefore consider the impact of sub-grid scale velocities on the behaviour of all

the particle shapes considered over a range of Stokes numbers, as well as the

influence of two-way coupling between the fluid and the particles.
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