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Abstract

A dilute, particle-laden flow in a square duct with a 90
o

bend is modelled using a RANS approach,

coupled to a second-moment turbulence closure, together with a Lagrangian particle tracking

technique, with particle dispersion modelled using a stochastic approach that ensures turbulence

anisotropy. Detailed predictions of mean and fluctuating fluid and particle velocities are validated

through comparisons of predictions with experimental measurements made for gas-solid flows in a

vertical-to-horizontal flow configuration. Reasonable agreement between predicted first and second

moments and data is found for both phases, with the consistent application of anisotropic and

three-dimensional modelling approaches resulting in predictions that compare favourably with

those of other authors, and which provide fluctuating particle velocities in acceptable agreement

with data.

Keywords: Particle-laden flow, duct, 90
o

bend, RANS, second-moment closure, Lagrangian

particle tracking
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1. Introduction

Particle-laden flows have numerous areas of application (Mohanarangam et al, 2008), and the

transport of such flows requires detailed understanding to permit their accurate prediction. Two

numerical approaches are generally used in modelling such flows, these being the Eulerian-

Eulerian and Eulerian-Lagrangian approaches, with the choice between these two reference

frameworks in essence being problem-dependent. The former approach treats both phases as

interpenetrating and interacting continua, and the coupled governing equations are then solved for

each phase giving the time dependent behaviour of the two phases (Mohanarangam et al, 2008;

Tu and Fletcher, 1995). This approach is economical and convenient for implementing two- and

four-way coupling between the fluid and particle phases. Its drawback is in the complexity

associated with accommodating particle phase fluctuations, particle-wall collisions, certain

boundary conditions and poly-dispersed particle sizes. The consideration of a particle size

distribution, in particular, requires the solution of a set of equations for each size class considered,

and hence the computational effort increases with the number of size classes. The Eulerian-

Lagrangian approach differs in not considering the particle phase as a whole, but in tracking

individual representative particles in the flow, with their trajectory simulated using Newton’s second

law of motion (Gouesbet and Berlemont, 1999; Mohanarangam et al, 2007). This method performs

well in those areas, noted above, that represent drawbacks for the Eulerian-Eulerian approach, but

has a significant problem itself associated with having to simulate large numbers of particle

trajectories in order to generate statistically meaningful results. A more complete review of both

approaches can be found in Crowe et al. (1996). Despite the pros and cons of both methods, the

Eulerian-Lagrangian approach remains the most popular model for use in predicting dilute

multiphase flows, particularly due to its ability to model the crossing trajectories of particles caused

by particles moving on different paths to the carrier fluid (Chen, 1997). With increasing computer

power, in terms of memory and computation speed, high performance Eulerian-Lagrangian models

have become very useful and versatile tools for studying the dynamics of particle-laden flows

precisely because they account for the discrete nature of the individual particles.

In the Eulerian-Lagrangian approach, while the particles transverse the flow domain they interact

with their surroundings, and these interactions dictate the particle dynamics inside the particular

geometry under consideration. Interactions with the surroundings are incorporated by modelling the

external forces acting on the particles, as well as particle-wall and particle-particle interactions.

These interactions are further complicated if the flow is bounded by concave and convex walls, as

in the present case, which cause changes in the direction of flow. For dilute suspensions, which

form the basis of this study, these interactions are largely dominated by inertial effects since

particles of different sizes selectively interact with different scales of fluid motion (Grigoriadis and

Kassinos, 2009). Inertial effects are caused by the reluctance of particles to follow exactly the fluid

streamlines, which largely depends on the characteristic time scales between the two phases. The

relative importance of the these time scales is usually expressed by the dimensionless Stokes

number, defined as the ratio St = Ĳp/Ĳf, where Ĳf is the characteristic time scale of the fluid phase
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and Ĳp is the particle response time which describes the time that a particle needs to adjust to a

change in the flow velocity. Particles with high Stokes numbers augment the inertial effect, with the

influence of wall collisions becoming important when these particles are driven close to solid

surfaces, with such collisions often dominating the motion of large particles. Small particles, with

St1ا, in the neighbourhood of a boundary layer diffuse towards the wall surface under the

influence of turbulent eddies in the flow. Although these eddies dissipate as they approach the wall,

the particles continue to travel towards the surface by the free flight mechanism due to their inertia.

Thus, in low Stokes number flows, turbulent diffusion dominates wall collisions. However, if small

particles by chance collide with a wall, the wall collision effect does not have a considerable

influence on the particle motion if they continue to follow the mean fluid flow soon after the collision.

When particles collide with a wall, the influence of wall roughness and particle shape also come

into play, affecting the particle rebound velocity and the drag force thereby influencing the particle

motion. The “virtual wall’ model (Tsuji et al, 1987; Sommerfeld, 1992) can be employed to simulate

the influence of wall roughness, as well as treating non-spherical particle-wall collisions

(Sommerfeld and Huber, 1999), by redirecting the particle momentum randomly each time a

particle collides with a wall (Tsuji et al, 1987).

Large particle rotational velocities lead to a spin lift force arising from the deformation of the flow 

field around a particle that causes a pressure difference across the particle. Since particles can

acquire high rotational velocities after wall collisions, this effect can be of importance in the near

wall region (Sommerfeld, 2003). Changes in the direction of a flow, as in a bend, generate velocity

and pressure gradients with strong shear layers close to the geometry boundaries, with large

gradients inducing a slip-shear force on the particles. Hence, lift forces will occur in particulate

flows in curved ducts and need to be accommodated in simulating the particle dispersion. Details of

the importance of all external forces acting on particles on their dispersion, with respect to particle

size and the density ratio between the two phases, can be found elsewhere (Armenio and Fiorotto,

2001).

To solve the particle equation of motion, the instantaneous fluid velocities in all directions at the

particle position are required. Hence, the instantaneous velocities seen by the particles and their

effect on the particles’ dispersion and distribution need to be quantified. In the Reynolds-averaged

Navier-Stokes (RANS) modelling framework, the instantaneous fluid velocities are decomposed

into a mean velocity (u ) and a fluctuating component (u ). The mean part is then obtained directly

from the time-averaged Eulerian solution (deterministic), whereas the fluctuating part must be

obtained separately through stochastic modelling.

Reliable experimental data are needed to validate numerical models, with the Kliafas and Holt

(1987) data set often used in the validation of predictions of particle-laden two-phase flows in 90
o

duct bends. Some of the studies that used these data for validation purpose are those of Tu and

co-workers (Tu and Fletcher, 1995; Mohanarangam et al., 2007; Mohanarangam et al., 2008; Tian
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et al., 2008) who applied the renormalization group (RNG) theory-based k-İ and standard k-İ

models in the commercial CFD code FLUENT in their simulations. The authors used both Eulerian-

Eulerian (Tu and Fletcher, 1995; Mohanarangam et al., 2008) and Eulerian-Lagrangian (Tian et al.,

2008) approaches, and compared both approaches (Mohanarangam et al., 2007) in terms of their

ability to predict such gas-solid flows. Comparison of predicted gas mean velocities and the root-

mean-square (rms) of velocity fluctuations in the streamwise direction with the Kliafas and Holt

(1987) experimental measurements for Re=3.4710
5

showed good agreement. The Eulerian-

Eulerian approach showed superior agreement with data for the rms of velocity fluctuations of the

particle phase, while the Eulerian-Lagrangian method gave more detailed information about the

particle behaviour. There were some discrepancies between predictions and data for the rms of

velocity fluctuations around the bend region, with the authors observing an under-prediction of the

gas turbulence intensity in the boundary layers on both the inner and outer walls of the bend at

angles of 30
o

and 45
o
. The authors also reported (Mohanarangam et al., 2007) limitations of the

traditional Gosman and Ioannides (1981) model for predicting particle dispersion in gas-particle

flows in curved ducts, as evidenced by the poor prediction of the fluctuating particle velocities, with

most works that implemented this dispersion model showing similar disparities with particle

fluctuating velocity data. More specifically, Mohanarangam et al. (2007) reported that the Eulerian-

Lagrangian approach with the Gosman and Ioannides (1981) dispersion model could not

quantitatively predict the particle velocity fluctuations, whilst the Eulerian-Eulerian approach gave

closer agreement with data. Kuan et al. (2007) also could not predict particle velocity fluctuations

with any degree of accuracy, while Kuan et al. (2003) reported an under-prediction of these

velocities for a gas-solid flow in a bend. Hence, all these authors (Kuan et al., 2003 and 2007;

Mohanarangam et al., 2007) did not report any direct comparisons between their predictions of

particle velocity fluctuations and experimental data. Niu (2001) also used the RNG k-İ turbulence

model to predict gas flows in a duct bend, using the Kliafas and Holt (1987) data for Re=3.4710
5

for validation purposes prior to modelling wall erosion by particles. Fair agreement between

predictions and data was obtained for gas mean velocities and the rms of velocity fluctuations in

this case, although direct comparisons were not made for particle statistics.

The present study describes an Eulerian-Lagrangian approach, based on a RANS model coupled

to a Lagrangian particle tracking (LPT) technique, and applies it in determining the dispersion

characteristics of gas-solid flows, for a range of Stokes numbers, through a duct with a 90º bend.

Compared to the previous studies noted above, the present work consistently applies an

anisotropic approach to predicting both time-averaged turbulence velocities in the RANS model,

and instantaneous velocities in the dispersion model. The present study also uses full three-

dimensional tracking of particles within the flow, with significantly increased numbers of particles

tracked in order to provide reliable particle statistics. The model described is subsequently

validated using data obtained by Kliafas and Holt (1987) in a vertical-to-horizontal flow through a

90
o

bend which considered particle sizes of 50 and 100 m.
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2. Mathematical model

2.1 Eulerian approach for the continuous phase

The Eulerian approach was based on solving the partial differential equations which describe the

conservation of mass and momentum for three-dimensional, turbulent, unsteady, incompressible

and isothermal flows in the absence of buoyancy. The mass and momentum conservation

equations, expressed in time-averaged Cartesian tensor form, are given respectively as:
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Here, the variables in the instantaneous forms of the transport equations have been decomposed

into mean and fluctuating quantities, and the resulting equations time-averaged. Mean values are

denoted by an overbar, and fluctuating quantities by a prime, with ui the three components of

velocity in the corresponding xi directions, t is time,  is the density, P the pressure and  the

kinematic viscosity. The Reynolds stress term in Eq. (2) is unknown and must be expressed in

terms of known quantities using a turbulence closure before these equations can be solved.

The equation set was closed using the second-moment turbulence closure of Jones and Musonge

(1988), with the Reynolds stresses obtained directly from solutions of modelled partial differential

transport equations. Following Jones and Musonge (1988), the closure may be specified as:
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where k is the turbulence kinetic energy and İ its dissipation rate. The redistributive fluctuating

pressure term, Aij, is modelled (Jones and Musonge, 1988; Dianat et al, 1996) as:
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(4)

where ij is the Kronecker delta. Eq. (4) models Aij as a general linear function of the Reynolds

stress tensor under the assumption that the “return” and mean strain (or “rapid”) contributions to

the velocity-pressure gradient correlation, normally modelled separately, are directly influenced by
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mean strain. The model constants were taken as standard (Dianat et al, 1996), with CS = 0.22, C1 =

3.0, C2 = -0.44, C3 = -0.46, C4 = -0.23 and C5 = 0.3.

The turbulence kinetic energy dissipation rate required for solution of Eq. (3) was obtained,

according to (Jones and Musonge, 1988; Dianat et al, 1996), from:
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(5)

where the constants in Eq. (5) were again taken as standard (Dianat et al, 1996), with Cİ = 0.18,

Cİ1 = 1.44 and Cİ2 = 1.90.

2.2 Lagrangian approach for the dispersed phase

The flow regime considered, in line with the experimental measurements of Kliafas and Holt (1987),

is a dilute suspension which occurs at very low particle volume fractions, Įp<10
-6

. In such flows, the

momentum transfer from the particles to the fluid flow has an insignificant effect on the flow,

referred to as one-way coupling, and the standard method used to model such cases is to solve the

fluid phase and subsequently integrate the particle equation of motion. In this approach, particle

inertia and gravity are not accounted for in the fluid velocities seen by the particles, but are

accounted for in the particle equation of motion.

The equations of motion for the computation of heavy particle (ȡ/ȡp1ا) velocity, ),,( pppp wvuu 


,
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, vectors in the absence of particle rotation are given in the Lagrangian

reference frame as:

p

sl

p

p

p

1)(
1

d

d

m

F
guu

t

up





















(6)

p

p

d

d
u

t

x 


 (7)

where the subscript p designates the particle phase, mp is the mass of a spherical particle, g

gravitational acceleration and ),,( wvuu 


is the fluid velocity at the particle position. This velocity is

determined as the sum of the fluid mean velocity obtained from the RANS solution following spatial

interpolation, and the fluid velocity fluctuation calculated using the random Fourier series particle

dispersion model described further below. The term on the left hand side of Eq. (6) denotes the

inertia force acting on a particle due to its acceleration, whilst the terms on the right hand side

represent drag, gravity/buoyancy and shear lift forces, respectively, and Ĳp is given by:
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where dp is the particle diameter, µ the fluid dynamic viscosity, and fD is the drag factor which,

together with the particle Reynolds number  /ppp uudRe
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 , is used to compute the drag

coefficient pDD /24 RefC  . Among the many expressions for fD which can be found in the

literature, the following are the most common (Brenn et al, 2003) and are used in the present

study:
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The slip-shear lift force implemented is the Saffman lift, with the shear lift coefficient, Csl , included

to account for high Reynolds numbers:
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 5.0 is the fluid rotation, and Csl is given as:
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where psl /5.0 ReRe and  /||2

psl


dRe  .

2.3 Turbulence-induced particle dispersion

The instantaneous fluid velocity seen by the particles, i.e. uuu  , required in the force terms

was computed from the summation of time-averaged fluid velocities, obtained from the Eulerian

solution, and fluctuating velocities. The fluctuating fluid velocities seen by the particle are not

known from the RANS solution but were determined using a stochastic method based on a random

Fourier series approach (Fan et al, 1997). This method has been successfully applied in a variety
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of flows, e.g. Fan et al. (1997a, 1997b, 2002), Adams et al. (2011), Njobuenwu et al. (2009, 2012)

and Njobuenwu and Fairweather (2012) and is reproduced here as:
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where Ȗ1 – Ȗ2 are normal distribution random numbers (dimensionless), Um, Vm and Wm (m s
-1

) are

fluctuation amplitudes based on the angular frequency, Ȧ=2ʌf (rad s
-1

), which were obtained from

the fluctuation spectrum and turbulence energy, and f is the frequency (Hz) chosen to give a

Gaussian distribution with a standard deviation of unity in Ȧ. Įu, Įv and Įw, (rad) are the initial

fluctuating phases of the u, v and w fluctuating velocities, respectively, which are randomly

sampled between 0 and 2ʌ, ǻt (s) is the time step, such that the product Ȧ∆t (=2ʌf∆t) has the

dimensions (rad). N (= 10) is the number of terms considered in the series. The amplitudes of

fluctuation, Um, Vm and Wm, are obtained as a function of the turbulence energy spectrum, E,

according to:
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where Ei is the energy distribution ratio with respect to the frequency given (Fan et al, 1997b) by:
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The turbulence energy spectrum E(K) used was that measured by Laurence (1956) for a jet and

applied by Fan et al (1997) as:
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where K is the wave number. Clearly other prescriptions for the energy spectrum could have been

employed, although given that Eq. (16) has been applied to jet, pipe and duct flows (Fan et al.

1997a, 1997b, 2002) with some success it was retained in the present work.

2.4 Particle wall interactions

The Lagrangian tracking routine tracks particle trajectories before and after particles collide with a

boundary wall. A particle collides with a boundary when its centre is one radius from the wall and it

loses a fraction of its momentum before it is introduced back into the bulk flow. The momentum
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change is expressed as a function of the coefficient of restitution, e, which is the ratio of particle

velocity components after impingement to the corresponding components before impingement

(Crowe et al, 1998). Grant and Tabakoff (1975) performed experiments in a wind tunnel using sand

particles impinging on an aluminium surface (dp=200 µm, u=110-170 m s
-1

) to obtain a stochastic

particle rebound model formulated as least square fits to polynomial functions:

32
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where the subscripts n and t represent the normal and tangential directions, respectively, and Į is

the particle impingement angle in radians.

The approach noted above was used in the present work. Additionally, and to model the effects of

wall roughness, a stochastic approach called the “virtual wall” model (Sommerfeld, 1992;

Sommerfeld and Huber, 1999; Crowe et al, 1998) was adopted. Here, the effective impact angle, Į

used in Eq. (17), is assumed to be composed of the particle impact angle to a smooth wall, Į1, and

a stochastic contribution due to wall roughness, ǻȖȟ: i.e.   1
, where ȟ is a Gaussian

random number with zero mean and a standard deviation of unity. In this study, a wall roughness

angle ǻȖ of 3.8
o

was used (Sommerfeld and Huber, 1999), corresponding to 100 ȝm glass particles

impinging on a Plexiglas surface.

3. Numerical solutions

3.1 Boundary and initial conditions

Calculations were performed for the vertical-to-horizontal, square cross-section duct examined by

Kliafas and Holt (1987). The computational domain was fully three-dimensional, with the duct

having a side length (D) of 0.1 m and a radius of bend curvature (R) to bend width ratio (R/D) of

1.763. The duct starts 10D upstream from the bend entrance and extends to 12D downstream from

the bend exit. A schematic representation of the computational domain and the coordinate system

adopted is shown in Fig. 1. The streamwise direction shown in Fig. 1 is (z-ș-x), representing flow

entering the duct, traversing the bend, and exiting the bend respectively. The corresponding

transverse or radial direction is then (x-r-z) respectively. The third spanwise direction is

represented by y and is unchanged throughout the flow domain. In their experiments, Kliafas and

Holt (1987) considered the motion of 50 and 100 ȝm glass beads with a material density of 2990 kg

m
-3

. Bulk gas velocities of 33.09 and 52.19 m s
-1

, corresponding to Reynolds numbers of 2.2×10
5

and 3.47×10
5
, were employed, with corresponding solid mass loadings of 1.5×10

-4
and 9.5×10

-5

and volumetric ratios of 6.0×10
-8

and 3.8×10
-8

. These authors used laser Doppler velocimetry to

measure independently the first and second moments of gas and particle velocities at four

locations within the bend, namely at 0
o
, 15

o
, 30

o
and 45

o
. These measured velocity profiles form the

basis for the validation of the models developed in this study.
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A non-uniform numerical solution mesh was employed such that the distribution of the grid nodes

mimicked the velocity gradients present in the duct flow. The computational grid for every cross-

section was generated using an algebraic grid generation function, with grid lines concentrated

near all the walls using a power law stretching function (Tannehill et al, 1997). To accurately

resolve the flow in the straight sections of the duct, the streamwise solution planes were clustered

around the vicinity of the bend entrance and exit using a linear tangent stretching function. Hence,

in the streamwise direction, the grid contracted from the inlet towards the bend in the upstream

section, was uniform in the curved section of the bend, and expanded in the downstream section.

In the transverse direction, the grid contracted from the bend centre-line towards the wall, allowing

a finer dense mesh to be placed near solid surfaces. The computational domain also used a

symmetry boundary down the central x-z plane of the duct to reduce computer run times.

At the outlet of the duct the streamwise gradients of all variables were set to zero, with pressure

taken as atmospheric. In line with the experimental study, mean velocities and turbulence levels at

the inlet of the duct were specified as uniform, with: bWw  , the bulk inlet velocity, and 0 vu ;

turbulence kinetic energy,
2

b2

3 )( IWk  , and its dissipation rate
12/14/3  lkC , where 09.0C , I

is the initial turbulence intensity, set to 1% of the bulk velocity, l is the turbulence length scale,

given as Dl  1.0 ; and with the normal stresses kuu
2

1 , kvv
5

2 and kww
3

2 and shear

stresses set to zero. For the grid nodes adjacent to the walls, the standard wall function method

(Launder and Spalding, 1974) was applied.

The particle sizes used in the simulations were mono-dispersed, in line with the experiments of

Kliafas and Holt (1987). The particles were distributed randomly across the inlet plane of the duct

with initial velocities equal to those of the fluid at the particles’ position.

3.2 Numerical solution methods

The fluid flow equations were solved using an existing computer program (Jones, 1991) based on

body-fitted co-ordinates. The main feature of the code is that it involves the transformation of

independent co-ordinates to a general curvilinear co-ordinate system in a way that the physical

boundaries of the flow are coincident to the transformed co-ordinate lines. This procedure allows

for complex geometries to be mapped to a rectangular volume, with the computations then carried

out in the transformed domain using a square finite-volume mesh. The components of velocity are

not transformed, and as a consequence are kept as dependent variables. All dependent variables,

including the pressure, are stored at grid nodes and an implicit approximate factored pressure

correction method is used to obtain finite-volume solutions to the flow equations. Central

differencing is used for the diffusion terms, whilst convection terms are discretised using a bounded

total variation diminishing scheme. The resulting system of quasi-linear equations is solved using

pre-conditioned conjugate gradient methods. Overall, the method is second-order accurate in

space and time. Further details can be found elsewhere (Jones, 1991).
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For the particle equation of motion, each particle was tagged and assigned an initial position,

generated from the stochastic sampling approach noted in the previous section. Fluid velocities at

the centres of the particles, determined in computational space, were computed from the sum of

the mean fluid velocities obtained from the Eulerian solution and the fluctuations obtained from the

stochastic random Fourier series method. A fourth-order Runge-Kutta scheme (Neilson et al, 1997)

was used to solve the particle equation of motion, Eqs. (6) and (7), to obtain the individual particle

instantaneous velocity vector, pu


, and the particle position vector, px


, at the end of a time interval

t according to (Tu and Fletcher, 1995):

tuuxx pppp  )(5.0 00 
(18)

where 0

px


and 0

pu


are the particle initial position and velocity vectors. A particle’s path px


was

then tracked by continually updating its spatial position with time. If the particle was still in the

solution domain, the next location of the particle was calculated, and the calculation procedure then

repeated. If the new particle location was judged to be outside the solution domain, the particle had

either struck a solid boundary or had left the computational domain across the exit plane. In the

case of an impact, the impact point was determined first, and then the rebound velocity was

calculated. With the impact position and the rebound velocity as the new set of initial conditions,

trajectory calculations were then continued. If the rebound velocity was sufficiently small, the

particle was assumed to have deposited on the wall. The particle tracker therefore performed five

main tasks: particle location, interpolation, dispersion modelling, integration and particle wall

collision modelling.

Fluid flow calculations were performed using three non-uniform grids of 8040200, 12060200

and 16080200, representing nodes in the transverse, spanwise and streamwise directions

respectively. As noted, and in order to reduce computational costs, only half of the duct geometry

was modelled with a symmetry-plane boundary condition applied along the surface bisecting the

duct. Hence, the number of grid nodes given for the duct width (in the spanwise direction) are for

half of the duct width only. Numerical predictions of the fluid velocity profiles at the exit of the bend,

ș = 90
o
, were used to establish grid independence. This position was chosen for testing because it

accommodates the influences of streamline curvature due to the bend and the pressure gradient

effects caused by the concave and convex bend walls. Analysis demonstrated that results from the

12060200 grid were not significantly changed by further refining the grid to 16080200. Up to

250k particle trajectories were computed, with the results derived giving particle statistics which

were independent of the number of particles employed.
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4. Results and discussion

4.1 Fluid phase

Figure 2 shows the characteristic behaviour of turbulent fluid flow in a curved duct, with contours of

the mean streamwise velocity w , normalised by the bulk velocity Wb, and the pressure coefficient

Cp given along the plane of symmetry (y/D = 0.5) within the duct. Here, the pressure coefficient is

defined as )5.0/()( 2

bWPPC inp  , where P is the local gas pressure and Pin the pressure at the

inlet of the duct. This figure demonstrates the influence of the duct curvature on the flow, with the

presence of the bend causing a non-uniform distribution of both the mean velocity and pressure in

its vicinity. The symmetric flow in the vertical section of the duct, with the peak streamwise velocity

at the duct centre and a near uniform pressure coefficient, is transformed as the flow approaches

the bend, with the peak in the streamwise velocity shifting towards the inner radius of the bend as a

result of the favourable pressure gradient, and with flow near the outer radius decelerating due to

the unfavourable pressure gradient. As the flow advances further into the bend,
oo 300   , the

streamwise velocity increases close to the inner radius wall, with the maximum streamwise velocity

across the entire length of the duct occurring within this section of the bend. The developed velocity

and pressure gradient then persist further into the bend,
oo 9030   , with a subsequent

reversal of the location of the peak velocity towards the outer bend radius, leading to a deceleration

near the inner radius and an acceleration near the outer radius. The effect of the bend on the flow

continues to distances significantly downstream of the bend, with the peak velocity remaining close

to the outer wall of the duct at all distances shown in Fig. 2. Only at distances of the order of

S/D>12 beyond the bend, where S is the length of the straight section of duct, does the flow return

to normality and re-establish a symmetric velocity profile with a peak at the centre of the duct. This

observation, that the bend influences fluid flow at upstream locations of up to S/D-2 and

downstream distances of up to S/D12, has been noted previously in both experimental (Sudo et

al, 2001) and numerical (Njobuenwu et al, 2009) studies.

Predictions of the gas phase, mean streamwise velocity profiles at the locations considered in the

experiments of Kliafas and Holt (1987) are compared with data for the Re=2.210
5

flow in Fig. 3(a)

and for Re=3.4710
5

in Fig. 3(b). The dimensionless distance from the outer wall r* used in this

and subsequent figures is defined as r*=(r-ro)/(ri-ro), where ro and ri are the outer and inner duct

radius, respectively. It is worthy of note that there have been a number of previous attempts to

predict the streamwise mean and root-mean-square fluctuating velocity profiles in the flows

measured by Kliafas and Holt (1987) using a variety of turbulence models embedded within a

RANS modelling framework (Tu and Fletcher, 1995; Chen, 2001; Niu, 2001; Ibrahim et al, 2006;

Mohanarangam et al, 2007 and 2008; Tian et al, 2008). Whether by coincidence or choice,

however, all these previous works have only attempted to predict the higher Reynolds number flow

of Kliafas and Holt (1987) with, to the authors’ knowledge, no publications on the prediction of the
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lower Reynolds number flow. Additionally, no previous work has considered prediction of the mean

and rms fluctuating velocities in the transverse direction.

For the high Reynolds number flow shown in Fig. 3(b) the model used in the present work

successfully predicts the behaviour of the flow at the centre of the duct and in regions near its inner

wall, thereby capturing the effects of flow curvature noted earlier. Some slight over-prediction of the

mean velocity close to the inner wall does, however, occur at ș=30
o

and 45
o
. There is also a slight

under-prediction of the velocity in the boundary layer on the outer wall of the bend at the same

bend angles, with this under-prediction also observed in previous attempts to predict the same flow

(Tu and Fletcher, 1995; Chen, 2001; Niu, 2001; Ibrahim et al, 2006; Mohanarangam et al, 2007

and 2008; Tian et al, 2008). These observations are also true for the lower Reynolds number flow,

Fig. 3(a), although in this case the under-prediction on the outer wall of the duct is more

pronounced and increases with streamwise position ș. In addition, the over-prediction of data on

the inner wall is more apparent, with the deviation from data again increasing with distance around

the bend.

Figure 4 compares experimental and predicted mean transverse gas velocities in the bend section

of the duct for both Reynolds number flows. Here, there is good agreement between the data and

predictions of the present approach for both the Reynolds numbers considered. A positive

transverse velocity is seen to occur only at the entrance to the bend (ș=0
o
), with a negative velocity

occurring at every other location within the bend. These negative velocities are again evidence of

the redirection of the core flow from the inner radius of the bend towards its outer wall. At the bend

entrance, the largest differences between data and predictions occur near the boundary layer on

the inner convex wall, although these are small. Superior predictions are obtained at a bend angle

of ș=15
o
, although by ș=30

o
the present approach slightly under-predicts the negative transverse

velocity in the core region of the flow. This trend persists downstream, although unfortunately it is

not possible to provide any model validation beyond ș=45
o

due to the absence of experimental

data. Overall, therefore, although the model is able to provide acceptable qualitative and

quantitative distributions of the transverse velocity for both Reynolds numbers, it does show some

under-prediction of the secondary flows within the duct, with the magnitude of the under-prediction

increasing through the bend.

Predictions of the rms streamwise and transverse fluctuating velocities are compared with

experimental data in Figs. 5 and 6, respectively. Results for wrms and urms in the bend section for

both Reynolds numbers indicate that turbulence levels are relatively lower in the core region of the

flow, but become considerably higher in the near-wall regions, as would be anticipated. Although

the range of the data is limited in terms of its coverage of the duct width, and its proximity to the

bend walls, the data show that peak wrms values at both Reynolds numbers increase with distance

around the bend on both the outer concave and inner convex surfaces, with the most significant

increases occurring close to the outer wall. These trends are to some extent reproduced by the
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predictions, although increases in turbulence levels on the outer wall in particular tend to be under-

predicted at both Reynolds numbers, with agreement with data clearly superior for the

Re=3.4710
5

case. In contrast, predictions of the transverse fluctuating velocity given in Fig. 6 are

in closer accord with the measurements of Kliafas and Holt (1987). As expected, urms values are

lower than their streamwise counterparts, with increases in urms with distance around the bend in

this case only occurring close to the outer wall. Overall, predictions of wrms and urms at the higher

Reynolds number are in reasonable agreement with data, whilst at Re=2.210
5

significant

differences occur, particularly in the half of the duct bounded by the outer concave bend wall.

4.2 Particle phase

Particle trajectories were predicted using the developed three-dimensional Lagrangian particle

tracker; hence, the full effects of the main streamwise and secondary flows within the duct were

considered in calculating the trajectories. As previously noted, particle dispersion is controlled by

both the instantaneous gas phase velocities and the particles’ proximity to the wall boundaries.

When a particle approaches a wall, it may or may not impact on the wall depending on the

particle’s inertia which is a function of its size. Small particles with low inertia are strongly

influenced by the fluid velocity fluctuations and generally follow the mean fluid motion. The motion

of larger particles, however, is dominated by their inertia, and particle-wall impaction is inevitable

when a particle is within the neighbourhood of a solid surface.

The effect of particle size, and corresponding Stokes number, on particle behaviour and distribution

within the 90
o

bend studied may be considered with reference to the results of Fig. 7. This figure

shows, by way of illustration, trajectories for eight representative particles with diameters of 1, 50,

100 and 500 µm. The trajectories of the smallest particles within the vertical, bend and horizontal

sections of the computational domain are given in Fig. 7(a). These particles have a small relaxation

time and Stokes number St≈0.0026, which implies that they follow the fluid flow as a tracer and

with trajectories that correspond to the gas flow streamlines. The results of Fig. 7(a) do not show

any evidence of particles rebounding from the wall; rather those close to the wall roll or slide on the

wall surface. As the particle size and Stokes number increase the effects of inertia become

significant, leading to the deviation of particle trajectories from the fluid flow streamlines. Figures

7(b) and 7(c) show that particles with diameters of 50 and 100 µm, corresponding to St≈3.65 and

St≈11.85 respectively, impact on the bend outer wall on one or two occasions. There are also

some collisions on the outer wall of the horizontal section of the duct. However, the inertia of the

particles with a diameter of 50 µm is not large enough to cause them to impact both the outer wall

of the bend and the inner wall of the straight horizontal duct section, although this does occur for

the larger 100 µm particles. By way of contrast, the largest 500 µm diameter particles considered,

with St≈205.95, shown in Fig. 7(d) have enough momentum and sufficiently high rebound velocities

from frequent collisions with the outer bend wall that they continue to collide with both the inner and

outer walls of the horizontal section of the duct as they move downstream.
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Particle velocity results considered below are for the Re=2.210
5

flow with 50 and 100 µm

particles, and for the Re=3.4710
5

case with dp=50 µm. The effect of particle inertia on the

dispersion characteristics of the Re=2.210
5

flow with dp=50 µm is demonstrated in Fig. 8 which

gives predictions of instantaneous particle dispersion patterns at different cross-sections in the

duct. It should be noted that the duct is magnified 10 times in the spanwise direction in this figure

for clarity of presentation, and the thickness of the cross-sectional planes is approximately one

particle diameter. The uniform particle distribution at the inlet of the duct and upstream of the bend

section is clear from this figure, although this evolves into a non-uniform distribution within and

downstream of the bend. The formation of a non-uniform distribution with high concentrations close

to the outer bend wall is known as particle roping, and its occurrence leads to a skewing of the

initial particle volume fraction distribution with significant gradients in that quantity across the duct

cross-section. Further details of the particle distribution at selected cross-sectional locations are

presented in Fig. 9. Predicted time-averaged particle volume fraction, Įp, profiles on the duct

symmetry plane are shown in Fig. 10 for those angles around the bend at which subsequent

velocity field comparisons are made, with the volume fraction plotted in terms of the dimensionless

distance from the outer wall. A total number of 250k particles were used in deriving these results,

with this number of particles giving an initial particle volume fraction of magnitude O(10
-8

) at the

inlet plane of the duct. These results quantify the phenomena illustrated in Figs. 8 and 9, on the

symmetry plane at least, and demonstrate peak volume fraction values occurring at distances from

the outer wall (Įp,max, r*) of (1.94×10
-7

, 0.44), (2.02×10
-7

, 0.38), (5.60×10
-7

, 0.063) and (2.64×10
-6

,

0.092) at ș=0
o
, 15

o
, 30

o
and 45

o
, respectively. Similar results were also found for the Re=2.210

5

flow with 100 µm particles, and for the Re=3.4710
5

case with dp=50 µm. For Įp ≤ 10
-6

, the fluid

phase momentum can be considered independent of that of the solid phase, and hence one-way

coupling between the phases can be assumed, as was done in the experiments of Kliafas and Holt

(1987). The results of Fig. 10 would therefore appear to suggest that this assumption holds at all

locations used below in comparisons between measured and predicted particle velocity statistics,

apart from at ș=45
o

where the influence of particle roping may have impacted to some extent upon

this assumption close to the outer wall of the bend.

Besides the particle dispersion and concentration, other important statistics are particle mean and

rms of velocity fluctuations. As noted, Kliafas and Holt (1987) considered the motion of 50 and 100

ȝm glass beads in the Re=2.2×10
5

flow, and 50 ȝm particles in the Re=3.47×10
5

flow. Predicted

mean and fluctuating particle velocities are compared with experimental data for all three cases

below. In deriving these predictions, up to 250k computational particles were required to obtain

statistical independence of the results. Mean and fluctuating particle velocities were derived by

creating bins centred on the grid nodes used to solve the fluid flow equations to capture the

particles’ instantaneous velocities, with a running averaging method employed to compute the

mean and rms of their velocity fluctuations. Mean values, *)(r , of particle velocity components

were therefore evaluated from the instantaneous values *)(r captured in the bins across each

normalised transverse position (r*) using:
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Figure 11 compares predictions of the particle mean streamwise velocities within the bend section

with the experimental data for mono-dispersed particles of 50 and 100 ȝm diameter, and for both

flow Reynolds numbers, with the results showing good agreement between the predicted profiles

and the data for both particle sizes. It is noteworthy that, in predicting these data, the particle-wall

interaction model has, in general, handled the three-dimensional interactions between the particles

and the outer wall of the bend reasonably well. However, there is some under-prediction of the

particle mean velocities close to the concave wall of the bend at ș=30º and 45º, a trend also

observed in previous work (Tu and Fletcher, 1995; Mohanarangam et al, 2007 and 2008), which

may to some extent be due to inadequacies in the particle-wall interaction model and the particle

roping observed in the predictions. However, mean gas velocities, given in Fig. 3, were also slightly

under-predicted close to the outer duct wall at these measurement locations, particularly for the low

Reynolds number case, and as a consequence this under-prediction also affects the particle

velocity results. The under-prediction for particles of 50 ȝm diameter at both Reynolds numbers

starts at an angle of ș=30º (Fig. 11(a) and (c)), and at the same location for the 100 ȝm diameter

particles in the Re=2.2×10
5

flow (Fig. 11(b)), and appears to increase with bend angle. This likely

occurs due to the large number of collisions that take place at this location, with agreement with

data affected by inaccuracies that result from the summation of the velocities of particles that have

and have not rebounded from the concave wall. In contrast, in the core of the flow and the

boundary layer on the convex wall the predictions match the experimental data reasonably well.

Equivalent comparisons between predictions of the particle mean transverse velocities and

experimental data are given in Fig. 12. In this case the predictions reproduce the experimental

data, with good agreement obtained for both particle sizes and Reynolds numbers considered,

even in regions at and beyond a bend angle of 30º where there is a notable increase in the particle

velocity near the concave wall. Some under-prediction of the data is apparent for the 50 µm

particles at ș=45º and for r*≈0.15, where a sharp transition in the predictions contrasts with a

smoother change in the data. Some under-prediction is also apparent in the core of the

Re=2.2×10
5

flow for the same particles.
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It is interesting to note that the gas phase, mean streamwise velocity profiles (Fig. 3) exhibit

significantly more variation across the duct than those of the particles (Fig. 11) which, in contrast,

are relatively flat. For the particle velocity profiles to mimic those of the fluid, the particle Stokes

number should be less than unity. However, in this case the particles had diameters of 50 and 100

µm, corresponding to St≈3.65 and St≈11.85, respectively. These particles are therefore sufficiently

large for their trajectory towards the bend to develop under the influence of gravity, with their

behaviour within the bend itself less affected by that of the fluid and the pressure gradient

encountered in this region of the flow. Consequently, no particles were observed experimentally or

in the predictions between ș=15 and 45 close to the inner wall of the duct. Overall, the mean

particle velocity predictions are in good agreement with the data for the two particle sizes and

Reynolds numbers considered and, despite the under-prediction of particle mean streamwise

velocities close to the outer wall noted above for both particle sizes, the methods of generating

instantaneous velocities from the RANS solutions and of treating particle-wall collisions appear to

be capable of simulating particle dispersion in the duct. Additionally, predictions of the particle

mean transverse velocities are in good agreement with data near both the concave and convex

walls, as well as in the core of the flow. Although reasonable agreement between predictions and

experimental data has been obtained previously by other authors for the streamwise mean velocity,

in particular, using two-dimensional computations, the agreement obtained in the present work

suggests that three-dimensional simulations are more effective and give superior results in

predictions of what is clearly a three-dimensional flow.

Figure 13 shows predicted profiles of the rms of the particle fluctuating streamwise velocity

component, again for two particle diameters and two Reynolds numbers, while Fig. 14 gives

equivalent results in the transverse direction. The predictions in the streamwise direction show

reasonable agreement with the data, although there is a notable reduction in the accuracy of the

predictions for the lower Reynolds number flow when the smaller particles are replaced by their

larger counterparts. Interestingly, however, and for the latter Re=2.2×10
5

flow with the 100 m

diameter particles, the experimental data do appear qualitatively different and out of step with the

other measurements given in Fig. 13, and indeed with those of Figs. 5, 6 and 14. In the transverse

direction, all calculated results show an under-prediction of the data for both Reynolds numbers

and both particle sizes, although reasonable qualitative agreement is obtained. The largest

discrepancy is again for the Re=2.2×10
5

case with 100 m particles, with the under-prediction in all

cases occurring despite the good agreement between measurements and predictions of the gas

phase transverse velocity fluctuations. Observed disagreement between predictions and

measurements close to the outer wall of the duct in Fig. 13 and 14 may again to some extent be

due to inadequacies in the particle-wall interaction model, and the prediction of particle roping.

However, and despite these discrepancies, these comparisons demonstrate that the anisotropic,

random Fourier series approach to modelling particle dispersion does yield reasonable predictions

of both the instantaneous fluid and particle velocities. This again contrasts with earlier studies (Naik
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and Bryden, 1999; Niu, 2001; Mohanarangam et al, 2007) which used the stochastic approach of

Gosman and Ioannides (1981), based on the assumption of isotropic turbulence, to model particle

dispersion, with Mohanarangam et al (2007) in particular reporting that their approach could not

quantitatively predict particle velocity fluctuations.

5. Conclusions

This work has used an Eulerian-Lagrangian approach, representing deterministic and stochastic

modelling methods, to study the behaviour of gas-solid flows in a square cross-section duct with a

90
o

bend. The Eulerian approach was based on a RANS modelling framework closed using a

second-moment turbulence model, while the Lagrangian approach was based on the solution of

the particle equation motion, with particle dispersion modelled using a stochastic approach that

ensured turbulence anisotropy in the flow field predictions. One-way coupling between the particles

and the fluid flow was assumed, in line with the experiments used for model validation, since

predictions demonstrated that an initial particle volume fraction of O(10
-8

) evolved to O(10
-6

), only

slightly exceeding the latter magnitude at 45
o

around the bend and close to its outer wall. Two-way

and/or four-way coupling between the fluid flow and particles might be usefully employed in the

future to more accurately resolve fluid-particle momentum transfer in regions where the particle

concentration is high.

The behaviour of the gas phase has been demonstrated to be characterised by the pressure

distribution within the duct. In particular, the movement of the peak velocity toward the inner wall of

the duct in the first half of the bend, and towards the outer wall in the second half, is well predicted,

demonstrating accurate representation of the effects of the centrifugal force on the flow

characteristics. Detailed predictions of mean and fluctuating fluid and particle velocities have been

validated by comparing model predictions at various angular displacements within the bend with

experimental measurements (Kliafas and Holt, 1987) on dispersed gas-solid flows in a vertical-to-

horizontal flow configuration. Reasonable agreement between the predictions and experimental

data for both gas and particle phases confirm the appropriateness of the modelling techniques

employed.

In all the predictions presented, results for the higher Reynolds number (Re=3.4710
5
) flow, for

both gas and particle phases, show better agreement with data when compared to the predictions

of the lower Reynolds number (Re=2.2010
5
) case. It is notable that previous works that also

considered the test case examined in the present work only compared predictions with the higher

Reynolds number case, with no comparisons available for the Re=2.2010
5

flow. Additionally, and

again unlike previous works, the present approach provides reasonable predictions of particle

fluctuating velocities within the flows.

Overall, the results demonstrate that the modelling approaches developed compare favourably with

those of other authors, noted in the introduction, in terms of their ability to predict particle-laden
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flows through duct bends, and provide a firm basis for the further development of more accurate

methods of handling such flows. Differences between the present work and that of other authors lie

mainly in the consistent application of an anisotropic approach to predicting time-averaged

turbulence velocities in the RANS model, and instantaneous velocities in the dispersion model. The

present study also demonstrates the advantage of three- over two-dimensional particle tracking

techniques in the prediction of particle dispersion, thereby accommodating particles which cross

the central plane of the duct and the impact they have on the predictions, with the associated and

necessary increase in the number of particles tracked in the present work also likely responsible for

some of the improvement in the predicted particle statistics.

Lastly, it is noteworthy that the dispersion model employed does not account for the influence of

the fluid shear Reynolds stresses, and the use of more elaborate approaches (Berlemont et al.,

1990; Zhou and Leschziner, 1991; Burry and Bergeles, 1993) which use both the normal and shear

stresses seen by a particle to give values for the instantaneous fluid velocities is worthy of further

investigation.
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Figure Legends

Figure 1. Schematic representation of computational domain and coordinate system.

Figure 2. Flow development in duct bend: contours showing distribution of streamwise mean
velocity and pressure coefficient.

Figure 3. Measured and predicted values of gas phase, mean streamwise velocities within bend

for (a) Re=2.210
5

and (b) Re=3.4710
5
(ż measured, — predicted).

Figure 4. Measured and predicted values of gas phase, mean transverse velocities within bend

for (a) Re=2.210
5

and (b) Re=3.4710
5
(ż measured, — predicted).

Figure 5. Measured and predicted values of gas phase, rms fluctuating streamwise velocities

within bend for (a) Re=2.210
5

and (b) Re=3.4710
5
(ż measured, — predicted).

Figure 6. Measured and predicted values of gas phase, rms fluctuating transverse velocities

within bend for (a) Re=2.210
5

and (b) Re=3.4710
5
(ż measured, — predicted).

Figure 7. Trajectories of eight particles in half of the duct for (a) 1 ȝm, (b) 50 ȝm, (c) 100 ȝm and
(d) 500 ȝm particles.

Figure 8. Predicted instantaneous particle dispersion patterns in the duct at various streamwise

locations for Re=2.210
5

and dp=50 µm.

Figure 9. Snapshots of particle distribution predictions at selected locations (left to right, and top

to bottom, ș=0
o
, 15

o
, 30

o
, 45

o
, 60

o
and 90

o
, and S/D = 1, 5 and 9) for Re=2.210

5
and

dp=50 µm.

Figure 10. Predicted particle volume fraction, Įp, profiles on the duct symmetry plane for

Re=2.210
5

and dp=50 µm.

Figure 11. Measured and predicted values of particle mean streamwise velocities within bend for

(a) Re=2.210
5
, dp=50 µm, (b) Re=2.210

5
, dp=100 µm and (c) Re=3.4710

5
, dp=50 µm

(ż measured, — predicted).

Figure 12. Measured and predicted values of particle mean transverse velocities within bend for (a)

Re=2.210
5
, dp=50 µm, (b) Re=2.210

5
, dp=100 µm and (c) Re=3.4710

5
, dp=50 µm (ż 

measured, — predicted).

Figure 13. Measured and predicted values of particle rms fluctuating streamwise velocities within

bend for (a) Re=2.210
5
, dp=50 µm, (b) Re=2.210

5
, dp=100 µm and (c) Re=3.4710

5
,

dp=50 µm (ż measured, — predicted).

Figure 14. Measured and predicted values of particle rms fluctuating transverse velocities within

bend for (a) Re=2.210
5
, dp=50 µm, (b) Re=2.210

5
, dp=100 µm and (c) Re=3.4710

5
,

dp=50 µm (ż measured, — predicted).
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Figure 2
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Figure 3
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Figure 4
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Figure 5

0

0.2

0.4

0.6

0.8

1

r*

θ=0o θ=15o θ=45oθ=30o

-0.1 0.3wrms/Wb (a) Wb=33.09m s-1

0

0.2

0.4

0.6

0.8

1

r*

θ=0o θ=15o θ=45oθ=30o

-0.1 0.3wrms/Wb
(b) Wb=52.19m s-1



30

Figure 6
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Figure 7
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Figure 8
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Figure 10
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Figure 11
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Figure 12
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Figure 13
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Figure 14
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