This is a repository copy of Identification Models for Chaotic Systems from a Noisy Data:
Implications for Performance and Nonlinear Filtering.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79551/

Monograph:

Aguirre, L.A. and Billings, S.A. (1993) Identification Models for Chaotic Systems from a
Noisy Data: Implications for Performance and Nonlinear Filtering. Research Report. ACSE
Research Report 485 . Department of Automatic Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
university consortium eprints@whiterose.ac.uk
/‘ Universities of Leeds, Sheffield & York —p—%htt s:/leprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

’;20;. 2 (8)

Identification of Models for Chaotic
Systems from Noisy Data:
Implications for Performance

and Nonlinear Filtering

L A Aguirre and S A Billings

Department of Automatic Control and Systems Engineering
University of Sheflield
P.O. Box 600
Mappin Street
Sheffield S1 4DU
United Kingdom

Research Report No 485

September 1993



Identification of Models for Chaotic
Systems from Noisy Data:
Implications for Performance

and Nonlinear Filtering

Luis A. AGUIRRE! and S. A. BILLINGS

Department of Automatic Control and Systems Engineering
University of Sheflield
P.O. Box 600, Mappin Street — Sheffield S1 4DU - UK

Abstract

This paper investigates the identification of global models from chaotic data cor-
rupted by purely additive noise. It is verified that noise has a strong influence on the
identification of chaotic systems. In particular, there seems to be a critical noise level
beyond which the accurate estimation of polynomial models from chaotic data becomes
very difficult. Similarities with the estimation of the largest Lyapunov exponent from
noisy data suggest that part of the problem might be related to the limited ability
of predicting the data records when these are chaotic. A nonlinear filtering scheme is
suggested in order to reduce the noise in the data and thereby enable the estimation of
good models. This prediction-based filtering incorporates a resetting mechanism which
enables filtering chaotic data. Numerical examples which consider the double-scroll at-
tractor and the Duffing-Ueda oscillator are provided to illustrate the main points of
the paper. d

1 Introduction

When the nonlinearities in a data set cannot be neglected it is necessary to use nonlinear
representations in the modelling of the underlying dynamics. Pioneering techniques for the
identification of nonlinear systems were based on Volterra and Wiener functional expansions.
Such models were, in principle, able to reproduce typical nonlinear phenomena such as
bifurcations, limit-cycles, quasiperiodic motions and chaos. The great difficulty with such
methods however was the prohibitively large number of parameters needed to model even
simple nonlinear functions [1].

The use of nonlinear representations which are linear-in-the-parameters was proposed as
an alternative solution to the identification of nonlinear systems [2, 3]. However, if every
term of these functions were considered, these models would become impractically large for
relatively small degrees of nonlinearity and number of degrees of freedom. This demanded
techniques which would select the most relevant terms among a large (typically thousands)
number of candidate terms and is one of the great challenges in nonlinear identification 4, 5].
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It is now recognised that the structure of a model influences the dynamics and also that
certain model structures are more appropriate for modelling specific systems than others [6].
For instance, it is known that polynomial models are not adequate for modelling systems
with outputs which vary rapidly. Furthermore, it is widely believed that polynomials present
restrictions even when the output is a smooth function because the number of terms compos-
ing the model grows exponentially and consequently the resulting model does not extrapolate
accurately beyond the domain of validity and may even become unstable [7, 8, 9].

Another difficulty which must be faced in most practical applications is the presence
of noise. The effects of noise on estimated models is highly system-dependent in nonlinear
systems. Thus model estimation from noisy data is more robust in some cases than in others.
In particular, it seems that the effects of noise on chaotic systems is somewhat greater than
on non-chaotic systems [10].

This paper is concerned with the estimation of global polynomials from chaotic data cor-
rupted by noise. In order to significantly reduce the difficulties which are usually attributed
to polynomial models due to an excessively large number of terms, an effective algorithm
is used to select the structure of the model. Thus the estimated polynomial models are
composed of a few terms (typically less than 20) and consequently, in several examples such
models perform very well.

It has been observed that the presence of noise contaminating chaotic data is a major
obstacle to be overcome in the identification of chaotic systems. Curiously, the same noise
levels in applications concerned with nonchaotic systems seem not to have such a devastating
effect. This paper investigates the effects of noise on the identification of polynomial models
for chaotic systems and possible causes are conjectured.

In order to verify the validity of some of the conjectures made, a nonlinear filtering
procedure is investigated. Unlike most of the existing filtering techniques, the main objective
of filtering the data in this paper is to enable the identification of polynomial models from
the filtered data and not necessarily to recover the noise-free orbit.

To illustrate that in some cases filtering the data makes the estimation of good models
possible, some examples are presented which use the equations of Chua’s circuit operating
in the double-scroll attractor regime and the Duffing-Ueda oscillator operating over a wide
range of parameter values. Such results seem to confer strength to some of the conjectures
made.

Because the main aim of the present study is to demonstrate the importance of determin-
ing the model structure and, in this context, the usefulness of new prediction based filtering
methods for noise reduction, the results have been implemented based on polynomial model
expansions. The chief aim is to demonstrate the value of the new algorithms in the simplest
and most transparent way and this is best achieved using the polynomial model. It is impor-
tant to emphasise however that the results can readily be extended to other more complex
model forms.

The paper is organised as follows. In §2 the main techniques used in the identification of
global polynomial models is reviewed. Section 3 describes the two systems used in the nu-
merical examples, namely Chua’s circuit and the Duffing-Ueda oscillator. Section 4 describes
the use of prediction-based techniques in the identification of the systems described in §3
when the data are corrupted with purely additive white noise. The effects of the noise in the
estimation of the largest Lyapunov exponent are verified and certain similarities with the
estimation of polynomial models are highlighted. This comparison motivates some conjec-



y(t) =G"[] + G[] + G[] + £() (7)
where £(t) is the residual at time ¢ and is defined as

£(t) = y(t) - 9(2) (8)
and

§(t) = V(1 — 1O + Vi (t—1)0,u + Ti(t—1)O; 9)

is called the one-step-ahead (OSA) predictor and §(¢) is the OSA prediction of y(t). Finally,
equation (6) can be expressed in concise form as

Oy
y(t) = [Uh(t-1) Le(t—1) LIt -1)] | 6,0 | + £(t)
O¢
y(t) = ¥(t-1)6 + () (10)

The following cost function can be defined based on the last equation
Jus(0) = || y(t) = ¥* (¢ - 1)0 || (11)

where || - || is the Euclidean norm. A typical least squares (LS) problem is to find 0 such
that Jps(©) is minimised [14].
A similar cost function can be defined as follows

Jpe(0) = log, det Q(O) (12)

where Q(0) is the sample covariance matrix of the residuals and is defined as

Q6) = 7 e () (13)

=1

One of the major difficulties in solving equation (10) is that such a set of equations
is typically ill-conditioned, especially if the number of terms is large. To circumvent this
problem orthogonal techniques may be used [4, 15].

Effective solutions to handle the problem of determining the structure of nonlinear models
are available in the literature [4, 5]. One solution is based on the error reduction ratio (ERR)
test which provides an indication of which terms to include in the mode. Two advantages
of this approach are i) it does not require the estimation of a complete model to determine
the significance of a candidate term and the respective statistical contribution to the output,
and ii) the ERR test is derived as a by-product of the orthogonal estimation algorithm. For
details see [4, 16].

Once a model is estimated it should be submitted to a number of tests which should
check if the model is adequate and, hopefully, will also provide a measure of goodness for



where A; € IR are the values of the control parameter A for which the system bifurcates.
The a;’s are defined likewise and the summation is taken over all the (Ns) bifurcation points
of interest.

3 The original nonlinear systems

Chua’s circuit is certainly one of the most well studied nonlinear circuits and a great num-
ber of papers ensure that the dynamics of this circuit are also well documented [23]. The
normalised equations of Chua’s circuit can be written as [24]

z = oy — h(z))
Y=z — y + z (17)
z=—PBy

where
miz + (mo—m;) z>1
h(z) = ¢ moz |z |<1 (18)
mz — (my—m;) < -1

In what follows mo= —1/7 and m; =2/7. Varying the parameters @ and £3 the circuit
displays several regular and chaotic regimes. The famous double scroll attractor, for instance,
is obtained for =9 and #=100/7 and has the largest Lyapunov exponent and the Lyapunov
dimension equal to A; =0.23 and Dy =2.13, respectively [25]. These parameter values will
be used henceforth.

Figure 1 shows a trajectory on the double scroll reconstructed using the z component
and plotting z(t) x 2(t — T}) with T, =0.3. The trajectories of the system were obtained by
digital simulation using a fourth-order Runge-Kutta algorithm with an integration interval
equal to 1 x 1073,

The Duffing-Ueda equation [26]

§+ki+y®=u(t) (19)
was originally proposed as a model for nonlinear oscillators and has become a bench test
for the study of nonlinear dynamics. It has also been considered as a simple paradigm for
chaotic dynamics in electrical science [27). One of the main reasons for this is that in spite
of being simple this model can produce a variety of dynamical regimes, from period-one
motions to chaos [28, 26].

To obtain the bifurcation diagrams and Poincaré sections shown in this paper, the input
was chosen to be of the form u(t)= A cos(wt) where the maximum input amplitude 4 was
used as the control parameter. The bifurcation diagram shown in figure 2a was obtained
by taking k=0.1, w =1 rad/s and simulating equation (19) digitally using a fourth-order
Runge-Kutta algorithm with an integration interval equal to 7/3000. Figure 2b shows the
Poincaré section of the attractor at A=5.7.

The systems used in the numerical examples were chosen mainly because of three factors,
namely i) such systems are well documented in the literature, ii) the relative simplicity
of the equations facilitate the presentation of numerical experiments and permits that the
discussions remain focussed on the principal points of the paper, and i) differential equations
were preferred to discrete maps for generating the data records because in practice most
systems are better represented as continuous processes.
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4 Prediction-based estimation of chaotic maps

The chief objective of this section is to illustrate the kind of problems faced when dealing
with chaotic data contaminated with additive noise. Two different problems are investi-
gated, namely the identification of NARMAX polynomial models for chaotic systems and
the estimation of the largest Lyapunov exponent. A common feature to these problems is
that in both cases the algorithms are based on short-term predictions. This observation will
be used to suggest a possible explanation for the estimation problems verified.

4.1 Estimation from noisy data — examples

Two examples are provided in this subsection. The first example considers the Chua system
and the second example uses the Duffing-Ueda oscillator. In both instances white noise
is added to data which were obtained by digital simulation of the differential equations
governing the systems.

4.1.1 Examplel

In this example equations (17) and (18) were used to simulate Chua's circuit operating
in the double scroll region. After transients had died out, 1750 data points sampled at
T,=0.15 and corresponding to the z component were recorded and white noise with variance
o =0.021 was added to the data which resulted in a signal to noise ratio (SNR) equal to
2010g(2.62/0.021) =~ 42dB.

The techniques mentioned in §2 were then used to identify NARMA polynomial models
from the data. The parameters used were £=4, n, =5, n, =0 and n,=20. The total number
of candidate process terms was 125 and the most significant were chosen based on the ERR
test. Several different models were estimated by varying the number of terms allowed in the
model. A typical model follows

z(k) 0.19429x102(k—1)+ 0.13823z(k—3)z(k—4)? - 0.61780z(k-3)

+ 0.10904z(k—1)%z(k—4) — 0.205562(k—1)z(k—5)*

— 0.73391x1072(k—=1)z(k—2)z(k—5)+ 0.516752(k-5)

— 0.124942(k—4)%2(k=5) = 0.237102(k—4) — 0.433452(k—2) — 0.050681z(k—1)°

+ 0.10732z(k—1)z(k—2)z(k—38) — 0.36301z(k—1)z(k—3)z(k—4)

— 0.60481x 1071 2(k—5)% + 0.294192(k—3)z(k—5)? — 0.437932(k —3)2%2(k - 5)

+ 0.69855x 107 2(k—2)2(k—5)%+ 0.519472(k—1)z(k—3)z(k-5)

— 0.146792(k—1)%z(k—5) + 0.156302(k —3)2z(k—4)

+ UF(k-1)0¢ + £(K) (20)

with a§=0.042. The attracting set for this model is shown in figure 3. Clearly, the identified
model settles to a chaotic attractor which is very different from the original one shown in
figure 1.



even for chaotic models since such models should give accurate one-step-ahead predictions
for short sampling intervals®.

The estimation algorithm is illustrated in figure 5. It should be noted that because the
OSA prediction at time ¢ is obtained by taking measured data up to time t—1 and then
predicting just one step ahead into the future, the OSA predictions are normally very close
to the data and do not usually drift away even when the data/model are chaotic. In other
words, the OSA predictor is reset at each iteration with measured data and this resetting
action maintains the OSA predictions close to the original data. Because least squares and
prediction error estimation algorithms use the OSA predictions to update parameter esti-
mates this is a possible justification for the success of such parameter estimation techniques
for some chaotic systems when the data are clean [6).

The resetting effect obtained when the model is used to compute the OSA predictions has
no counterpart when a model is used to simulate the system many steps into the future. In
the latter case, at each iteration the model is initialised with the data predicted in previous
iterations. Thus if the model is sensitive to small variations in the initial conditions the
long-term predictions will eventually drift away from the original data.

However, it should be noted (see figure 5) that only a part of the model is reset, namely the
terms involving inputs and outputs. The rest of the model will be initialised from previously
simulated data via the residuals. Thus the residuals are fedback into the estimation algorithm
in future iterations. This observation motivates a closer inspection of the residuals especially
in cases where adequate parameter estimation is precluded.

Figure 6 shows the variance of the residuals as a function of the number of noise iterations
which are performed during parameter estimation of the Duffing-Ueda oscillator. For most
systems it is expected that such a variance converges to a value which is relatively close
to the noise variance. This figure reveals that the residual variance of the models obtained
with five or less noise iterations is close to the noise variance, 0.015 (note that the model
in equation (21) was obtained performing four noise iterations) but that the variance of the
residuals grows monotonically with the number of noise iterations. This seems to indicate
difficulties with parameter convergence.

4.3 Estimation of the largest Lyapunov exponent

The estimation of Lyapunov exponents is known to be a nontrivial task. The simplest
algorithms [30, 27] can only reliably estimate the largest Lyapunov exponent, ;. Such algo-
rithms are based on predictions of small perturbations along a an attacting set. Estimating
the entire spectrum is a typically ill-conditioned problem and requires more sophisticated
algorithms [30, 31].

Figures 7a and 7b show the estimated values of ); for varying noise levels. Figure 7a
corresponds to the double scroll displayed by Chua’s circuit and figure 7b was obtained using
the Duffing-Ueda equation equation with A=11 (marked with circles) and A=4.5 (marked
with asterisks). In both figures the Lyapunov interval was made equal to the respective
sampling interval used in the identification, that is AL=0.15 and AL=m/60, respectively.

3The sampling rate is usually chosen fast enough in order to guarantee that no relevant high frequency
information is lost due to poor sampling. Therefore in the context of system identification the sampling
interval can usually be considered ‘short’ when compared to the prediction capability of the model.
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A common feature to these graphs is that, in estimating A;, there seems to be a limited
tolerance to noise. Thus after a certain critical value it becomes increasingly difficult to es-
timate this exponent accurately. Moreover, this critical point for A=4.5 (which corresponds
to a non-chaotic regime) is somewhat higher than its counterpart at A=11,

Concerning the curve in figure 7b marked with asterisks, two interesting points are worth
mentioning. First, even for high noise levels good estimates were obtained. Second, with
only one exception, whenever the estimated value of A\; was not considered accurate such a
value was positive.

These figures suggest that, at least for some systems, estimating A; would be more
difficult when this exponent is positive than if it were negative. This would point to the
limited capability of making accurate predictions when the data are too noisy as one possible
reason for some of the difficulties encountered and this seems to account, at least partially,
for the sharp decline in estimation accuracy when the uncertainty (noise) associated with
the data exceeds a certain value. Another possible source of errors is that as the noise level
is increased the Jacobian will tend to be evaluated (more and more frequently) at points
which are more distant from the noise-free trajectory. Because the Jacobian is defined in a
small neighbourhood of the noise-free trajectory, increasing the noise level will weaken the
validity of the evaluated Jacobian which is actually used in the calculations [12].

4.4 Causes of the problem — conjectures

Before conjecturing about possible reasons for the difficulties introduced by noise, two facts
should be remarked, namely i) the deleterious effect of the noise seems to be far more
dramatic in chaotic than in non-chaotic systems, and ii) both the estimation of ); and
the identification of discrete models from the data were carried out by prediction-based
algorithms.

Although the ability of a chaotic model to accurately predict a long time-series is lim-
ited, because of the shadowing lemma, it is still possible to make accurate estimates of ),
[30]. Moreover, it is also possible to identify good chaotic models because only short-term
predictions are used in such cases [22, 6]. Clearly, some other reason should be found to
explain the observed difficulty. A possible reason is suggested in what follows.

There seems to be a critical value of the noise level beyond which the uncertainty in
the data is such that even short-term* predictions are precluded to the extent that accurate
estimates of NARMAX polynomials become very difficult to obtain using prediction error
methods.

Thus if the uncertainty in the data is such that predictions of T, time units into the future
are somehow affected this will be reflected in the residuals which, during the estimation
procedure, will be fedback into the model in posterior iterations. This iterative procedure
will enable the effects of the uncertainty in the data to build up within the estimation
algorithm (via the residuals) and ultimately prevent good estimates. It should be noted that
even for nonchaotic systems the residuals are usually proportional to the noise, thus the
larger the noise variance the larger the residuals for a given model. However, it appears that

4In this context ‘short’ should be understood in relation to the prediction intervals used in the algorithms,
that is, the Lyapunov interval, AL, and the sampling interval, T}, and no longer in relation to the Lyapunov
time —log, 0. /.
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the estimation algorithm is able to handle large residuals rather comfortably for nonchaotic
systems.

Table 1 shows some dynamical invariants for models estimated from data on the double
scroll attractor with different noise levels.

Table 1. Statistics for identified models of the double scroll
SNR (dB) o? o? Al D,

50.8 0.0075 | 0.016 | 0.221 | 2.05+0.025
46.7 0.0134 | 0.027 | 0.206 | 2.04+0.020
43.8 0.0169 | 0.035 | 0.238 | 2.07+0.015
42.7 © | 0.0193 | 0.039 | 0.226 | 2.03+0.019

42.0 0.0209 | 0.042 | 0.130 | 1.84£0.008

¢ Calculated using log,

As can be seen, up to the model identified from the data with noise variance 0.0193
relatively good models were estimated. For the present purposes a model is considered
good if it reproduces the geometry of the double scroll attractor shown in figure 1 and also
possesses similar statistics such as A; and the correlation dimension, D..

It is interesting to note that a relatively small increase in the noise variance from 0.0193
to 0.0209 (~ 8%) was sufficient to hamper the estimation of a good model using the same
values of £, n, and n,. Note that the percentage variation in \; was around 42%. This
suggests that in some sense, NARMAX model estimation from chaotic data may suffer from
limitations of which some are similar to those encountered in the estimation of ), (A1 >0),
which also displays a rather well-defined critical value beyond which accurate estimation
becomes sensibly more difficult.

It is not being advocated that the source of errors in the estimation of A; and NARMAX
models is one and the same. However, some of the results presented so far suggest that, at
least in some cases, the difficulties in estimating A; and NARMAX models from noisy data
manifest in similar ways and apparently share common features.

Thus high noise variance seems to imply i) high uncertainty in the data which is used
to initialize the predictor in the parameter estimation step. This uncertainty appears to
limit the predictor accuracy based on which the model parameters are updated, and i) high
residual variance which is fedback into the model after each noise iteration and in the case
of chaotic models seems to ‘grow’ during parameter estimation.

5 Chaotic data filtering

If the conjectures made in the last section are correct, it would be expected that the reduction
of the noise level in the data would enhance the quality of the estimated models. Therefore
in practice it might be helpful to reduce the noise level to acceptable values by means of
filtering techniques. After a brief overview of existing approaches, a simple way of reducing
the noise level is suggested. Throughout this paper it is assumed that the noise is purely
additive, or in other words the noise is entirely observational. This has become a standard
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procedure in the literature [32, 9] because “while there are situations where, say, parametric
or nonlinear fluctuation coupling are appropriate, experience has shown that the additive
form is adequate for most modeling purposes” [11].

5.1 Filtering and noise reduction — existing techniques

One way of eliminating unwanted frequencies in a signal is by filtering. When the main
objective is to ‘clean’ the data from additive noise a simple alternative is the use of low-
pass filters. An obvious deficiency of this approach is that the filter will also attenuate
frequency components of the signal which are above the filter cut-off frequency. This could
be particularly detrimental if the signal to be filtered is chaotic with a broad-band spectrum
such as those produced by the logistic and Hénon maps. Moreover, moving average (MA),
global linear fitted maps and linear low-pass filters may distort the signal badly unless the
data are highly oversampled [9]. Autoregressive (AR) filters can increase the dimension of
the attractor [33] especially if the damping is too weak [9)].

Ways of overcoming some of the aforementioned problems have been suggested in the
literature and include the use of acausal filters [34] and reverse filtering [35].

A particular aspect of filtering that has attracted some attention among chaoticists is
the noise reduction problem. Given a chaotic time series z(t) contaminated by additive noise
e(t), it is desired to filter the measured data y(t)=z(t)+e(t) in order to recover z(t). This is
useful in ‘cleaning’ Poincaré sections and embedded attractors which have been blurred by
noise.

Another aspect of this problem is to find a ‘noise-reduced’ orbit 7(t) from which statistics
such as A;, D, and the attractor geometry can be more accurately estimated than if the noisy
data y(t) were used. This is sometimes referred to as statistical noise reduction as opposed
to recovering z(t) from y(t) which has been called detailed noise reduction [36)].

Filtering based on model predicted outputs, whilst reducing the noise content in the data,
will not guarantee that §(t) remains close to y(t) (and ultimately close to z(t)) if the latter is
chaotic. Note that ‘closeness’ between (t) and y(t) is not necessarily required in statistical
filtering but it is usually a requirement in other applications.

Ways of ensuring that §(t) remains close to y(t) have been suggested which demand that
7(t) be found by minimization of a cost function of the form

Inr= 3 (L) - gk = 1)) + Ja[g(k) — ()} (22)

k=1

where J;[] and J;[-] indicate functions which are usually metric norms and g() are linear
maps which describe the dynamics in a neighbourhood of a point on the true orbit. Clearly
Ji[] penalizes deviations from the true deterministic dynamics described by gi(-) while J|]
guarantees that the cleaned orbit remains close to the measured orbit.

In particular, Kostelich and Yorke (1988, 1990) have used

T[] =11 9(k) — gk (@(k = D) 1I* + I 5(k + 1) — gx(3(K)) I* (23)
where || - || is the Euclidean norm, and
T[] =] g(k) — y(k) II (2¢)
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while Farmer and Sidorowich (1991) suggested that J;[-] be chosen as above and
Al)=2 || ge(@(k)) = 9(k+1) I p (25)

where p) are Lagrange multipliers. The minimization of Jyr is a typically ill-conditioned
problem, especially for chaotic time series [36]. Some improvement in the numerical condi-
tioning however can be attained at the expense of performance [37].

A clear limitation in any real noise reduction problem is that the underlying dynamics
are not usually known a priori. If the underlying dynamics were perfectly known then maps
describing the dynamics could be used to separate the predictable part of the orbit from
the unpredictable portion, which is the noise. But, as often happens in practice, if the map
has to be estimated (learned) from the noisy data, the noise will pose limitations on the
accuracy with which the map can actually be estimated and, of course, an inaccurate map
will not be able to exactly separate the noise from the true orbit.

It is therefore not surprising that the method proposed by Hammel (1990), which was
derived from the proof of the shadowing lemma, outperforms the aforementioned methods
because it assumes that the maps describing the underlying dynamics are known in advance.
A method suggested by Marteau and Abarbanel (1991) does not assume that the dynamics
are known but requires that some noise-free data be available to estimate a set of conditional
probabilities which are subsequently used to reduce the noise in a different noisy time series.
Although the importance and contribution of the two latter methods are not being questioned
here, it seems, however, that the assumptions made are somewhat restrictive in most practical
situations.

In the field of system identification, improving the signal to noise ratio (SNR) is also of
interest because this facilitates both the unbiased estimation of the parameter vector and
the correct determination of the model structure. The chief idea is to estimate the noise-free
data and then use this estimate to perform the parameter estimation. A way of doing this
is to use the following predictor which can be derived from equation (10)

§(t) = VI, (t—1)0y. (26)

It should be realised that in the last equation the parameter vector éw was estimated
from the original noisy data as is indicated by the absence of the hat on the subscript y. On
the other hand, the matrix ¥, (t—1) was formed using predicted values of the data, that is
§(t) up to and including time t—1. Because y(t) is an estimate of z(t), equation (26) can be
used in suboptimal parameter estimation schemes [38].

However, if the data were chaotic after a few iterations g(t) would not be an accurate
estimate of z(t) because of the sensitive dependence on initial conditions. Therefore the
use of §(t) in suboptimal schemes seems somewhat restricted for chaotic systems. It should
be noted however that even if §j(t) is not close to z(t) the former might convey consistent
information about the underlying dynamics, but for filtering purposes it seems appropriate
to require that the filtered data resembles the original records.
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5.2 Separating noise from data — preliminaries

Equation (5) reveals that the noisy data, y(t), is composed by predictable and unpredictable
components® and that the unpredictability stems from the inability to predict the noise at
time t based upon measurements up to time t—1. In principle, if the data were noise-free
F,[']=0 and F,[y(s),u(s)] would be completely deterministic.

For the time being it will be assumed that the noise e(t) is white, uncorrelated with the
input and purely additive, therefore e(t) is totally unpredictable. Consequently a predicted
time series would not include e(t). Thus in what follows a predictor is sought to separate
the noise from the data.

In order to use equation (5) as a predictor the following assumption should be made

Assumption 5.1 The map Fy[-] and the past values of the noise, that is e(s) s <11, are
known.

The data can then be predicted by neglecting F,[-], which cannot be used because e(t)
is unknown. Thus

9(t) = Fply(s),u(s),e(s)] s<t-1 (27)

Billings and Voon have argued that even if the noise is purely additive it will induce
cross-product terms in the model, represented by G¥*¢[-] in equation (7) [38]. If such terms
are significant and are not included in the model, parameter estimates will become biased.
For the sake of simplicity the following assumption is made

Assumption 5.2 The cross-product terms, induced by the noise and the nonlinearities, are
negligible®.

In this case the cross-product terms of Fy[] consist of output and input terms only.
Consequently equation (27) can be rewritten as

9(t) = Fopuly((s)yuls)] + Frele(s)] s <t-1 (28)

Under the assumption that e(t) is white, or in other words structureless, Fj.[:], which
can be viewed as the noise model, will be zero”. Thus

9(t) = Fpuly((s),u(s))  s<t-1 (29)

which indicates that in ideal conditions (t) is the purely deterministic noise-free component
of the data.

5]t is realised that a purely deterministic chaotic system is long-term unpredictable along the unstable
manifold although the dynamics can, in principle, be predicted to a certain extent over short periods of time
along such a manifold. In what follows predictable and unpredictable should be understood in a statistical
sense, see footnote 2.

8This assumption is made for the sake of a clearer argument but it is not needed in practice. Should this
assumption be untrue in a certain application, this would be revealed by the correlation functions described
in §2.

"In practice, even when e(t) is white Fy,[] is allowed to have some terms in order to guarantee that the
residuals will be white as well. Moreover, this also accounts for inaccuracies which are not necessarily related
to the data such as uncertainties in the model structure, roundoff and numerical errors.
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The basic idea behind this filtering scheme is to discriminate between the unpredictable
part of the signal, that is the noise, and the purely deterministic component which is the
noise-free data.

Summarising, two things should be noted. First, the use of a predictor, in principle,
enables the separation of the predictable and unpredictable components. Second, the pre-
dictable component is still stochastic because Fy[-] in equation (27) depends on e(s) s < t-1.
Hence two things should be assumed in order that Fy[] be purely deterministic, namely,
i) that the cross-product terms involving the noise be negligible (see assumption (5.2)), and
ii) that the noise be completely structureless such that F,.[] = 0. However, two practical
difficulties can be pointed out i) Fy[-] is not known @ priori, and ii) because the noise cannot
usually be measured separately from the data, e(t) will not be known either. Consequently
assumption (5.1) will not hold in most real applications. In the next subsection practical
solutions to these problems are suggested.

5.3 The resetting filter

It has been argued that, because the noise is totally unpredictable, the true deterministic
signal can be distinguished from the noise by means of prediction techniques. In other words,
if a predictor is found such that the deterministic part of the data is perfectly predicted, the
predicted trajectory will be the original noise-free data. Therefore this procedure eliminates
the noise by not predicting it (note that this is most natural since the noise has been assumed
to be white and consequently unpredictable in nature). This approach contrasts with some
classical filtering techniques which eliminate the noise by frequency attenuation.

Hence it is crucial in this approach that most of the dynamics in the data be predicted
and to achieve this the model structure must be ‘exible’ enough. A common practice in
linear filtering is the use of overparametrized moving average (MA) and autoregressive (AR)
models [15). However, it seems that even overparametrized linear models will not in general
predict the nonlinearities in the data, unless highly oversampled data are used which, on the
other hand, will induce numerical difficulties.

Because F['] is not known, in practice this map has to be estimated from the data and
even if the noise is assumed to be white, noise terms should be included to guarantee that
the residuals will also be white. In other words noise terms are included to ensure that all
the dynamics in the data have been learned and will be predicted.

From what has been discussed, a practical filter would be of the form

(t) = I, (t— 1) O + T3 (t — 1) O (30)

where the hat indicates estimated values and the residuals have been used as estimates of
the noise.

Two difficulties however still need to be settled. First, in §5.1 it was argued that
prediction-based filters would not in general perform satisfactorily if the data were chaotic
because the filtered signal would not be constrained to remain close to the original data.
Second, from equation (30) it is clear that §(t) depends on £(s) s < t—1, and because y(t)
is used to determine §j(¢+1) the residuals would be reintroduced into the predictor. Even if
the residuals are zero-mean and white, because of the nonlinearities in W2, (t—1), the effect
of the ‘re-used’ residuals cannot be assumed to converge to zero.
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The second difficulty can be overcome by using suboptimal least squares techniques which
neglect W7(t — 1) ©¢ [38]. This can only be done safely if the residuals are white or nearly

white and this presupposes that the structure of ¥Z, (¢ — 1) has been adequately chosen and

that ©,, is unbiased. However, these assumptions are not realistic in many situations because
the noise will preclude the correct choice of model structure and the unbiased estimation of
the parameter vector. Moreover, this approach leaves the first difficulty unresolved.

The following predictor overcomes the two aforementioned difficulties

9(t) = U, (t— 1) O + T¥(t — 1) &, (31)

It should be noted that in this case §(t) is predicted based on previous values of the
measured data y(s) s < t—1 and not based on previously predicted values such as in
equation (30). Moreover, since this predictor is used to predict only one step into the future,
the predicted value §(t) is, in most cases, guaranteed to remain close to the data y(t). This
can be interpreted as being a consequence of the resetting effect achieved by using measured
data to initialise the predictor at each step. The predictor in equation (31) will be referred
to as the resetting filter (RF) and it is adequate for filtering chaotic signals.

Remark 5.1 The similarity of equations (31) and (9) is evident. The resetting filter in
equation (31) does not include the terms T (t=1) O, because of assumption 5.2. However,
in practice this is not necessary and if such terms are not negligible (this would become
evident from the correlation tests) the resetting filter would be identical to the OSA predictor
shown in equation (9) and the filtered data §(¢) would be the OSA prediction of y(1).

Remark 5.2 The qualitative effect attained by the resetting filter is, in some respects,
analogous to other methods. This can be verified by considering equation (22). It is worth
noticing that the resetting effect of the RF guarantees that J, is kept small. Moreover,
the parameter vector of the RF is obtained by minimising Jzs in equation (11), which is
clearly analogous to J; in equation (22). The main difference is that whilst gx(+) usually
represents local linear maps, ¥7(t—1) Qisa global nonlinear map which may include inputs
and residuals in addition to output terms.

Remark 5.3 Predictor based filtering for chaotic systems will not work in general because of
the inability of making long-term acurate predictions along the unstable manifold. Therefore
in such directions, the filter would actually amplify the noise [39]. The same is valid for the
RF, but to a much lesser extent because of the resetting effect which will guarantee that any
noise amplification along the unstable manifold is kept to a minimum.

Remark 5.4 In this work the final objective is to obtain filtered data from which good
NARMAX polynomial models can be estimated. Consequently a relatively small increase in
the SNR may well be considered satisfactory provided that such an increase is sufficient to
reduce the uncertainty in the data below the critical value conjectured in §4.5.

6 Requirements on the resetting filter

The aim of this section is to investigate some of the requirements on the RF in order that a
statistically sound model be estimated from the filtered data.
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6.1 White noise

In order to keep the analysis focussed on the main ideas a simple example is first presented
which assumes that the data are linear.

6.1.1 A linear model
In this example it is assumed that the underlying dynamics are described by
z(t) = ayz(t — 1) + bu(t - 1) (32)

and that the noise e(t) is white. Thus the measured data can be represented as follows

W(e) = o(0)+ed)
y(t) = aiz(t—1)+ bu(t —1)+ e(t)
y(t) = VZ.(t—1)Ou +e(t) (33)

Consider the following parametrization

y(t) = awy(t—1)+bu(t—1)+cf(t—1)+£(1)
y(t) = Ye(t—1)Ou + PE(t - 1)0¢ + (1) (34)

where ©,, = [a; b;]7 and one noise term has been included in the model. The following
resetting filter can be obtained from the last equation

§() = ary(t — 1)+ byu(t — 1) + &t — 1) (35)
Expressing the filtered signal in terms of the noise-free data z(t) yields

9t) = afz(t—1)+e(t— 1))+ but—1)+ &t -1)

~

9(t) = VI (t=1)0,, +&€(t—1)+ are(t—1) (36)
The bias® of the estimated parameter vector ©,, is defined as
By = E{8,} (37)

where E{-} denotes mathematical expectation and

O =0, -0, (38)

then equation (36) can be written as

7)) = U1, (1 = 1)[Op + O] + &t — 1) + d1e(t — 1) (39)

8This definition requires that both the estimated and true parameter vectors have the same dimensions.
In the next section a more intuitive concept of bias will be used which will not be restricted to models with
the same structure.
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Further analysis and numerical calculations show that in this particular case a; =~ —¢;.
Therefore equation (39) can be rewritten as

§(8) = UL(t ~ 1O + U3t — 1), + et — 1) — £(¢ = 1) (40)

Comparing the latter equation to (33) it becomes clear that while the measured data,
y(t), have a certain degree of uncertainty due to the noise e(t), the filtered data at time 1,
§(t), do not depend on the unknown noise at time t which was eliminated during prediction.
On the other hand, the filtered data have two other sources of uncertainty, namely i) a term
due to the difference, ©,, between the true and the estimated parameter vectors, and ii) a
term due to the error between the noise and the residuals.

If the map which describes the underlying dynamics were known, ©,=0 and consequently
a perfect separation of noise and deterministic data would be possible at least in principle.
This would therefore imply £(t)=e(t) and, in the light of equations (33) and (40) it can be
seen that ideally

9(t) = ¥o,(t—1)0u =y(t)—e(t)
9(t) = =(t) (41)

In order to investigate the bias of a parameter vector estimated from the filtered data,
the following parametrization is used®

(1) = ag(t-1) +.51u('t--—1) + &(1)
§(t) = Wi.(t—1)O +£(2) (42)

2>

Noting that £(t)=y(t)—9(2), the last equation can be expressed as
o) = Gyt = 1)+ bt — 1)+ E0)+ €0 — el = 1)
y(t) = Wi (t—1)Op +£(2) + £(1) — a:€(t — 1) (43)

The least squares estimate of @y, obtained from the last equation is given by the well
known expression

Opu = Asy(t) t=1,2,...,N (44)
where
Apu = [Tt — L= DT (t - 1) (45)
Therefore, the bias in the parameter vector estimated from the filtered data is

E{éiu} — Oy = E{Ay(1)} — O (46)

and substituting equation (43) into (46) gives

SIn a real application this parametrization would correspond to the final model.
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E{éﬁu} - @w

E{An Y5 (t - 1)05 — O} + E{Au£(1)}
—&E{And(t - 1)} + E{AL{(1)} .
= E{0}+E{Anf(t)} - aE{AnE(t— 1)} + E{ALE®N)}  (47)

Two conditions must be satisfied in order that the bias be zero, namely i) that the
resetting filter itself be unbiased, this will imply E{©,} = 0, by definition, and both the
second and third terms of the right hand side of the last equation will also be null because
if the filter is unbiased the residual sequence £(t) is uncorrelated with the data in A,,, and
ii) that the residuals of the model in equation (42) also be uncorrelated with the raw data.
It is noted that if the filter is unbiased all the predictable part of the raw data is preserved
in §(t). Consequently, if £(t) is not to be correlated with the raw data it is necessary that
all the dynamics, that is the predictable part, of the filtered data be adequately modelled
by equation (42). In other words, the fourth term in the right hand side of the last equation
will be null if the model in equation (42) is unbiased with respect to the filtered data.

6.1.2 Nonlinear models

The preceding analysis was carried out for a simple linear system. Nonetheless this included
all the main points which are also relevant to nonlinear systems and which will be discussed
further in what follows.

The main conclusions of §6.1.1 were that in order to avoid introducing bias in the filtered
data it is necessary that the filter be unbiased with respect to the raw data and that the
final model be unbiased with respect to the filtered data.

These conclusions remain true for nonlinear systems. The difference, however, resides
in the concept of bias. A linear model is unbiased if ®¢(7) and ®;,(7) satisfy the first
two conditions in equation (14). If the data are nonlinear, it is known that these correlation
tests are not sufficient and will not, in general, indicate the presence of unmodelled nonlinear
dynamics in the residuals [18]. Thus a nonlinear model is unbiased if all the tests of equation
(14) are satisfied, in the case of nonautonomous systems, or if all the conditions in equation
(15) are met in the case of autonomous systems. Consequently the resetting filter must
satisfy the aforementioned correlations tests in order not to introduce bias in the filtered
data.

A useful way of interpreting these results is to see the act of filtering as the prediction
of the underlying dynamics. Thus predicting the data has the desirable side effect of not
predicting whatever cannot be predicted and in so doing reducing the noise. If the filter is
unbiased it will not leave any relevant dynamics unmodelled in the residuals. In other words,
if the filter is unbiased all the dynamics have been learned by the filter and will be used to
reduce the noise. Hence the resetting filter can be seen as predicting the dynamics through
the noise.

If the data are nonlinear, in order that the filter be able to learn the underlying dynamics,
it is necessary that the nonlinearities in the data be well represented in the structure of the
filter. If this is achieved the underlying dynamics will be adequately learned during parameter
estimation and the filter will be unbiased.

Therefore the concept of bias can be associated to the mechanism of finding mathemat-
ical representations for the dynamics in the data and including such representations in the
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model. Thus if the dynamics are well represented by the model structure, they will also be
learned during parameter estimation and the final model will be unbiased. Conversely, if
the structure of a model is not adequate the dynamics will not be accurately learned and
consequently unmodelled dynamics will appear in the residuals and will be detected by the
correlation tests indicating bias.

Concerning the choice of the parametrizations in equations (34) and (42), it should
be realised that the choice of the filter structure is not as critical as it is for the final
model. The only requirement on the filter structure is that it should be complex enough to
adequately capture the underlying dynamics in a local sense. Because the resetting filter is
used to predict just one step ahead, the harmful effects of overparametrization as well as the
inaccuracies induced by the presence of noise in the raw data apparently do not jeopardise
the performance as much as if the filter were used in a global way, that is with no resetting.
The primary concern of the filter is to predict whatever is predictable in the data on a
one-step-ahead basis.

By contrast, the structure of the final model should be carefully chosen since it is de-
sired that this model be a faithful approximation of the underlying system and not just a
prediction of one data set. It is well known that global polynomials do not always extrapo-
late well beyond their domain of validity [7], that they tend to oscillate wildly [8] and that
for systems with many degrees of freedom global polynomials become impractically large
[9]. Nevertheless it has been suggested that these effects and others such as the appearance
of spurious dynamical regimes, ghost effects and instabilities are usually a consequence of
overparametrization and can sometimes be considerably alleviated if appropriate structure
detection methods are used [6].

Summarising, in practice there is no need to choose the same structure for both the
filter and the final model. This was done in §6.1.1 for the sake of simplicity only. However,
the filter structure must be complex enough to enable adequate learning of the underlying
dynamics. This implies that the models must be unbiased and in the case of nonlinear
systems this can be easily verified using correlation tests. Other aspects related to the
choice of the filter and model structures will be considered in §6.3 and §8.

6.2 Correlated noise

In this section it is assumed that the noise corrupting the data is expressed by
n(t)=ce(t—1)+e(t) (48)

where e(t) is white. Clearly, the noise 7n(t) is correlated or, in other words, coloured. In this
case the measured data are y(t)=z(t)+7(1).

The analysis for this case is very similar to the one described in § 6.1 and the main results
of that section hold for correlated noise. However, there is a subtle difference which will be
pointed out adopting a rather more heuristic approach.

It should be appreciated that if the same procedure described in §6.1.1 were followed in
the case of correlated noise, the RF would still reduce the unpredictable part of the noise
which is e(t). Because the noise is correlated, there is a ‘predictable’ part of the noise which
is represented by the term ce(t —1). This portion of the noise is not removed from the data
by the RF in equation (35). In order to see this in a different way, consider the following
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9() = y(t)—£@) + f(O.)
9(t) = =(t)+n(t) - &) + F(O.) (49)

where f(©.) indicates a term which is due to the difference between the true and the filter
(estimated) parameter vectors. If the map describing the underlying dynamics is known
then f(©.)=0 and {(t)=e(t). If the noise is white n(t)=e(t) and consequently (L) ==(t).
However if the noise is correlated such as in equation (48) then

9(t) = z(t) + ce(t - 1) (50)

As argued above, j(t) contains the predictable part of the measured data. In the case
where the noise is coloured, the predictable part of the noise is correlated with previous
measurements and consequently it appears in the filtered data together with the purely
deterministic orbit.

Equation (50) also suggests that an estimate of z(t) can be obtained by removing from
g(t) the correlated part of the noise, that is §j(t)—ce(t — 1) = z(t) where in practice an
estimate of e(t — 1) would be used. This suggests that the resetting filter in equation (35)
could be used if the last term in the equation were omitted, thus

9(t) — &é(t-1)= f}ly(f — 1)+ f’lu(t - 1)
9c(t) = ay(t—1)+bu(t—1) = z(1) (51)

Hence, a more general resetting predictor can be defined?®
§(t) = Lo (t = 1) Oy + (¢ - 1) 6 — G[ (52)

where G¢[] is the noise model and it is suggested that this model can be taken as follows
G‘[]=0 if the noise is white -
G¢[] = UF(t—1) O, if the noise is correlated (53)

The last equalities were based on the fact that if the noise is white it is also structureless
and therefore G¢[-]=0. In the case of correlated noise it is suggested that the ‘noise dynamics’
are modelled by ¥§(t—1) ©¢ and, since G¢[-] can be viewed as an estimate of the noise model,
the second equality above follows.

It should be noted that in many practical situations it will not be known if the noise
is white or correlated. Thus the following procedure is suggested. A model is estimated
from the raw data. If such a model does not represent the underlying dynamics then, if it
is unbiased, take G*[] =0 in equation (52) and filter the data. A model is then estimated
from these filtered data. If such a model is accurate then the procedure may be stopped,
otherwise the data should be filtered again. In this second stage the filtering is based on the
second estimated model and the two options of equation (53) are possible thus yielding two
different filters. If the noise in the raw data was correlated it would be expected that the

10Note that the definition in equation (31) was based on the assumption that the noise was white.
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choice G¢[] = ¥F(t — 1) éﬁ would yield a filtered data sequence from which a better final
model is estimated. This procedure will be illustrated in § 7.

The filtered data is ideally the predictable part of the raw data. All the dynamics in y(t)
are modelled by the first two terms in the right hand side of equation (52). If the noise is
correlated it will also have some dynamics which will be incorporated in W (t — 1) ©¢. The
presence of such dynamics in §(t) can be avoided by not predicting them. This, of course,
can only be done if the portion responsible for predicting the noise dynamics is omitted from
the filter. This is indicated by the last term in equation (52).

The discussion above is also valid for nonlinear systems. If the data are nonlinear the
resetting filter in equation (52) will also be nonlinear. Because the filtering achieved by the
RF is a one-step-ahead-prediction-based procedure it is vital that the underlying dynamics
be well represented by ¥7 (t—1) O, and that, if the noise is correlated, the noise dynamics

be well modelled by ¥7(t — 1) (:)5. This requires that the RF be unbiased as discussed in
§6.1.2.

6.3 Limitations on the RF performance

The major impediment for achieving complete noise reduction is that the dynamics are not
known and should be learned from a finite record of noisy data. Since the RF is estimated
in the same way as the final model and in view of the examples provided in §4.1, it is clear
that the identification of a filter suffers from the same limitations as the estimation of the
final model itself.

The main difference is that the latter is required to learn the underlying dynamics in a
global sense. This means that the model should be able to reproduce dynamical invariants of
the system such as attractor geometries, Lyapunov exponents, fractal dimensions, bifurcation
patterns etc. On the other hand, the filter, which is also a global polynomial estimated only
once based on the entire data records, is only required to perform locally on the data. This
can be seen as another consequence of the resetting effect peculiar to the RF. As the data
is predicted and the noise reduced, the filter is reset at each step. The number of data
points required to reset the filter equals the maximum lag of the model, n,, which is usually
small (typically less than ten) and thus corresponds to a very narrow window of the data
records. Therefore a certain polynomial that would not perform satisfactorily as a global
model could be successfully used as a resetting filter. This does not mean, however, that
the filter is immune to the noise but that, as a consequence of the way the filter is used, a
model may not reproduce dynamical invariants but may give good results as an RF.

This distinction between the performance of a resetting predictor and a polynomial model
has been pointed out in a different context: “using a fitted polynomial model to simulate
the underlying process may often result in divergent behaviour. It is, however, quite another
matter to compute h-step-ahead predictions using a polynomial model. This is because in
the latter case observed past time-series values are used in the calculation. For a stationary
nonlinear time series generated from an underlying process within a stable region, provided
that his not too large, the prediction calculated based on observed time-series values should
remain stable” [40].

The deleterious effects of too high a noise level can impair the quality of an estimated
model to the extent that even if such a model were used as a resetting filter the final noise
reduction attained would be insufficient to enable the estimation of good models from the
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filtered data.

Another situation in which the performance of the RF is diminished occurs when the data
are, in nature, rather unpredictable such as the time sequences generated by the logistic and
Hénon maps. The autocorrelation function of the time series of these maps resemble that of
white noise, that is the correlation time is extremely short. In such cases the RF would have
difficulties in separating the unpredictable noise from the nearly unpredictable data. Thus
it seems that the RF is better suited in applications where the clean data are smooth with
relatively long correlation times.

Two ways of improving the performance of the RF are suggested in what follows. The
lower bound for the variance of the residuals, o}, is the variance of the white noise in the
data, o?, thus a? > o2, Increasing the number of terms in the RF will, in general, reduce
of. Therefore terms can be added to the filter until o7 is reasonably close to 2. It should
be noted, however, that overparametrizing nonlinear models may induce spurious dynamics
and consequently injudicious overparametrization should be avoided.

The performance of the RF can also be improved by performing the filtering on an over-
sampled set of measured data. After filtering the data should then be decimated in order
to provide an adequate sampling. It has been shown that the sampling rate influences the
dynamics of the final model and that, for most ‘smooth’ continuous systems, small varia-
tions in the value of the sampling rate are automatically compensated by the identification
algorithm by means of selecting a slightly different model structure [6].

Highly oversampled data should always be avoided because they could induce numerical
problems due to the data being nearly singular.

Noise reduction techniques based on local maps can achieve high levels of noise reduction
[36]. This is a consequence of a higher accuracy achieved in learning the dynamics locally over
a large (typically fourty) number of neighbourhoods in the reconstructed state space. Such
techniques can also be used to filter the data which will be used for identification purposes
but would require a time-demanding algorithm which is very different from the one used in
the identification.

7 Numerical results

In this section some of the ideas discussed in §4, §5 and §6 are illustrated by means of
numerical simulations.

7.1 The double-scroll attractor

The objective in this example is to identify a NARMAX polynomial model for Chua’s circuit
from noisy data on the double-scroll attractor. In order to illustrate the procedure, the same
SNR (42dB) and the same model structure ({=4, n, =5 and n, =0) used in example in
§4.1 were considered. As before, the noise is zero-mean, white and gaussian.

The noisy data were sampled at T, = 0.015 in order to improve the performance of the
filter. The first 2000 points of this data set were used to estimate the following model

z(k) = 0.80773z(k — 1)+ 0.50704 x 107 2(k — 2) + 0.319962(k — 3)
— 0.13370z(k — 10) + 0.25039 x 107 2(k — 4) — 0.50831 x 107 z(k — 9)
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— 0.15806 x 107 2(k — 5) — 0.14443 x 107 22(k — 1)%z(k — 7)

— 0.551606(k — 1) — 0.91378 x 1072 £(k — 18) + 0.149442(k — 10)

+ 0.57925 x 1071¢(k — 15) + 0.72448 x 1071¢(k — 17) — 0.24648¢(k — 3)

— 0.52401 x 1071 £(k — 6) — 0.40081 x 10~*£(k — 13) + £(k) (54)

where {(k) is zero-mean with variance ¢} = 0.026. This model was obtained tak-
ing £=3, ny,=10, n,=0 and considering 20 linear noise terms as candidates, namely
§(k—1)2=1,2,...,20. The Akaike information criterion (AIC) [41] was used to trun-
cate the model. It is noted that the eight process terms above were chosen among 1440
candidate terms according to the ERR criterion described in §2.4. The correlation plots of
this mode] are shown in figure 8 and suggest that there are no significant unmodelled terms
in the residuals thus qualifying this model as a prospective filter.

Disregarding the last term in equation (54), the entire data record was filtered as dis-
cussed in §5.3. It is noted that this is equivalent to taking G*[-]=0 in equation (52). The
filtered sequence was subsequently decimated in order to produced data with an appropriate
sampling interval. Thus 1750 data points of the decimated records were subsequently used
to identify models for the double-scroll attractor.

Considering the same set of candidate terms as in example 1 in §4.1, that is £=4, n, =5,

n,=0 and considering 20 linear noise terms, the following model was estimated from the
filtered /decimated data

z(k)

2.01682(k—1) — 0.59826(k—2) — 0.19876 x 10 2(k—1)2(k—3)z(k—4)

+ 0.51415z(k—5) — 0.43396=(k—3) — 0.313612(k—4)

+ 0.63095x 107 z(k—1)2(k—2)2(k=5) — 0.77961x 10~ 2(k—1)3

+ 0.93462x 107 z(k—1)z(k—2)z(k—3) - 0.81817x 10 2(k—1)z(k—5)>

— 0.145542(k=1)%2(k—5) — 0.52463 x 10~ z(k—5)?

+ 0.97526x 107 2(k=3)z(k—5) — 0.50276 x 10~ 2(k—3)3

+ 0.66313x107 2(k=1)%z(k—3) + 0.29260x 107 2(k—1)z(k—3)z(k—5)

+ Wi(k-1)0¢ +&(k) (55)

where cr? =0.012.

The double-scroll attractor reconstructed from the original noisy data is shown in figure
9a. Figure 9b shows the filtered data which were subsequently used in the identification. Fi-
nally, figure 9c shows the double-scroll attractor obtained by simulating the identified model
of equation (55). The latter compares very well to the the attractor of the original system
shown in figure 1. Moreover, the largest Lyapunov exponent and the correlation dimension
for the identified model are respectively A; =0.205 and D, =2.00 + 0.038. Comparing these
values to last row in table 1 and the attractors in figures 4 and 13 it is clear that the filtering
of the noisy data has indeed enabled the identification of a model which reproduces fairly
well some of the dynamical properties of the original system.

25



7.2 The Duffing-Ueda oscillator — the white noise case

The main objective in this example is to filter the data used in §4.1.2 to estimate a model
from the filtered data and assess the benefits due to filtering.

In order to illustrate that the structure of the filter is not necessarily critical (as long as
it is unbiased in a nonlinear sense), the same model estimated in §4.1.2 was be used to filter
the data. The correlation tests for this model indicate that no unmodelled terms have been
detected in the residuals. According to equations (52)—(53), the noise terms represented by
Ve (k- 1)@; in equation (21) should be used to predict (filter) the data, that is G¢[-]=0 .

In this case W7 (k — 1)@, consists of the twenty linear noise terms

V7 (k-1)0;

—0.679536(k—1) + 0.162466(k—6) + 0.4964 x 107 2¢(k—20)

- 0.180215(1;-3) - 0.39983 x 107 2¢(k—10) — 0.48734 x 107 1¢(k—4)

— 0.31848x 1072 (k—18) + 0.23195%x 107 ¢(k—11) + 0.2988 x 107 *¢(k—12)
+ 0.25606x1072(k—13) — 0.25749x 107 2€(k—15) + 0.88453x 10~ 2¢(k—5)
— 0.14239¢(k—2) - 0.12516 x 107 ¢(k—14) — 0.11704 x 1072 (k- 9)

— 0.11033x1071(k—17) — 0.10393 x 10~ 2¢(k—19) — 0.5001 x 10~%¢(k—7)

— 0.38589x 1072€(k—16) + 0.36169x 10™2¢(k—8) (56)

Subsequently the input time series and the filtered output time series were used to identify
the model

1.4205y(k—1)— 0.28361y(k—2) — 0.36429 x 10~ %y(k—1)3

0.10183x 10~ u(k—2) — 0.21327y(k—5) — 0.99693 x 10 y(k—1)y(k—5)?
0.77163x 107 y(k—3) — 0.64201 x 10™%u(k—3) + 0.69093 x 10~3u(k —4)

— 0.32431x 107 %y(k—2)y(k—4)% + 0.15267 x 10~ 2u(k —5)

0.16366 x 10~ 2y(k—2)y(k=3)y(k—5) + VI (k - 1)0¢ + £(k) (57)

y(k)

+

-+

where {(k) is zero-mean, white with variance o7 = 0.0012. It is noted that the noise model
Ui (k- 1)(:),5 in the latter equation is different from the one in equation (56) which corresponds
to the filter in (21). The bifurcation diagram and the Poincaré section for A =5.7 of the
deterministic part of this model are shown in figure 10. As can be seen, this model has all
the bifurcation points as the original system and is clearly much better than the bifurcation
diagram of the model estimated from the raw data. Similar comments hold for the respective
Poincaré sections.

7.3 The Duffing-Ueda oscillator — the correlated noise case

In this example, the data were corrupted with correlated noise according to y(t)=z(t)+v(t)
where v(t) = k[0.3e(¢)+0.2¢(t — 1)+0.1e(t — 2)] and e(t) is a zero-mean white gaussian process
and the constant k was chosen such that the resulting SNR, that is 201og,,(c2)/(c2), was
close to the one considered in §4.1.2 and §7.2.
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Choosing {=3, n,=n,=6, n,=7 and allowing the noise model to be composed of ten
terms taken from £(t — 1) i=1,2,...,20 a model was estimated

yi(k) = WP, (t = 1)Oy + W7 (t ~ 1)6¢ + £(k) (58)
for which ¢f = 0.013. The bifurcation diagram of this model was obtained by simulation
of the purely deterministic part which is composed only by output and input terms and
revealed that some features of the bifurcation structure of the original system had been lost.
Because the correlation tests of this model indicated that no dynamics was present in the

residuals, y1(k)—£{(k) was used as a filter. This is equivalent to taking G¢[]=0 in equation
(62). The resulting filtered data were subsequently used to estimate a model

ya(k) = U3, ,(t = 1)0p,u + V7 (t — 1)O¢ + £(k) (59)
for which 0 =0.011. The bifurcation diagram of this model also revealed that the correct
bifurcation pattern was not estimated properly. This inability of identifying a good model
from the filtered data can be attributed to the following i) the noise reduction attained with
the filter in equation (58) was insufficient, and ii) the noise dynamics are still in the data
because the terms in W7 (k — 1)@, were used to filter the data.

In order to investigate this point further two experiments were performed on the data
filtered using §; = y1(k)— (k) as discussed above. In the first experiment the model of
equation (59) was used to filter the data as before, that is including the terms in 7 (k-1)0;.
This would usually provide further noise reduction. In the second experiment, the model
of equation (59) was used to filter the data but without the terms in Yk — 1)@;. This
is in accordance with equations (52)-(53) and would tend to eliminate the noise dynamics
from the data although the resulting SNR would probably not be as high as in the first
experiment. These experiments have been included in Table 2.

It should be noted that in either case the model used as a filter, namely equation (59),
must be unbiased. This was promptly verified from the correlation tests. Thus the first
experiment yielded the following model

y(k) = 0.80966y(k—1)— 0.31356y(k—4) - 0.49992x 10~ 2y(k—1)?y(k—3)
+ 0.11160x 107 u(k—1) — 0.18290y(k—5) + 0.68840y(k—2)
—  0.35454x107%y(k—1)y(k—2)y(k—4) + 0.37183 x 10~ 2u(k—5)
— 0.66180x 107 %u(k—=2) — 0.15476x 10~ 2y(k—3)
+ Wik =1)0¢ +£(R) (60)

for which a? = 0.0076. Figures 1la-b show the bifurcation diagram and Poincaré section
for A=5.7 of the deterministic part of the model in equation (60). The bifurcation quality
index defined in equation (16) for this model is J,=0.161. The improvements attained are
obvious. On the other hand, in the second experiment the following model was estimated

y(k) = 0.12151x10y(k—1)~ 0.46716y(k—3) — 0.30016 x 10~ 2y(k—1)?y(k-5)
+ 0.10659x 107 u(k—1) — 0.14507y(k~5) + 0.19389y(k—2)
— 043887 %107 y(k—1)y(k—2)%+ 0.33268 x 10~ 2u(k—5)
— 0.11251x 107 u(k—2) + 0.46540 x 10~ 2u(k—3) — 0.13899y(k - 6)
0.34278y(k—4) — 0.47384 x 1073y (k- 6)°
+ YF(k-1)0¢ + £(K) (61)

-
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for which ¢f = 0.0082. The bifurcation diagram and Poincaré section for this mode] are
shown in figures 12a-b. The bifurcation quality index for this model is J;=0.069 indicating
further improvement when compared to the model of equation (60).

7.4 Residual and parameter variances of the estimated models

The same procedure followed in §4.3 to produce figure 6 was used to get a similar figure,
see figure 13, for the model in equation (57). Comparison of such figures reveals that the
filtering has improved the SNR but, most importantly, filtering has enabled the residual
variance to converge. This suggests that the estimation algorithm performs better on the
filtered data than on the raw data.

In the case of the double scroll attractor, the convergence properties of the residuals
remained virtually unchanged. However, in this case a considerable SNR improvement was
attained. Consequently the residual variance in the case of filtered data was much smaller
and this enabelled improved parameter estimation.

A large noise variance will imply a large residual variance and some of the consequences
of this are 1) large uncertainty in the initial conditions of the model being estimated, and
ii) large and sometimes ‘diverging’ residuals which are used to initialize the model during
parameter estimation. These difficulties can also be analysed in the state space. A chaotic
system is highly sensitive to small differences between two initial conditions in state space.
This is referred to as sensitive dependence on initial conditions (SDIC). Consequently the
basins of attraction in such a space are fractal.

A related aspect is that of sensitive dependence on parameters (SDP) as a consequence
of which the basins of attraction in the parameter space are also fractal. Thus small varia-
tions in parameter values could result in a quantitatively and possibly qualitatively different
dynamical properties of the corresponding attractors. Sensitive dependence on parameters
has been known in the literature for some years [42] and seems to be a general property of
chaotic systems [43].

It therefore becomes apparent that small variations in parameter values would be pre-
ferred to large variations because in the latter case the estimation algorithm would probably
switch between qualitatively different dynamical regimes during parameter estimation in
the attempt to find the best set of parameters and this would impair adequate parameter
convergence.

It has been noted that “it is possible in principle to move from the deterministic to the
random regime by varying €'!” [32]. Although this has been stated for high dimensional
systems, it is believed that a qualitatively similar situation may occur in parameter estima-
tion of relatively low dimensional systems. In fact, for low dimensional systems it has been
remarked that “small fluctuations (noise) in parameters ... will induce sizable changes in the
dynamics ” [44].

Furthermore, it is known that in the estimation of unstable systems the coefficient be-
haviour becomes very erratic [45]. This observation is relevant in the context of chaotic
systems because such systems are on average locally unstable as indicated by the sign of the
largest Lyapunov exponent.

lwhich is equivalent to o2 in this paper.
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In order to investigate how the data filtered with the RF influences parameter variations,
consider the following. The covariance of the parameter vector is defined as

cov{0} = E{(6 — ©)(6 - 0)"} (62)

where © is the true parameter vector and © is the estimate. It is possible, however, to
estimate cov{@} without knowing © which is indeed the case in most practical applications
[16].

In order to compare the effects of filtering on the variance of the parameter vector,
two things were done, namely i) the same model structure was assumed in each case, and
i) tr[cov{0,,}~°"] was used as a measure of the variation in the parameters of the deter-
ministic part of the model, where tr[-] indicates the trace of a matrix.

Therefore the same structure of the filters were used to estimate parameters and the
respective variances from the filtered data records. As can be seen from table 2, the parameter
variance of the models'? estimated from the filtered data is lower.

Table 2. Parameter variance measure for estimated models

Data System | Structure Filter Noise Je

raw DS* eq. (54) — white [ 0.430
filtered | DS eq. (54) eq. (54) white | 0.374
raw DU eq. (21) — white | 0.875
filtered | DU eq. (21) eq. (21) white | 0.488
raw DU eq. (58) — correlated | 0.333
filtered | DU eq. (58) eq. (58) correlated | 0.321
filtered | DU eq.(58) | egs.(58) & (59) | correlated | 0.318
filtered | DU eq.(58) | egs.(58) & (59)¢ | correlated | 0.316

o J = tr[cov{6,,} "
* DS - Double-scroll attractor
¢ DU - Duffing-Ueda oscillator
¢ Without ¥7(t — 1)0;

& Final remarks and conclusions

In all the examples above the models estimated from filtered sequences were chosen among
a family of models. The criteria used to choose such models were dynamical invariants such
as Ay, D., the geometry of the reconstructed attractors, Poincaré sections and bifurcation
diagrams.

The search was performed by varying the number of process terms in each model, n,, and
the maximum lags allowed, n, and n,, which are the degrees of freedom of the models. It is
believed that in some cases the subregion of the model structure space in which good models
are found is limited and, in fact, is relatively small when compared with the entire space

13In order to enable comparison, these models have the same structure of the respective filter and are not
the final models estimated in §7.1-§7.3.
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of all possible model structures of a given representation[6]. This is in accordance with the
sometimes neglected fact that, once the nonlinearities in the data are well represented in the
model structure, very little is to be gained by overparametrizing the model. On the contrary,
overparametrization in nonlinear systems usually induces a number of spurious dynamical
regimes.

By contrast, the structure of the filters is not so important because the filters are reset
at each iteration. However, this does not mean to say that different filters will perform in
exactly the same way and thereby yield similar results. In the examples above, two criteria
were used as guidelines in the selection of the filters, namely i) the filters must be unbiased,
and ii) it is desirable that the residual variance of the filters be relatively close to the noise
variance. Apart from these criteria, the filter structures were chosen rather freely in order
to illustrate a certain degree of liberty present in the design. However, it is believed that
further improvements could be attained by optimizing in some way the choice of the filters.

Because the dynamics of the filter are learned from the noisy data, it becomes apparent
that the noise variance poses limits on the performance of the filter. It is rather tempting to
establish a link between this limit and the noise variance at which the estimated values of
A; begin to fall sharply, that is the ‘knees’ of the curves in figures 7a-b. In the case of the
Duffing-Ueda oscillator, it is easy to verify that the variance of the noise remaining in the
filtered data (= 10723) is below the critical value in figure 7b (= 7 x 1072) as opposed to the
original noise variance (= 1.5 x 1072).

However, in the case of the double-scroll attractor, both the noise variances in the raw
and filtered data are less than the critical value for A;, which seems to be around 10-!. It
should be noted that increasing the maximum lag allowed from n, =5 to n, =7 enabled the
identification of a model directly from the raw data for which 052 = 0.037, A; =0.225 and
D,=2.08 +£0.0219. This model faithfully reproduces faithfully the attractor geometry.

It is interesting to note that the noise variance in this case is on the flat part of the curve
in figure 7a. Could this be viewed as a reason why the identification was possible?

This example agrees with the results of Casdagli et al. who have defined a distortion
matrix which describes the noise amplification and have argued that increasing the dimension
of the reconstructed space (which is equivalent to increasing n, in the example above) reduces
the distortion but also increases the estimation error. Consequently in a practical situation
n, may be increased to a certain extent in order to estimate models from noisy data. If this
is not possible or if it does not produce satisfactory results, filtering the data seems to be a
viable alternative.

In all the examples using the Duffing-Ueda oscillator the increase in the maximum lags
allowed did not enable the identification of good models from the raw data. Thus, in conclu-
sion, it should be said that the critical point in the estimation of A; could be viewed only as
a gross indication of the critical variance beyond which accurate identification is precluded.
Moreover, such a critical point seems to depend not only on the system, as it would be
expected, but also on the number of degrees of freedom of the estimated models.

This paper has investigated the identification of NARMAX polynomial models for chaotic
systems from noisy data. The main motivation for such an investigation was that the effects
of noise on the quality of the identified models seems to be more deleterious when the system
is chaotic.

Simple experiments performed in the estimation of the largest Lyapunov exponent, };,
from noisy data has also suggested that the estimates are more robust when \; <0. Moreover,
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such exponent can be accurately estimated in some cases from noisy data as long as the noise
variance is not larger than a certain critical value beyond which the accuracy of the estimates
falls sharply. A similar phenomenon has been observed with some chaotic systems for which
good models could be estimated from noisy data provided the noise variance did not exceed
the critical point. It has been shown that a slight increase in the noise variance was enough
to completely preclude the estimation of a valid model.

Such similarities between the estimation of A1 and of NARMAX polynomial models seem
to suggest that some of the difficulties might be related to the limited capability of a chaotic
model to accurately predict a given time series when the uncertainty (noise) in the initial
conditions is too high. This seems to account for the fact that in both cases the estimation is
heavily based on predictions. For low noise levels good estimates are possible because such
predictions are made over relatively short periods of time. Although this period is maintained
when the data are noisy, because the uncertainty in the data is much higher, even accurate
short-term predictions seem to be affected. Such effects appear in the residuals and this
is relevant because the residuals are responsible for a kind of feedback during parameter
estimation. Consequently, if the residual sequence is inadequate the estimated model is
likely to be inaccurate.

The aforementioned difficulties seem to be related to the sensitive dependence on initial
conditions (SDIC) which is a well known feature of chaotic systems. A dual characteristic is
the sensitive dependence on parameters (SDP) and although this latter feature has not been
investigated in detail in this paper it is believed that some of the difficulties encountered in
the identification of chaotic models from noisy data might also be related to the SDP. This
is mainly because during estimation the parameters are adjusted depending on the quality
of short-term prediction and the variance of such parameters is usually proportional to the
noise variance.

A procedure for filtering chaotic data using NARMAX polynomial models has been sug-
gested. The noise which is mostly unpredictable, is left out by ‘predicting the predictable’.
Moreover, the resetting effect inherent to the filter guarantees that the filtered data remains
close to the raw data. This distinguishes the resetting filter from other prediction-based
filtering techniques.

Some advantages of the suggested filtering procedure are i) no a priori knowledge is
required, thus the filter is learned from the original data, ii) the procedure for estimating
both the filter and the final model is the same, thus avoiding extra algorithms, iii) the filtering
procedure is iterated only a few times (one or two) unlike other techniques which require four
to twenty iterations [39], iv) as a consequence of the resetting effect, the filtering procedure
is very robust with respect to several choices of the design parameters such as the sturcture
of the filter, and v) parameter estimation is performed only once unlike piecewise linear
method which estimate the parameters in each neighbourhood for each filtering iteration.
On the other hand, the latter techniques achieve a higher noise reduction. However, the main
objective of the filtering procedure suggested in this paper is to enable the identification of
good models from the filtered data and not necessarily to attain a high increase in the SNR.

Examples using the autonomous double-scroll attractor and the Duffing-Ueda driven
oscillation have been provided to illustrate the main points of the paper. Such examples show
that the models estimated from filtered data sequences had lower residual and parameter
variances. Such results seem to lend support to some of the conjectures made in the paper.

It has not been advocated that such conjectures account for all the problems found in the
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identification of chaotic systems. Furthermore it is recognised that, for the sake of clarity,
rather simple systems have been used in illustrating the main ideas. Nonetheless it is believed
that some of the conjectures and procedures suggested in the paper are applicable to a wider
class of chaotic models.
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Captions

Figure 1. Double-scroll attractor reconstructed from the z component. Data sampled at
T,=0.15 and T,=2.

Figure 2. (a) bifurcation diagram and (b) Poincaré section of the attractor at A=35.7 for
the Duffing-Ueda oscillator.

Figure 3. Reconstructed attractor for the estimated model of equation (20).

Figure 4. (a) bifurcation diagram and (b) Poincaré section of the attractor at A=5.7 for
the estimated model of equation (21).

figure 5. Schematic diagram of the prediction error estimation algorithm. Note that whereas

A

the deterministic part of the model, ¥7, (t — 1)©,y, is totally reset with the measured

data y(t) and u(t), the stochastic parts, 7 .(t — 1)(:)1,“,5 and Wi (t - 1)(:35, are subject
to feedback via the residuals §(t).

Figure 6. Asymptotic behaviour of the residuals.

Figure 7. Estimated values of the largest Lyapunov exponent, A;, for increasing values
of noise variance (a) the double-scroll attractor (b) the Duffing-Ueda oscillator in a
chaotic regime for A=11 indicated (0), and in a periodic regime for A=4.5 indicated

by (*).

Figure 8. Correlation tests for the RF in equation (54) (a) @¢(7), (b) ®¢e2(7) and (c)
@21, (T). Note that, because the functions are confined to the confidence bands, it
can be considered that no significant dynamics were left in the residuals.

Figure 9. Double-scroll attractors reconstructed from (a) the raw data, (b) the filtered
data, and (c) a time series generated by the estimated model of equation (55).

Figure 10. (a) bifurcation diagram with J,=0.168, and (b) Poincaré section of the attractor
at A=5.7 for the estimated model of equation (57).

Figure 11. (a) bifurcation diagram with Jy=0.161, and (b) Poincaré section of the attractor
at A=5.7 for the estimated model of equation (60).

Figure 12. (a) bifurcation diagram with J;=0.069, and (b) Poincaré section of the attractor
at A=>5.7 for the estimated model of equation (61).

Figure 13. Asymptotic behaviour of the residuals for models estimated from filtered data
(compare with figure 6).

35



-2

Z(1)

~

apng|dwy gnding

12

litude

Input Amp

2.50

a5

(
.75 2.00

50

25

3.00

2.75

~L)

[u ~—

[3°]

2
yrko



2(k-2)

35

3t .
254 i
2+ 4
1.5+ i
1+ i
0.5+ ]
(0] 4
-0.5F ]
o5 0 05 1 15 2 25 3 35
z(k)
Fir, =
)
1 25 1.50 1.75 2.00 2.25 2.50 2.75 3.00
ytk)
(k) Foa, ¢



Variance of residuals

e(t) 7
2(t) A ¥(t) ]
ed ‘I’Eu yu
5 y(t)
u(t) ] i P §(t) - ¢
y llquf)vuf \?_ '\P
2 t
Adaptation V4 ()
Algorithm
- \;rg" f
Fig. 2
0.022 . : : , (b) ; . : :
0.021 F 4
0.021 } .
0.02} i
019 : : ' : : ' : :
0-01% 2 4 6 8 10 12 14 16 18 20

Number of noise iterations

T
N
o~




©
N
T

largest Lyapunov exponent
o

0._ | 1 1 1
10 10° 10 10" 10 10
noise variance
& 0.1 Az =
c
Q
(a8
>
(4)]
> 0.05 4
(@]
=
=
&
2 Or ’
7]
S
& : e N
10 10 10
T s -’}‘
),
1
0.8t 0.8
0.6 0.5 * 0.6
0.4 0.4
oV WA WA
0.2 0.2
0 /S " 0
-20 0 20 '-ZO 20 -20 0 20



_ =

T

(g-%)ey z

-4
-4

Z hat(k)




1.25 1.50 (.75 2.00 2.25 2.50 2.715 3.00
; ytk)

2.75 3.00
(%)

/l

Tl
(_:5‘




