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Gain Bounds for Higher Order Nonlinear Transfer Functions

H. ZHANG and S.A. BILLINGS

Dept. of Automaric Control and Systems Engineering, University of Sheffield, S1 4DU, UK

Abstract: Bounds on the gain for high order nonlinear transfer functions of wide class of non-
linear systems are derived. It is shown that the gain bounds can be expressed explicitly in terms
of the coefficients of discrete time nonlinear models. The bounds can be used to check the con-

vergence of the transfer function series and hence to determine the truncation order in practical
applications.

1. Introduction

The conventional transfer function approach in linear systems analysis is well known
and has been widely applied. When the system is nonlinear similar transfer functions
can be defined based on multidimensional Laplace, or Fourier, transforms of the ker-
nels in the Volterra series representation.*13.16.17 The nonlinear transfer function
approach has received considerable attention from researchers in electrical and elec-
tronic engineering since the early 1960’s, and more recently has been applied in struc-
tural engineering, physiology and control systems. It has been shown that a large class
of nonlinear systems can be represented by the nonlinear transfer function approach

and numerous applications have been reported in various disciplines.8-11:14.15

A large class of nonlinear systems can be represented by a series of transfer functions,
H,, Hy, Hsy, --- where H 20, H;=0,i=23,... represents the linear system case. The
series may be infinite and the stronger the nonlinearities are, the more transfer func-
tions are required. In practical applications the transfer function approach is most use-
ful when the transfer function series converges rapidly. In this case the nonlinear Sys-

tem can be adequately described by just the first few terms. It is clearly desirable to




have some knowledge on the bound of the gain of each transfer function, in a possibly
infinite series, so that an informed decision regarding the truncation of the series and
the approximating capabilities can be made. Chua and Liao (1991)7 studied this prob-
lem and reported an experimental algorithm to measure the ’highest significant order’
of the frequency response functions by applying a series of specially designed probing
signals into the system. The method is straightforward providing special inputs can be
applied but is less simple to implement for general nonlinear systems. In the present
paper, a gain bound for each order of transfer function is derived in terms of the
parameters of a discrete time model. This provides a unique insight into the relation-
ship between the parameters in a time domain representation and the convergence of
the nonlinear transfer functions in the frequency domain. Several examples are

included to illustrate the properties and applications of the new bound.

2. Representations of Nonlinear Systems in the Time and Frequency Domain

By collecting input/output data from a nonlinear system and applying parameter esti-
mation techniques a parametric model of the system can be identified. A general poly-

nomial NARMAX (Nonlinear ARMAX) model 3-9:10 can be expressed in the form

M
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Cp 4 () are the model parameters, M is the maximum degree of nonlinearity, and K is

the maximum order or lag of the difference operation. Also notice that

K K K
p+qg=m; k=1, K; and Y = ¥ --- ¥ (3)
kaky=1 k,=1 k=1

Equations (1) and (2) describe all the possible polynomial NARMAX models. After
data sampling, structure detection, parameter estimation and model validation, all the

unknown constants contained in eqn (2) will have been estimated. -2



To illustrate the definitions in eqn.(1) and (2) a specific NARMAX model would be

given for instance as

y() = 0.44u(r-1)+ 0.5y (t=1) — 0.03u (t=Du (t-1) — 4)
0.04u (r=2)u (t=1) = 0.06y (t—1)u (1=3) = 0.07y (+=2)y (+=3)

which may be obtained from the general form (1) and (2) with

co (1) =0.44; c1ol) =05 cga(1,1) =-0.03;

€02(2,1) =-0.04; ¢,(1,3) =-0.06; c,0(2,3) =-0.07; else ¢, ,()=0;

For this specific example, the maximum degree of nonlinearity M =2 and the max-

imum lag K =3.

The nonlinear transfer function, which is also called the Generalised Frequency
Response Function (GFRF), can then be obtained by mapping this time domain model
into the frequency domain.3-%12 The nth order transfer function for the general NAR-

MAX model eqn.(1) is given in terms of the model parameters by the following recur-

sive relation: 12
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with the recursive relations
asyme.\ _ - o Hesym : e . : —J(@+..+0,)k,
H3"()= 2 HE(o..jo)H, i , (0, nj,) e (6)
i=1

Note that the recursion finishes with p=1, and that H, (o, - ,jw,) has the pro-

perty
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3. Derivation of the Gain Bounds

(M

Applying the triangle inequality and using the unity gain of complex exﬁoncntials, that

18
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to eqn (5) yields the following inequality
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Because H,, ,() =0 for n<p and

0 for n #0;
Hy o) = 1 for n =0;

the above equation can be re-written as
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where p#0 when ¢=0. Consider the recursive relation H, ,(-) on the right hand side

of the above inequality. Applying the triangle inequality again to eqn (6) yields
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There are some special cases which might be useful in deriving the gain bound, such

as
Hoa(ioy, - j0,) = HyGoy, - - jjw,) e/t (11)
so that
H, G, jo)l =1H, o, jo,)l (12)
and
H,,(ow, - jo,)=H,o)H (w)- -H (o, g @kt Al (3
hence

H, oy o) =TT H,Go) | (14)

i=1
Clearly the recursive relation (10) will finally end at H; which can be expressed as

E —j wk
2 Coalkype A
. k=1
Hi(jo) = — — (15)
Y cpolkpe e
k,=0

At this point it is necessary to define the lower bound of the denominator of H

because this will be dominant in all the higher order GFRF’s. Denote

L= Inf

we

K
> cpolkpe
kl_l

(16)

where W is the set containing all the possible input frequencies. Then from eqn.(15)
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Using the lower bound L the inequality of (9) can be written as
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where |||z means the gain bound of the given complex expression. With the bounded
H, the right hand side of the above inequality is a constant independent of the fre-

quency variables and can be computed recursively using inequality (10).

Notice that eqn.(5) only gives an asymmetric form of the nth order GFRF. Because
the bound of H, on the right hand side of (18) is independent of the frequency argu-

ments so is the bound for all the asymmetric versions of the GFRF’s. The symmetric
GFRF which is defined by

. . 1 ; '
HP"(Gwy, - je,) = — 2 HP"(op, - .je,) (19)
n. all permutations
of w - - - W,
will possess the same bound because
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4. Examples and Discussions
Consider for example a NARX model given by
y(@) =coqu(t=1) + coau (t=1u (t=3) + cou (t=2)y (t=2)y (t=3)
+ ¢y @=Du(-1) (21)

It is very simple to obtain the bounds of the GFRF’s for this specific example

lH (Ol < aqg,

IHy()l <agy+ay,aq,

IH3() < ayy(a0))® + ay a4,

where a, ,=lc, .| is used to denote the absolute values of the model parameters. The
bounds for all the recursively generated higher order GFRF’s can be obtained in the
same way in terms of the time domain model parameters. For more complex models

the computation may be less simple. For example, if one more term is added to the



location of the roots of the characteristic polynomial (the poles of the system), as well

K
as the frequency set W. Assume that the characteristic polynomial 3, ¢ (k) py, has
k|=1

K roots py, pa,....pg » then the denominator can be written as
K o K
I ™%p) =TI S
k=1 k=1

where

S, = e p, = U, ()e ™ *©@ k=12,..K

So that
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In the complex plane, e /® can be denoted by a point on the unit circle. Clearly a pole

on the unit circle results in |H, (jw,, . .. ,j,)|== at w=Lp,. In this case L=0.

Once the value of L is known the recursive computation can be easily implemented by

direct programme code. It is always wise to inspect the bound for each order of

GFRF’s before computing the entire function.

The bound expression might also be useful for checking if the underlying system is
suitable to be studied using the nonlinear transfer function approach. For example if
the coefficients of an identified model have values such that the computed bounds of
the GFRF’s are quickly decreasing as the order increases, then the GFRF can be
confidently used, for example to design a controller or analyse the system behaviour.
If however the computed bounds are increasing with the order, or converge slowly,

then from a practical point of view, GFRF should be used with caution.

5. Conclusions

An expression for the gain bounds of the terms in the nonlinear transfer functions
series has been derived. The gain bound is given as a function of the parameters in a

discrete time model and provides valuable insight into approximation capability and



truncation of the series.
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