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Discrete Reconstruction of the Double Scroll
Attractor

Luis A. AcUuiRre! and S. A. BiLrings!

Abstract

This work is concerned with the discrete reconstruction of the double scroll at-
tractor. Two aspects of the reconstruction are investigated, i) the discretization of the
original equations via numerical methods. and ii) the identification of discrete nonlinear
models from time series generated by the original system. The quality of the models is
assessed by estimating the largest Lyapunov exponent, the correlation dimension and
by comparing the geometry of the reconstructed attractor to the original double scroll.
The major aim of the paper is to investigate how parameters such as the discretiza-
tion period. sampling rate and the number of terms in an estimated model affect the
dvnamics and also to point out if there is any relationship among such parameters.
Conclusions in this direction are helieved to be especially relevant in determining ad-
equate model structures in identification applications. This is known to be critical in
the identification of nonlinear systems.

I. INTRODUCTION

Although most real systems are continuous in time, it is often desirable to derive discrete
models which faithfully represent the dynamics of such systems. Some of the reasons for this
are i) in practice, measurements are usually carried out at specific time intervals, i1) digital
processing and control is becoming increasingly common, and iii) digital simulations can be
performed quickly and easily.

Moreover, it is well recognized that the choice of the discrete interval is critical in recon-
structing the dynamics from a set of measurements. In particular, such an interval affects
dynamic invariants such as the geometry of attractors, the largest Lyapunov exponent, Ay,
and the correlation dimension, D,.. Thus the proper choice of the discrete interval is crucial
when discretizing continuous-time differential equations for numerical integration and also
when sampling a time series from which a discrete model will be identified. In the former
case such an interval is referred to as the discretization period, Ty, and in the latter as the
sampling period, Ts.

A related issue is the choice of the variable from which the dynamics will be recon-
structed. Sometimes only one variable of a system is measured and recorded. It is not
evident that it would be possible to reconstruct the dynamics of an nth-order system from
measurements of r (r <n) variables. Fortunately, Takens has shown that, provided that the
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reconstructed (embedded) space has a sufficiently large dimension, in many cases only one
measured variable will suffice in reconstructing the original dynamics [1].

Nonlinear discrete models are identified from data lying on the double scroll attractor.
The comparison of such models with discretized counterparts illustrate a number of issues
concerning model structure selection. An interesting result is that the piecewise linear func-
tion of the Chua system is completely incorporated in the identified models at the expense
of an increase in the number or terms. It has also been verified that identification is possible
from measurements of a single variable.

It is believed that the identified models cited in this paper are the only discrete and
nonlinear (note, not piecewise linear) models available for the double scroll attractor.

II. PRELIMINARIES

Chua’s circuit is certainly one of the most well studied nonlinear circuits and a great number
of papers ensure that the dynamics of this circuit are also well documented [2]-[4] The
normalized equations of Chua’s circuit are

¢ = a(y — h(z))
y=z —y + 2 (1)
z=-Py
where
miz + (mo—my) z2>1
hz) =14 mgz lz |<1 (2)

miz — (mo—my) z< -1

In what follows mo= —1/7 and m; =2/7. Varying the parameters a and S the circuit
displays several regular and chaotic regimes. The famous double scroll attractor, for instance,
is obtained for «=9 and §=100/7 and has the largest Lyapunov exponent and the Lyapunov
dimension equal to A; =0.23 and Dy =2.13, respectively [4]. Such values of a and S will be
used henceforth. In the examples the correlation dimension, D, will be used instead of Dy.
It is known that in general D.< Dy, [5]. In fact, for the original attractor the following value
was estimated, D.=1.99 = 0.023.

Equations (1)-(2) were simulated using a fourth-order Runge-Kutta algorithm with in-_
tegration interval equal to 1073, The resulting data were sampled at the rate defined by T,.
The attractor can then be reconstructed using just one of the variables as shown in Figs.
la—c.

The way models are compared and validated is crucial. Because it is desired to investi-
gate how T influences the dynamics and also to verify the feasibility of identifying discrete
nonlinear maps from data on the double scroll attractor, it seems necessary to use invariants
which characterize the dynamics quantitative and qualitatively. This is especially true for
chaotic systems of which Chua’s circuit is a well known example.

Therefore this paper will consider pseudo state spaces, largest Lyapunov exponents, A,
and correlation dimensions, D,, of the reconstructed attractors in order to assess the quality
of the models used in such reconstruction.

Plots of the pseudo state space give an idea of the attractor shape and also convey topo-
logical information. The largest Lyapunov exponent measures the local average d1v[' FETIT e,
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Fig.1. Reconstruction of the double scroll attractor from the original system using (2) =

component, T, =0.15 and I, =2 T}, (b) y component, T,=0.07 and T, =4 x T, and (c) 2

component, Ty =0.15 and T, =2 xT,. The original system was integrated using a 4 th-order
Runge Kutta algorithm with an integration interval equal to 10-3,
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Fig.2. Reconstructed attractor using the z component of a discretized model (forward
Euler) with T;=0.05 and T, =6 xT..

of nearby trajectories in state space and therefore quantifies the sensitive dependence on
initial conditions. Finally, the correlation dimension quantifies the fractal structure of the

attractor. These metrics have been suggested for validating chaotic models [6]-[7] and for
details concerning the computation of such invariants see [8].

III. DISCRETIZATION

Two ezplicit discretization schemes were considered, namely the Euler approximation and a
4th-order Runge-Kutta integration algorithm. The former, also known as the forward Euler
algorithm, is a simple discretization method which does not need any recursive computation
but, as a consequence, requires Very small integration intervals in order to yield accurate
results. Similar properties are shared by 2 nd-order Runge-Kutta algorithms [9). On the other
hand, the fourth-order Runge-Kutta method uses the average of the function estimated at
intermediate time points. Therefore accuracy is greatly improved at the expense of a far
more time consuming numerical algorithm (8].

The objective of this section is to verify how the integration interval affects the geometry
of the attractor, A; and D.. This will be important to compare the quality of the results

obtained from identified models Which are also discrete. Some results are listed in Table 1
and in Figs. 2 and 3.

Table 1, Discretized models
Algorithm | T, [Fig. [ A\° D.
Euler 0.05 | 2 |0.311.92 £0.028
RK 0.15 | 3 |0.25|1.95 +0.013

3 Calculated usil’lg }le

Table 1 shows that the forward Eule, algorithm with T3 =0.05 yields a rather inaccurate

model. Figure 2 reveals that for this value of Ty the attractor is clearly distorted. For
T4>0.06 the resulting models beco™® ypgtable.




Fig.3. Reconstructed attractor using the z component of a discretized model (4 th-order
Runge-Kutta) with Ty=0.15 and T, =2xT,.

On the other hand, the discretization achieved using the Runge-Kutta algorithm is much
better and the invariants shown in Table 1 are closer to the correct values. However, Fig.3
illustrates that the attractor in this case already presents signs of distortion although not as
severe as for the attractor shown in Fig. 2.

In comparing the plots, it should be borne in mind that what i1s of concern here is
the overall shape of the attractors. The density of trajectories at different points on the
attractor depends on the initial conditions and on the simulation time, consequently it is
not a dynamical invariant. It is noted that strange attractors are space/volume-filling, hence
if the simulation time is increased the trajectories in the plots become increasingly dense
everywhere on the attractor.

As expected, if T is considerably decreased in either case, the resulting attractors become
accurate.

It is worth pointing out that using the forward Euler relation

STk w(k + 172;— w(k) 3)

to approximate the derivatives in equation (1), the resulting discretized model has, in addi-
tion to the piecewise linear function, eight terms. This is believed to be a lower bound for
the number of process terms in identified models if these are to reproduce the dynamics of
the double scroll attractor. This will be considered in some detail in sections V and VI.

IV. IDENTIFICATION

Consider the nonlinear autoregressive moving average model (NARMA) [10]

y(t) = Fly(t = 1),...,y(t —ny)e(t),. ... ve(t—ne)] (4)

where y(t) is a time series and e(t) accounts for uncertainties, possible noise, unmodeled

dynamics, etc. and F“[-] is some nonlinear function of y(t) and e(t) with degree of nonlinearity
e Z*.




In this paper, the map F*[] is taken to be a polynomial of degree £. In order to estimate
the parameters of this map, equation (4) has to be expressed in prediction error form as

o,
y(t) = [U3(t - 1) Wi (t = 1) CF(t - 1)] | Oue | +(2)
O
y(t) = ¥t - 1)0 + £(2) ()

and the parameter vector © can be estimated by minimizing the following cost function [11]
Jrs(0) = || y(t) - ¥ (t - 1)0 | (6)

where || - || is the Euclidean norm. Moreover, least squares minimization is performed using
orthogonal techniques in order to effectively overcome two major difficulties in nonlinear
model identification, namely i) numerical ill-conditioning and ii) structure selection.

To be able to determine the correct structure of a nonlinear model is crucial mainly
because of two reasons. Firstly, the number of candidate terms in a polynomial model such
as equation (4) becomes impractical even for moderate values of £ and n,. Secondly, the
inclusion of too many terms in a model can affect drastically the dynamical properties of
such a model [12]. In this paper an algorithm based on the error reduction ratio (ERR) was
used in order to choose the n, terms in ¥7(¢t — 1) [13].

Equations (1) and (2) were integrated using a 4 th-order Runge-Kutta algorithm. The
resulting data (one time series for each component) were subsequently sampled with T;.
Each sampled time series contained 1900 data points and was in turn used to identify one
independent model.

The choice of T, was made based on the correlation time, 7., defined as the first minimum
of the autocorrelation function. The following rule-of-thumb was used 7./10< T, <7./5. In
this case 7.~ 1.2 for the three components and hence T, =0.15 was used.

It is interesting to note that, although T, =0.15 was a good choice for identifying models
from the time series of the z and z components, no reasonable models were identified from
the data of the y component sampled at this rate. After a number of simulations it became
apparent that, for this component, T, had to be decreased. Thus for such data T, =0.07 was
used. However, it should be pointed out that the identification from the y component data
was far more difficult and somewhat less accurate than for the other data. This is illustrated
in Table 2 and in Figs. 4-6 which show that successful reconstruction is possible from any of

the variables of the original system.

Table 2. Identified models

Comp. | Ty |ny|n, | Fig. | Af D,
z 015 4 |17| 4 | 0.25 | 2.00 +0.009
Y 007 | 5 |14 | 5 |0.22 | 2.27 £0.052
z 015 5 |16 | 6 |0.23)|1.99 £0.006




Fig.4. Reconstructed attractor of the model identified from records of the z component
sampled with T, =0.15.
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Fig.5. Reconstructed attractor of the model identified from records of the y component
sampled with T, =0.07.
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Fig. 6. Reconstructed attractor of the model identified from records of the z component
sampled with T,=0.15.




In order to illustrate the kind of models identified during the course of this investigation,
the model estimated from the z component is listed below

z(k) = 3.2039z(k-1)-3.55582(k—2)+1.5032z(k-3)
— 0.24816x107'2(k—4)-0.75094 x 10~ 2(k - 5)
— 0.18175x1073z(k—5)3+0.26306 x 10 2(k—1)2(k - 5)?
+ 0.244992(k—1)*z(k—=5)—0.15721z(k—1)z(k—4)?
— 0.794552(k—1)-0.682112(k—1)%z(k—4)
+ 1.0999z(k—1)z(k—2)z(k—4)+2.19802(k—1)%z(k—2)
— 1.1365z(k—1)z(k—2)?-0.29295z(k—=1)z(k=2)z(k—5)
— 0.52790z(k—1)%z(k=3)+ U7 (t — 1) +£(¢) (7)

where the residuals () are white and zero-mean with variance 07 =0.925x10"°%, ¥7(t—1)=

{(t —1) i =1,2,...,20. It is noted that the twenty terms in W7 (¢ — 1)@)5 are required
in order to produce unbiased models but such terms and £(t) are not actually used in the
simulations.

V. MODEL STRUCTURE

In a nonlinear model such as equation (4) the number of terms increases exponentially with
£ and n,. For instance, the model in equation (7) has 16 process terms which were selected
among 125 possible candidate terms (it is noted that in this case £=3 and n,=5).

A ‘brute force’ approach, that is including all possible terms in the model, is not gen-
erally appropriate in nonlinear systems because, unlike the linear systems case where over-
parametrization usually leads to pole/zero cancellation, the overall dynamics are qualita-
tively and quantitatively affected by the model structure. In particular, overparametrized
models are usually unstable.

To illustrate this point, consider the family of models identified from a time series of the
z component for which T, =0.25 with the maximum lag equal to n, = 6. It is noted that
although models estimated from data sampled faster present improved overall dynamical
characteristics, the deleterious effects of overparametrization are equivalent. The model
with twelve process terms, n, =12, reproduces the major features of the attractor shown in
Fig.la. As n, is increased the geometry of the reconstructed attractors obtained from the
respective models clearly deteriorates. Finally, models with n, > 16 are unstable.

Similar results have been obtained using other values of T, to sample the time series of

other components. The general pattern observed as the number or process terms is increased
was

PERIODIC — CHAOTIC — UNSTABLE

Based on this overall pattern, it is conjectured that periodic models are obtained when n,
is relatively low and therefore the model structure is not sufficiently complex to reproduce
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the dynamics. Within a rather narrow range of values of n, (typically of three to four
values) the resulting model structures are able to produce chaos. It is noted that this does
not imply that the reconstructed chaotic attractor is quantitatively correct. This has to be
verified during model validation as suggested in section II. Finally, if n, is further increased
the resulting models become unstable as a consequence of overparametrization.

Hence it seems clear that the subregion, in the space of possible model structures, where
chaotic models can be identified for this system is rather limited. To exemplify this statement
it is pointed out that considering the three components and the parameter values £ = 3,
0.05<T,<2.5, 3<n, <6 and 5<n, <20 more than 145 models were estimated. For all of
the chaotic models the number of process terms was 11 <n, <17, every model with n, <11
was periodic and the vast majority of models with more than 17 terms were unstable. It is
noted that the values of n, for which the models become chaotic or unstable depend on other
parameters such as n, and T,. For instance, for a particular combination of such parameters
chaotic models are found only in the range 13<n,<15.

It is interesting to observe that the same limitation verified for the number of process
terms seems to hold for the maximum lag considered in the model, n,. This can be verified
by noting that no chaotic model was estimated with n, <3 and that the models with n,=6
are clearly less accurate than the models with 3 < n, < 6. Concerning these results two
things should be noted, 1) although a large number of models were estimated, the number
of possible models is far greater, and ii) the effect of n, on the quality of the reconstructed
dynamics is less dramatic than that of n,.

Finally, it is noted that similar results have been verified for another nonlinear circuit,
namely the Duffing-Ueda oscillator [10,14]. A major difference between these two systems
is that while Chua's circuit is a piecewise linear system, the Duffing-Ueda oscillator is a
globally nonlinear system. The consequences of this on model structure are investigated in
the next section.

VI. CoMPARISON BETWEEN DISCRETIZED
AND IDENTIFIED MODELS

Tables 1 and 2 illustrate the advantages of identified models over the discretized coun-
terparts. The Euler approximation does not yield stable models for any of the discretization
periods in Table 2. To simulate the original system using a 4th-order Runge-Kutta algorithm
is far more time-consuming than to simulate equation (7) and, in addition, the latter is more
accurate than the original system discretized by the Runge-Kutta algorithm with T, =0.15
which is the sampling period for (7).

The objective of the above comparison was not to advocate in favor of identified models
but rather to point out that the accuracy of such models is enhanced. It will be argued that
such an improvement seems to be related to a slight increase in the number of terms in the
models.

Comparison of discretised and estimated models for the Duffing-Ueda oscillator revealed
that as T, was made increasingly shorter, the structure of the estimated models tended to
the structure of the counterpart discretized using equation (3) with Ty =T,. Thus both iden-
tified and discretized models had the same number of terms, namely four. Furthermore, for
sufficiently small values of T, the parameter estimates of the identified model also approxi-




mated the respective parameters in the discretized model. An explanation for this is that the
inclusion of a few additional terms which is observed when the T, is increased slightly has
the effect of compensating for the loss of accuracy associated with a slower sampling. Thus
for a given value of T, the estimated model might have, say, nine terms and be quantitative
and qualitatively equivalent to a four-term model estimated from data sampled at a faster
rate.

In the case of Chua's circuit, the nonlinearity responsible for most of the dynamical
features of the system is provided by the piecewise linear function h(z). Consequently a
model discretized using the approximation in equation (3) with Ty will be composed of a
linear dynamical part which is a function of T; and a piecewise linear static part which
independent of T}.

In this paper, the estimated models are global as opposed to piecewise linear. Conse-
quently it is indispensable that the nonlinear effects of the static piecewise linear function
h(z) be dynamically and globally represented in the structure of the final models. It seems
reasonable to infer that all the nonlinear terms in an identified model for the double scroll
attractor correspond to h(z), otherwise a simple linear model would be adequate to model
equation (1).

Therefore if the nonlinear terms are associated with A(z) which in turn is independent
of Ty, it is reasonable to expect that the structure of the identified models be less sensitive
to T, than in other examples such as for the Duffing-Ueda oscillator where T;; influences the
entire structure of the discretized models. This, in fact, has been verified in a number of
examples.

It should be noted that this also affects the total number of terms in the model, n,.
For models such as the Duffing-Ueda oscillator where the entire structure depends on Ty,
the number of terms in the estimated models tend to decrease as T is shortened. Thus for
sufficiently small values of T}, n, equals the number of terms in a discretized model. On the
other hand, for models like the Chua circuit, the minimum number of terms in an estimated
model will tend to be larger than the number of terms in the discretized counterpart because
a certain number of terms have to be included to account for the piecewise linear function
h(z). This seems to account for the fact that no estimated model with n, <11 was chaotic.
However, a slight decrease in n, is still observed as T} is shortened, see Table 2.

Summarizing it can be said that, within reasonable limits, adding extra terms and rees-
timating the parameters in a model has a compensating effect. In some examples, this effect
compensates for the loss of accuracy due to, for instance, variations in the sampling period
(as for the Duffing-Ueda oscillator) or to the omission of a static piecewise linearity as in the
case of the double scroll attractor.

It is rather remarkable that a model such as the one in equation (7) reproduces the
dynamics of the original system which is described by equations (1)-(2). The differences
are evident, while the latter is continuous, piecewise linear and multivariable, the former is
discrete, globally nonlinear and monovariable.

It is believed that the reconstruction is made possible by the flexibility inherent in the
identification procedure. Such a flexibility is manifested in 1) an increase in the number of
process terms when compared to the discretized counterpart, ii) the ‘additional terms’ are
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to the selected model structure.

If, on the one hand, the liberty associated with selecting the model structure enables
the reconstruction of the true dynamics, on the other hand it is clear that a systematic way
of choosing the correct model structure is crucial. In this respect the use of the ERR as a
measure of the relevance of each candidate term has rendered satisfactory results in many
cases.

Concluding, it should be stressed that although a slight increase in the number of process
terms might prove beneficial, overparametrization is, for most nonlinear systems, highly
detrimental to the overall dynamics. Moreover, the way the reconstructed dynamics are
assessed is very important. It is noted that only a few models (of the 145) obtained in
the course of the present investigation reproduced the double scroll geometry fairly well.
Furthermore, some of these models failed to yield reasonable values for A\; and D, and hence
the number of dynamically acceptable models was only a small portion of the original set
of identified models. In this respect, common procedures for model validation such as those
based on model output predictions and on testing the whiteness of residuals are insufficient
in revealing if the final model will reproduce dynamical invariants of the original system.

VI. CONCLUSIONS

This paper has investigated the identification of globally nonlinear models for the double
scroll attractor. Algorithms based on the NARMAX model were used as a framework for
obtaining the results that have been reported.

The main objectives have been to i) identify discrete models for the original system which
reproduce dynamical invariants such as the geometry, the largest Lyapunov exponent and
the correlation dimension of the double scroll, and not simply a model which apparently fits
a particular piece of data, and ii) to investigate how the sampling period, T, and the model
structure affect the overall dynamics of the identified models.

To gain further insight regarding the second objective above, the identified models have
been compared to discretized counterparts. This comparison has suggested that, within a
limited range of practical values of T,, estimated models tend to be more accurate than
the models discretized with Ty = T,. Moreover, the results seem to support that such an
improvement is attained thanks to a slight increase in model complexity, which in this paper
has been related to the total number of process terms in the identified models.

Finally, the results reported have conferred further support to the sometimes overlooked
fact that overparametrization in nonlinear models is usually highly detrimental to the dy-
namics. In particular, models of the double scroll attractor which include just a few more
terms than the ‘optimum’ become unstable.
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