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1.0 Introduction

The nonlinear polynomial model has been studied in detail and the model characteristics,
identification and properties are now well known. In contrast the rational model, defined
as the ratio of two polynomial models, is much more difficult to estimate and has only
recently been considered. But both models are closely related and the present study intro-
duces a unified least squares estimation algorithm for these two representations. This algo-
rithm provides unbiased parameter estimates even when current noise terms, involving
e(7), are present in the regressed model terms. Current noise terms which are not present in
traditional linear and polynomial models (Ljung 1987, Soderstrom and Stoica 1989) are
induced when the rational model is expanded and are related to the concepts of noise in
variables or noisy input measurements (Tugnait 1992).

Two real data sets which relate to the wave forces acting on structures in fluid loading sys-
tems for both unidirectional and directional sea states are analyzed to illustrate the identi-
fication of nonlinear rational models using the unified algorithm.

2.0 Generalized NARMAX model

In a practical environment some uncertain behaviors or stochastic phenomena are often
encounted and model fitting based on stochastic data will be necessary. The NARMAX
model

y() = FO' L e ) +e(n
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can be used to describe the stochastic behaviors of both linear and nonlinear systems,
where 1 (r=1, 2, ...) is the time index and

y=[ly(=1),..y(t=-r)]
u=[u(=1),..u(t-r)l
e=[e(t=1),...e(t=r)]

2.2)

are output, input and noise vectors respectively and F(.) can be a linear or nonlinear func-
tion.

The generalization or extension of the stochastic NARMAX model can be considered in
three stages. The first and fundamental sub-model set is the polynomial formulation (Bill-
ings and Leontarittis 1981), the second extension is the extended model set including
exponential, absolute value, logarithmic, and trigonometrical terms (Billings and Chen
1989a), and the third extension is the introduction of the rational model (Billings and Chen

1989b, Billings and Zhu 1991). The first two sub-imodel sets are naturally characterized as
linear in the parameters.

Extending the model in eqn (2.1) to accommodate current noise terms gives
y(0) = FO' T Lu e e (0, e, (D) +e 1)
(2.3)

where ¢;(r) are independent current noises, with zero mean and finite variance Gc,f, which
are internally addictive on the inputs and/or regression terms. The current noise terms (eg
ej(t)) may be induced by different noise effects on different variables or regressors. The
model of egn (2.1) shown in Fig. 1(a) assumes that all the current noise sources can be
lumped together at the output but the model of eqn (2.3) shown in Fig. 1(b) allows for dif-
ferent noise sequences on different variables. Eqn (2.3) can be expressed as

v = 3 0,(n8;+e(n

J=1

(2.4)
where

0, (r) = p;(0) (v; (1) +e;(1))

(2.5)

and the current noise free terms pj(t) = p/{ 1w, ") and vi{t) = v ¥, u", e*') may be
in the form of polynomial, exponential, absolute value, logarithmic, trigonometrical,
orother functions. Substituting eqn (2.5) into eqn (2.4) yields
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j=1

(2.6)

Eqgn (2.6) provides a model representation when the measurements of different variables
and the output are noise contaminated. Consider the rational model as an example to show
the generality of this model structure
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(2.7)

where a(f) with terms p,, J,{:) and the associated parameters 6,, ;j and b(r) with terms Py
and the associated parameters 6,; are the numerator and denominator polynomials respec-
tively. In order to facilitate identification eqn (2.7) is expanded into a linear in the parame-
ters expression to give

nuni den
Y(1) = 3 Py (00,,+ 3 pyy (DY ()8, +b(n)e(n)
j=1 j=2
num den ( )
_ zpw(;)e”ﬁ zpdj(f) (b( 3 +e(1) 8, +b(1)e(r)

j=1

(2.8)

which is obtained by multiplying b(f) on both sides of eqn (2.7) and then moving all the

terms except Y(£)=y(p,1 (1) (etting 6,=1 without loss of generality) to the right hand
side.

Comparing eqn (2.8) with eqn (2.6) shows that

P =Py 0 =g G0 =ew

(2.9)

in the denominator tenms and
p;j(t) = p,; ) ey =1 e;(t) =0




(2.10)

in the numerator terms. The expanded rational model in egn (2.8) therefore gives a class of
models with current noise sequences in regressors.

3.0 A unified least squares algorithm

NARMAX model identification usually consists of following steps
(i) Model based term selection.

(i1) Parameter estimation.

(iii) Model validation.

The first two steps can be based on a least squares type algorithm. The model term selec-
tion can be obtained using an extension of the err (error reduction ratio) test of Billings
and Chen (1989b) which selects significant terms according to the contribution that each
makes to the reduction of the estimated noise variance (Zhu and Billings 1993). Parameter
estimation is normally achieved by either a conventional least squares estimator or the
orthogonal estimator but correlated noise must be accommodated if bias is to be avoided.
Model validation tests the results obtained from the algorithms.

By considering the model of eqn (2.6) a unified least squares algorithm can be derived
which gives a basis for structure detection and parameter estimation for all the varieties of
NARMAX model sets. Writing egn (2.6) in vector notation

Y = (PV+PE)O+e

(3.1
where
Y= [y(1),...y(M)]7
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@=[0;....6,17
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(3.2)
and N is the data length. Let
b = PV+PE
33)
Then the formal least squares parameter estimator is
6= [dTd] @7y
= [(PVITPV+ [PEITPEI T [ [PVITY + [PE]TY]
(3.4)
where, by the probability limit property with large N (Wilks 1962),
LipviTPE = szm[l [PV] TPE] =1
N N
(3.5)

because ej(r) in PE is an independent zero mean noise and Plim [f] denotes the probability
limit of [f]. Define

T
[PE] PE

n

T
Bias, = Plim[% [PE] PE}

T
[PE] ¥
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(3.6)




which can be thought of as a form of auto-correlation of the error terms and the cross-cor-
relation between the output and the error terms in regressors respectively.

From the above analysis the unbiased least squares estimate of the parameters for the
model of egn (2.6) is

6= [dTd - [PEVTPE] ' [@TY - [PE]TY]
= [®Td - bias,]” [®TY - bias,]

(3.1)

The well known orthogonal least squares algorithms can also be applied to such an expres-
sion by transforming ®’® into an orthogonal normal matrix with appropriate corrections
to the normal matrix and correlation vector (Zhu and Billings 1993).

The following analysis is used to show that the algorithms to identify the polynomial and
rational models are particular implementations of the unified algorithm given in egn (3.7).
For the polynomial model the unified algorithm reduces to

6= [®T® - [PEITPE] " [@TY - [PE]TY]
= [(&Td] " [@TY]
(3.8)

which is a straightforward unbiased estimator. This follows because the matrix PE =0
since the normal matrix does not depend on the current noise. The covariance of the esti-
mator is given by

Covd = o’ [oTd] ™
(3.9)

This type of algorithm and various alternatives to it have been extensively studied (Bill-
ings and Chen 1989a).

For the rational model the unified algorithm reduces to
6= [oTd- [PE)TPE)™ [@TY - [PE]TY)
= [®TD - c2¥] 7 [@TY - o2y]
(3.10)

where [PE]TPE=c/¥ and [PE]"Y=0,’y, and o, is the noise variance. This algorithm
was introduced as a new method of identification for the rational model (Billings and Zhu




1991, 1993, Zhu and Billings 1991, 1993). The covariance matrix of the algorithm was
derived by Zhu and Billings (1991)

G B, VK, 2yl 42
CovO = o0,0,[®'d-0.¥] ,0,<1
(3.11)

where o0, is the denominator variance of the rational model. Consider a simple rational
model to illustrate the algorithm
a(t) au(r—=1)e(t-1)
YO = g5 = ——— +
(1) 1+by (1-1)

e (1)

(3.12)

The linear in the parameters expression is given by multiplying b(r) on both sides of eqn
(3.12) and then moving all the terms except y() to the right hand side

y() =au(t=1)e(r-1) —b,yz(r—l)y(r) +b(1)e(r)

(3.13)

where
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Y = [y(1)..y(M]1T
(3.14)

Unbiased parameter estimates can be obtained by substituting eqn (3.14) into eqn (3.10).
Inspection of eqn (3.8) and eqn (3.10) shows that the critical difference between the algo-
rithms for the polynomial and rational models is the current noise terms which are
included in the later model.

4.0 Identification of fluid loading systems

Rational NARMAX models of two nonlinear fluid loading systems have been estimated
using the unified algorithm in section 3.0 combined with orthogonal term selection (Zhu
and Billings 1993) and model validation test procedures (Billings and Voon 1986).

The first identification S, involved fitting a model to relate wave force to flow velocity for
unidirectional wave profiles acting on a fixed smooth cylinder from the Delta flume facil-
ity. The estimation algorithm was applied with an initial model consisting of 90 terms with
specifications numerator degree = denominator degree = 2, input lag = output lag = 2 and
noise lag = 4. The input and output sequences are shown in Fig. 2 and the identified ratio-
nal model took the form

. a a(r)

y() = b—(7)+e(r)
(3.15)

where
a(t) =1.03y(r=1) =014y (r=2) +4023u(t-1) —407.1u (t-2)
-7.09u> (t=1) +0.55e(t=2) =0.92u (t=2)e (t-3) +0.67
b(r) =1 -—0.041:2(r— 1) =0.02u(r=1)e(t=1)

(3.16)

The one step ahead predictions and residuals are illustrated in Fig.3 and model validity
tests are shown in Fig. 4. All these results suggest that an adequate model of the wave
flume system has been obtained.
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The second identification S, involved fitting a model relating wave force to flow velocity
in directional sea states with a prominent current for the Christchurch Bay Tower. The

input and output sequences for this system are shown in Fig. 5 and the identified rational
model took the form

_a(n
y() = mw(r)
(3.17)
where
a(t) =174y (t=1) =0.82y (t=2) +0.001y* (r=1) —26.9u> (1 -2)
+259u(t=1Du(t-2)
B(r) = 1+0.00001y (t=1) +0.001y (t=2) = 1.70u* (1= 1) = 1.53u% (r - 2)

39u(t-Du(t-2)

(3.18)

The one step ahead predictions and residuals are illustrated in Fig. 6 and model validity

tests are shown in Fig. 7. All these results suggest that an adequate model of the system
has been obtained.

5.0 Conclusions
A unified least squares algorithm has been applied to identify rational models of two real
fluid loading nonlinear systems.
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Figure 1  Block diagrams for NARMAX models
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Figure 2 Input and output for S;
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