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Abstract:

A fast and concise MIMO nonlinear model validity test procedure is derived, based on
higher order correlation functions, to form a global to local hierarchical validation diag-
nosis of identified MIMO linear and nonlinear models. The new procedure is applied to
four MIMO nonlinear system models includin 8§ a neural nerwork training example to dem-
onstrate the effectiveness of the tests.

1.0 Introduction

Dynamic modelling is widely applied in engineering analysis and design, financial fore-
casting, weather prediction, studies of complex social phenomena and many other sys-
tems. Models of these systems can be developed using many different approaches ranging
from analytical modelling procedures through least squares parameter estimation to neural
network algorithms. But one fundamental issue which is relevant to all these cases is
model validation. Once a model of a system has been determined it is important to test the
validity of the model, to determine if the model is representative of the underlying system.

There are several approaches to model validation (Box and Jenkins 1976, Bohlin 1971,
1978, Soderstrom and Stoica 1990) but one of the most powerful methods is based on the
concept that if the model is correct the residuals should be a completely random sequence.
This is relatively easy to test if the system is assumed to be linear because the autocorrela-
tion function of the residuals and the cross correlation function between the input

and the residuals, or closely related methods, provide adequate tests. But these tests are
not sufficient for nonlinear systems and higher order correlation functions have to be intro-
duced in an attempt to detect all possible missing nonlinear terms in the residuals (Billin gs
and Voon 1983, 1986, Subba Rao and Gabr 1984).

The majority of the tests have been developed for single-input single-output (SISO) mod-
els and have exploited the relationship between the model input and the residuals. While
extensions to the multi-input multi-output (MIMO) case has either been given or is rela-
tively straightforward (Subba Rao and Gabr 1984, Billings, Chen and Korenberg 1989),
this often produces a large number of correlation plots which have to be inspected.




The present study is an attempt to overcome some of the above difficulties by developing
tests which utilize the information in the inputs, residuals and the model outputs. Recent
results derived for the single-input single-output case (Billings and Zhu 1994) which
showed the advantages of using model outputs to develop new tests, are extended to the
general class of nonlinear multi-input multi-output models. A new concise nonlinear
MIMO model validity test procedure is derived. This is based on a global to local hierar-
chical diagnosis procedure where initial tests are used to test the overall model validity
and more detailed focussed tests are only used if the model is found to be inadequate. The
application of the new tests is demonstrated using several nonlinear multi-input multi-out-
put examples including validating a neural network model.

2.0 Problem formulation
Consider the general MIMO model representation

y(@) =fO" L e +e ()

(2.1)

where 7 (1=1, 2, ...) is a time index, y(1), u(f) and &(r) denote the output, input and residual
vectors respectively, and f{.) is the vector valued linear or nonlinear function so that

¥ () Uy (1) e, (1) 1,
y() =1 .. Wi} = . e(n) =1 .. Fe= o
Yq (1) u, (1) e, (0 8
(2.2)
where ¢ is the number of outputs and r the number of model inputs. Define
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(2.4)

Notice that the form of the model can be very wide and can include the MIMO linear
model, the Nonlinear AutoRegressive Moving Average with eXogenous input (NAR-
MAX) model (Billings and Chen 1989), a neural network expansion etc.

The selection of one of two models to describe data can be formulated as a statistical
hypothesis testing problem. Two hypotheses are always included in the model selection,
the null hypothesis denoted by H( and the alternative hypothesis denoted by H i- Usually
in model validation Hy is taken as the identified model.

Statistical model validity tests mainly consist of the following three steps (Kendall and
Stuart 1967, Bohlin 1978). The first step is to form a parameter free statistic, which is a
function of the available data such that the distribution of the statistic variable is known if
the hypothesis Hy is true. In this study the statistic variable is assigned as the residual vec-
tor or one step ahead prediction error vector of the model. This is defined from egn (2.1) as

E(I) =y(t) _f(yl—l,ur—l,er—l)
=y =-9()

(2.5)

where y(f) is the system output and y (r) is the model one step ahead predicted output,
The hypothesis H is then defined assuming the model is correct to give

e(r)=e(r)
(2.6)

where e(7) is a totally random vector which is unpredictable from all linear and nonlinear
combinations of past inputs and outputs.

The second step is to define a domain D* such that prob {g(t) ¢ D*| Hgy}=a. In this study
the domain is defined as

D% = {g/d<ky}
2.7)

where ¢ is the new test to be developed in the following sections and k, is the decision
value. The probability of incorrectly rejecting a correct model is . Typically the 95% con-
fidence limits kg=kg os=%1.96/Y N (N is the data length) are used when ¢ is normally dis-
tributed.

The third step is to reject the hypothesis Hy if £(r) & D Different tests can be formulated
by choosing different weight functions and different domains. From Bohlin (1978) all the
tests will have the same risk o of rejecting a model when it is actually valid, however all
the tests do not have the same probability of rejecting a model when it is not valid. Thus




they are not equally efficient. In this study the system output is introduced as a new weight
function to enhance the discriminatory performance.

3.0 Model validity tests
The model validity tests can be formulated as a statistical hypothesis testing problem
based upon the three steps described in section 2.0.

3.1 The linear input/output model case

3.1.1 Correlation tests

Validity tests for the classical SISO linear model (g= r=1 f(.) is a linear map) based on cor-
relation functions can be summarized as

O (U =Ele (g (1+7)]
0 (D =Elu (e, (r1+71))

(3.1

where E[.] denotes the expectation operator. In practice normalized correlation functions
are computed (Priestley 1981) from finite record length N as

N N
> €7 (el (t+1) S u (e (r+1)
¢£|£,(T) = r=1N . HyEy 0= N = N
2 (7(n)? JZ CHOEWCIORE
1=1 1=1 t1=1
(3.2)
where
TN =g (D -€  ul(n)=u (1)~
_ e s L
(3.3)

If the model is an adequate representation of the system then from eqn (2.6) g,(r) should
equal e,(r) and therefore ideally

(="
q)EIEI = 10, otherwise
¢u1£ (1) =0,V

(3.4)




For large N the correlation function estimates given in egn (3.2) are asymptotically normal
with zero mean and finite variance (Box and Pierce 1970), the standard deviations are ]/
N and the 95% confidence limits are approximately /.96/ \N.

New MIMO linear model validity test procedures can easily be developed from the above
tests to form a global to local hierarchical diagnosis procedure. The global test checks for
auto-correlations among all the submodel residuals and cross correlations among all the
inputs and submodel residuals using

0 (1) =E[c(Ng(t+7)]
b, () =E[v(Nc(r+1)]

(3.5)

where
¢(r) =g, (1) + ...+:—:q(r)

V() =u () +...+u (1)

(3.6)

Under the null hypothesis H; that the MIMO model is valid (e(f)=e(r) from egn (2.6)) then
ideally egn (3.5) becomes
,t=0

(T) =
q);‘( ) {0, otherwise
Oy (1) =0, V1

(3.7)

These global tests can be localized to isolate inadequacies in individual model loops by
computing the correlation matrices

. (1) =E[e(nNe’ (t1+1)] =

@, (1) =E[u(ne’ (1+1)] =

(3.8)




where

e(r) = [g;(0)...e, DT
u(e) = [ul(t)...ur(r)]T

(3.9
If the MIMO model is valid (e()=e(r) from eqn (2.6)) then ideally eqn (3.8) becomes
I ,T=0
®, (1) = {77 .
&E 0“4 , otherwise
D (1) = Orxq, V1

(3.10)

where !q x g 1s an identical matrix, 0 and 0 are zero matrices. The total number of
model validity tests for a ¢ output r mpm MII\%O model is g*r+g*q+2. This can be

reduced to g*r+g*(1+9)/2+2 because of the symmetry of the auto-correlation function
matrix (7).

3.1.2 Chi-squared tests
An alternative to the correlation based approach Chi- squared (12) tests can also be derived
to yield a global test. Define

- T T -1 _ T /T !
dg_NpG(l“grg) ug dv—va(Tvl“v) L

(3.11)

where

1 N
M= ﬁglé(r)w (1)
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E(H)~E

N
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(3:12)

The tests in eqn (3.11) are asymptotically x2 distributed with s degrees of freedom where s
is the dimension of vector £ (¢) . The confidence bands of the tests are given by

d =k, (s)  dy =k, (s)

13.03)

where k‘r (s) and kY (s) are the critcal values of the x2 distribution with s degrees of
freedom *y. and Y, are the significance levels for model acceptance regions. The local xz
test formulation has been developed in many publications Bohlin {197 1)

3.2 The nonlinear input/output model case

3.2.1 Correlation tests

It is well known that linear model validity test methods based on eqn (3.1) sometimes fail
to diagnose missing nonlinear model terms (Billings and Voon 1983) and new tests have to
be considered to avoid this deficiency. These can either be higher order extensions of the
tests in eqn (3.1) (Billings and Voon 1986) which are based on the input and residual vec-
tors only or they can be extended to exploit the information in the system outputs as well
(Billings and Zhu 1994). New global tests which check for correlations among all the sub-
model input, output and residual vectors can be defined as

Oen (D =E[E (DM (14 7)]
O (D =E[B (DN (14+7)]

(3.14)




where (1), n(r) and O (r) are normalized variables given by

E (1) =ef(r) +...+e§(:)
N =y (g (1) +...+y (1) e (D

B (1) =13 (1) + ... +u> (1)

(3.15)

Ideally if every subsystem in the MIMO model is valid (e(f)=e(f) from eqn (2.6)) egn
(3.14) becomes '

s (1) = {270
&n ~ 10, otherwise
Oy (T) =0,V

5 (3.16)
I3 & m)?

where k = =1

1s a constant (Billings and Zhu 1994).
)
(m? (1))

M=

=1
Notice that the output has been introduced to enhance the discriminatory performance
compared to tests which traditionally have been based on only the inputs and residuals.

Localized tests can then be used to check the correlations between submodel residuals and
outputs, submodel residuals, outputs and inputs to yield

on () o b (D)

@, (V) =E[E (NN (1+1)] = -
Oty (1) oos Oy (D)
0,50, (D o b0 ()

. M=E O+l =| . .
P 10 e ¢u3ﬂ4(‘f)

3.17)




where

e2(n) = (e2(n)..e2(n]"
N = [y (e (0]... [y, (De (11T

(1) = [ (1) 2 (017

(3.18)

are squared residual, residual and output product, and squared input vectors respectively.
Under the null hypothesis H that the MIMO model is valid (e(f)=e(r) from eqn (2.6)) eqn
(3.17) becomes

@, (1) = {kqxq =0
e'n quq , otherwise
d)u:q(t) =0rxq, V1

(3.19)

where Oq %4 and 0, o re zero matrices and kq - is a diagonal matrix with constant

N i o
IS )’
f=1

elements K; = . The total number of nonlinear model tests for

S )
DRUHONN
t=1

a g output r input MIMO model is g*r+g*g+2. The global tests in eqn (3.14) can therefore
be used initially to indicate if the model is valid. Local test diagnoses can then be per-
formed as required to determine which submodels are incorrect.

3.2.2 Chi-squared tests
Similarly an associated xz test can also be derived based on the global tests

-1 -1
dy = Nug(rgrg) Me  dg = Nl (TIT ) "y

(3.20)




where

1 N
My =5 2 () we ()
=1
i) =Me-1),n¢=-2)..n@-517
E(r) -E
N

Jz (& (1) -F)*

WE_, (f) =

1 T =
N el = E [Hgpil

1 N
=y 20w (1)
=1

B {1} =

N —. 2
Jz (9 (1) -B)*

=1

el =E (TINTEN)

(3.21)

The tests in eqn (3.20) are asymptotically x2 distributed with s degrees of freedom where s
is the dimension of vector 7] (¢) . The confidence band limit of the tests are given by

dy = ky (s)  dg = ky (5)

(3.22)

where L (s) and k Y (s) are the critical values of the x distribution with s degrees of
freedom and v, are the significance levels for model acceptance regions. The local x
test has been denvcd by Billings and Zhu (1994).

3.3 The nonlinear time series case

The nonlinear time series model is a subset of eqn (2.1) which is defined when all input

signals are excluded. Validity tests for time series models are therefore just special cases
of the tests akeve.
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3.4 Test procedure

In summary a coarse to fine strategy can be implemented to test an identified model as fol-
lows

i) Apply the global tests ¢._ (1) and (1) to check if the model valid.

Although ¢én (1) and q)ﬁn () should detect all possible missing model terms it is often
informative to apply the global linear tests 0, (1) and 9, (1) as well.

Stop if all the tests are satisfied otherwise go to the next step for local diagnosis of all
submodels.

i1) Apply the local tests &

en (1) and Cb“: (7) and determine which of the submodels are
incorrect. k

The localized linear tests .. (1) and dbue(‘c) can be computed if required.

3.5 Worked examples

To simply demonstrate how the tests perform two straightforward examples will be con-
sidered where the tests can be easily evaluated analytically.

Example W,
To illustrate the validity test procedure consider a very simple MIMO ARMAX (AutoRe-
gressive Moving Average with eXogenous input) model

Y () =u (1-1) +E; (N

Yo(t) =uy(1=1) +&, (1)

(3.23)

where u(1) is an independent excitation sequence with zero mean and finite variance.
Assume that the system has been incorrectly modeled or identified so the residuals are
given by

g, (r) = € (1)

&, (1) =e (1=1) +e,(1)

(3.24)

where the noise sequences ¢,(t) and e,(r) are independent with zero mean and finite vari-
ance.

Note that all the above tests have been derived without making any assumptions on the
form of the input. Most of the examples however assume the input is an independent
sequence simply because this can cause offending model terms to average out to zero in
the model validity tests and therefore represents a worst case example. The global test
¢GG (1) can be used to check for delayed noise terms like ¢,(r-j) in €(1). Similarly ¢Vg (1)

11



can be used to check for u,(r-j) terms in €(¢). When the residuals include delayed outputs
like y,(1-j) both ¢ (1) and 9, (’c) will give an indication that €() is correlated because
yi(t-j) is auto- correc]atcd and cross -correlated with the input. The local tests can be further
used to determine which of the submodels are at fault.

Using simple algebraic operations the MIMO linear model global test of eqn (3.5) gives
,t=0

0, otherwise
¢vg(‘t) =0,Vt

(3.25)

where for this example p, is a constant. The value of this and all other constant values in
the examples of this section are given in appendix A. Because ¢gq (t) 1s not zero for all

t# 0 this indicates that the elements in the residual vectors are not all uncorrelated and
the model is deficient in some way. This deficiency can be diagnosed by considering the
submodel tests of egn (3.8) which yield

1,t=0 Py T=1

Pe e, (D) = {0, otherwise s, (B =1 0': otherwise
1L2=0D

¢E:Ez(1) - {0, otherwise

¢".£.(T) =0,Vr 0, (1) =0,V1

(3.26)

where for this example p;is a constant. The test ¢, . (1) = p, suggests a delayed
noise &,(r-1) in the residual £,(7). o

To demonstrate that the nonlinear model validity tests can be applied to the linear model
case consider the application of the tests in eqns (3.14) and (3.17) to the model eqn (3.23).
The global test yields

k,t=0
0z, (T) = {p3,r= 1

0, otherwise
G (T) =0, V1

327
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where for this example p; is a constant. Comparison with eqn (3.16) shows that the ele-
ments in the residual vector are not all uncorrelated. Diagnosing the submodels gives

k]19T=0 ¢2 (T)={p4
(bsfn' "= {0,0rherwise €My 0, otherwise
¢82n (T) = 0, Y1 ¢ . (1) = kz:)_, =0
o &2, 0, otherwise

0, Vt

]

Yy (W = 0V Y5, W
(3.28)

where for this example p,is a constant (given in Appendix A). The test ¢ (1:) suggests
a delayed noise e,(r-1) in the residual €,(r) because of o, n, (1) = Py -

Example W,

Consider as a second example a MIMO NARMAX model
yi(0) =u(r=1) +e (1)
Yo (1) =u (t-1) +&, (1)

(3.29)

Assume a linear model identification algorithm has been used to identify the model and
that nonlinear terms have been omitted to leave the residual terms

g, (1) =e; (1- 1)e,(t-2) +e1 (1)
Ez(r) ) (1)

(3.30)

where the input u,(f) is an independent excitation sequence with zero mean and finite vari-
ance, and the noise sequences ¢,(f) and e,(¢) are independent with zero mean and finite
variance. Applying the global MIMO linear model tests of eqn (3.5) to the residuals in eqn
(3.29) gives

0. (0= (270
55 ~ 0, otherwise
q)vg('c) =0, V1

(3.31)

which shows that the linear tests fail to detect the omitted nonlinear terms embedded in the
residuals.

13



Applying the MIMO nonlinear model global tests of eqn (3.14) to the residuals in eqn
(3.29) gives

k,t=0
PsT=1
¢§n (1) = P T = 2
0, otherwise
cpﬂn (1) =0,V

(3.32)

where the constants ps and peare given in Appendix A. Inspection of eqn (3.26) indicates
that the residual vector is not uncorrelated because ¢ 5 (1) = ps and ¢, (2) = Pe -
Using the local tests to diagnose which submodels are causing the problem yields

ki, T1=0
Pz (B = {P-,-,T =1 02, (1) =0, V1
14 1542
0, otherwise 6. (D kyry T=10
. = I 5
0. (1) = Py T 2 il 0, otherwise
e, 0, otherwise
- =0,V 5 = ), ¥
bz, (V) T B B T

(3.33)

where p;and pgare constants given in Appendix A. Eqn (3.33) indicates that the residual
g(r) includes some delayed noise terms at =1, 2 because ¢E:T1 (1) = p, and
1

¢E-:.T|| (2) B pg '
4.0 Simulated examples

Four simulated systems were selected to demonstrate the new MIMO nonlinear model
validity test procedures. In each case the data sequences were of length 1000. The MIMO
nonlinear model orthogonal identification algorithm (Billings, Chen and Korenberg 1989)
which includes model term selection and associated parameter estimation was used in the
study of examples one, two and four. The hybrid radial basis function identification algo-
rithm (Chen, Billings and Grant 1992) which includes network structure selection and
training was used in example three.

Example S,

A simulated two input output nonlinear system was excited by two uniformly distributed
uncorrelated input sequences (¥; , u;) with zero mean and variance 1.33. The noise

14



sequences (e}, e;) were normally distributed uncorrelated sequences with zero mean and
variance 0.36. The system model was correctly identified as

¥, (1) = 1.002u; (t=1) u, (1= 1) +1.043¢, (t=1) e, (1=2) +e, (1)
¥, (8) =1.000u3 (1= 1) +e, (1)

4.1

and all the model validity tests were satisfied. The identified model was then deliberately
constrained to be the incorrect deterministic model given by

¥, (6) = 1.002u; (¢ =1)uy (t=1) +€; (1)
¥, (1) =1.000u3 (t=1) +&, (1)

(4.2)
with the residuals

g, (1) = 1.043¢, (1—1) e, (1-2) +e, (1)

€, (1) = e, (1)

(4.3)

The corresponding model validity tests are shown in Figure 1. The global test dpén (1)
fails since it is outside the 95% confidence limits at point T=1. This suggests the possibility
of some delayed noise terms included in the residuals £,(r) and €,(r). The valid global test

0 gq (T) is well within the 95% bands and indicates that there are no delayed inputs in the
resiguals. With a series of local tests the correlated nonlinear noise term e,(t-1)e;(#-2) in

g,(¢) was detected using q)E:(V 5 (t) which is obviously outside the 95% confidence lim-
its at the points t=1,2. ' "'

Example S,

Consider the MIMO nonlinear time series model

¥, (1) = 0.428y, (t—1) +0.210y, (r=2) —0.489y, (t— 1)€, (1=2) +¢, (1)
Y2 (£) = 0.690y, (t=1) =0.295y, (t=2) +0.953¢, (1= 1) €, (r=2) +&, (1)

(4.4)

where the noise sequence (e;, e;) were normally distributed uncorrelated with zero mean
and variance 1.0. When the term €, (t-1) € (t=2) was deliberately excluded from the
model of eqn (4.4), estimation produced the identified model

¥y (1) =0.428y, (t=1) +0.210y; (r=2) ~0.489y, (1= 1)€, (1= 2) +€, (1)
¥ (1) =0.727y, (1= 1) = 0.333y, (1=2) +&, (1)

(4.5)

15



The model validity tests are shown in Figure 2, the global test ¢§n (1) shows that the

model is incorrect because of the value outside the 95% confidence limits at point t=1.

The missing term g,(s-1)€,(s-2) was detected by the local test q)sz(y &) (1) . Notice that
1 =2

the local test ¢ (1) is outside the confidence limits at points 1=-1, -2 because of the

E3(€)
effect of coupled residuals and does not indicate omitted noncausal terms.

Example S,

A hybrid radial basis function (rbf) neural network structure was used to identify system
S, above.

The rbf network consisted of just one hidden layer, the input vector was defined as
[y, (t=1) y,(t=2) y,(r=1) yz(t—Z)]T , 60 centres using the thin-plate-spline
function vz*log(v) were used with two output nodes y,(f) and y,(f). The network was

trained using the recursive hybrid algorithm (Chen, Billings and Grant 1992) with the fol-
lowing settings: '

Initial covariance: 1000

Initial forgetting factor: 0.99

Rate factor: 0.98

Initial clustering gain: 0.6

Number of passes for training: 5

Initial hidden layer nodes were chosen from data.

The resultant total mean squared residual was 0.757 and all the model validity tests were
satisfied indicating the network had been correctly trained to represent the system. When
the node y,(¢-2) was deliberately omitted from the network the model validity tests, illus-
trated in Figure 3, clearly showed that the trained network was an inadequate model of the
system and the total mean squared residual increased to 0.890. In Figure 3 the global test
¢z (T) shows that the model is incorrect because there are values outside the 95% confi-
dence limits at points T=1, 2 . The missing term y;(+-2) was detected by local test
¢ 2(vee) (t) which exhibits a value outside the confidence limit at t=2. The coupling
effect “taused by the missing term was also detected by local tests ¢ , (t) and
i - o E1(y.£,)
q:E? (12£.) (t) with values outside the confidence limits at T=-1 and 1 reSpcchveEly.

Example S,
Consider the nonlinear model studied by Billings, Chen and Korenberg (1989)
y1(8) =05y, (¢ =1) +u; (1 =2) +0.1y, (¢t =D uy (r=1)
+0.5e, (+1—1) +0.2y, (1 =2) e, (t=2) +e, (1)
Yo (1) =09y, (1 =2) +uy (t=1) +0.2y, (1= 1) uy (1= 2)
+05e,(1=1) +0.1y, (1 =1)e; (1=2) + e, (1)

(4.6)
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This system was simulated with the noise e(f)=[¢,(f) e,()]” defined as an uncorrelated
sequence with zero mean and covariance

COVie(n)] = B-Og 00604}

4.7

uy(r) was a normally distributed uncorrelated sequence with zero mean and variance 1.0
and u,(f) was an uncorrelated sequence with a uniform distribution with zero mean and
variance 1.0.

The parameter estimates obtained by correctly including all the terms in eqn (4.6) in the
identified model are given in Table 1 and Figure 4 shows the global model validity tests
because all the local tests were inside the confidence bands. All the results show that an
acceptable model has been obtained. If any of the terms in the identified model given in
Table 1 is omitted from the model the validity tests will display values outside the confi-
dence limits. For example Figures 5 and 6 show the global model validity tests with the
terms y,(r-1)u;(t-1) in submodel one and w,(r-1) in submodel two deliberatel y excluded,In
each case the model validity tests clearly indicate that the system was inadequately mod-
elled.

Comparing the computational complexity with that presented in Billings, Chen and
Korenberg (1989) the new procedure only requires g*g+g*r+2 tests compared to the pre-
vious g¥r+g*(1+@)2+q*r*(14+q)/2+g*r*(147)2+g*r*(1+g)*(1+r)/4 tests. For example
for a three input output MIMO nonlinear model the new method only requires 2 tests
which can be expanded to 20 local tests to isolate the problem if required whereas the pre-
vious method required 87 tests.

Sub-system 1 Parameter estimates
u;(t-2) 0.997
yi(t-1) 0.499
y2(t-Duy (t-1) 0.103
&(t-1) 0.534
y1(1-2)€,(1-2) 0.220
Sub-system 2

y2(t-2) 0.901
up(t-1) 1.000
y2(t-Duy(1-2) 0.200
Eq(1-1) 0.419
y2(t-1E (1-2) 0.097

Table 1 Identified model from eqn (4.6)
5.0 Conclusions
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New model validation procedures have been introduced for general multi-input multi-out-
put nonlinear models. The tests can be implemented in a global to local diagnosis proce-
dure and computed using the same number of tests as in case of MIMO linear models.
Several different system representations including MIMO NARMAX, time series and
neural network models have been tested to demonstrate the wide applicability of the new
procedures.

6.0 Appendix A

The constant p;, i=1, ..., 8 presented in section 3.3 are valued as below,

€]
2ej ey
_ el - (e3)
Ps 2 B2 5 32 5
2¢;-4(e)) +é,- (e3) +2e7 e
-
e, — (e7)
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—— ) — 7
4 2,7 4 25~

P o e
4 2 . 3. +%"F
e; ey-(ey) e

TS 2 373 5 =2 o 2
e ?_—(el) (eq) +4(e7) es+e| - (e]) +e,- (e3)
= "4 3,32
e; eﬁ—e;(eq)
Pe == 2
€, 2-(9) (eﬁ) +4(f ) e‘7+el (e) +32 (e'))
—_— — —_— 2_._
ei‘ = (e}) €
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