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Abstract

In this paper we consider the wavelet expansion of the solutions of nonlinear
differential equations. We show that, using Lie series, an infinite dimensional
linear system is obtained and we prove an existence result for periodic orbits.
Moreover. the numerical computation of solutions is generalized from Euler's
method to general wavelet expansions.
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1 Introduction

Wavelet bases of Hilbert spaces have been studied extensively ([5].[8],[9].[3])
and have been applied largely to multiresolution analysis in signal processing
([6],[7]). The basic idea of multiresolution analysis is that one determines a
linear operator A,, which approximates a signal f(t) € L*(R) at resolution j.

A,, is a projection operator and maps L?(R) onto a subspace 15;. We have
Vo, € Vora
i.e. higher resolutions determine lower resolutions. Moreover,
) e Vo, il f(2U) € Vasaa.
We also require that all the functions of all resolutions generate L*(R) i.e.

uss 1%, is dense in L*(R)

j=—oc

and

M5 eeo Vi =0

j==pa 23 —

The simplest example of a resolution space is given by the usual discretization:
i.e. V] is the space of all functions which are constant on the interval (k. k + 1)
(and zero otherwise) so that 15, consists of functions constant on (k277 (k +
1)2-7). k€ Z.

In general we can find a scaling function ¢(t) € L?(R) such that

(\/QTJ'%U—Q-M))“ ’

€



is an orthonormal basis of V5, where ¢4, = 2/¢(2/1). Moreover, ¢ can be chosen
to have compact support and be differentiable any (finite) number of times ([4]).

In this paper we study the application of wavelets to nonlinear dynamical
systems and obtain an infinite dimensional linear wavelet equation equivalent
to the original system. Moreover, we prove a limit cycle result in terms of
wavelets. Finally, since Euler’'s method is essentially a wavelet expansion in
terms of the simple rectangular wavelets described above, we can generalize it

to give a multiresolution approximation to a nonlinear system.

2 Wavelet Representations of Dynamical Sys-

tems

Here we consider an analytic dvnamical system of the form

i = f(z) (2.1)

for which no solution trajectory has finite escape time. (It is a simple matter to
extend the results to systems with finite escape time by changing the time axis

to T such that

Since (2.1) is analytic, the solution through any given point 2 is given by the

Lie series ([1],[2]):

z(1) = (1f8/82),



0o f'
= 2 7l

1=0

-,

where £; denotes the Lie derivative with respect to f.

Let (V5 )ieZ be a multiresolution approximation of L?(R) and consider the
solution z(1) at resolution j. Then we choose a scaling function ¢(t) € L*(R)
with compact support such that (mqbg,(i - Q‘jn))nez is an orthonormal

basis of Vs, where ¢4, = 216(2/1). Define
Cin(l) = V2-idg,(t —27In) . jneZ. (2.2)

Then the coefficients of the dolution z(f) at resolution j are given by
a * e
rin = {2(t). vjall)) = _/ > T (Ly)' e - vin(t)dt
iaage, Tl

= Z )U-:;':n(ﬁf )ir (. :
i=0

are given by

 gN)
(@)

where the ‘moments’

n

i

{deﬂ = (;T t]ﬂ(i))

Note that
vinll) = V27041 — 27In)
= V27ign (1 =27 (n—1)=27)
= afe~ilf= TV,
Hence,

: o8 4 .
,ufﬂ = j_ I Ujn-1(t — 277 )dt

oo
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R iy jli—k) 1k
= Z‘f Ikll-’" 1(1)dt
e Sk 24)
k=0

where

; 9—jli—k)
O3
T = k)

Next define the (infinite) vectors

m? (n) (g o)

Alz) = (l.ads.(adg)? (adg)? )z
We can then interpret (2.3) as saying that the n'" wavelet coefficient of the
solution (1) of (2.1) at the resolution j is simply the inner product of the
vectors mi(n) and A(x) (where we regard A as an infinite vector of elements of

R"). Moreover, the wavelet coefficients are linked in a very simple (linear) way

by (2.4). Thus, if we define the infinite matrix
1A= () (2.5)
we have

mi(n+1)= Ami (n). (2.6)

ot



Remark In the following discussion we shall usually suppress the resolution
level and simply write A for the matrix. The level should be clear from the

context. Note that the structure of the matrix A is of the form

R

s

Summarizing. we have
Theorem 2.1 The wavelet coefficients of the solution of (2.1) propagate ac-

cording to the discrete dynamical system
mli(n+1)= Ami(n)
and are given by
(m (n), A(z)),

where we interpret the inner product in an obvious way. O

3 Limit Cycles

In this section we shall discuss the nature of limit cycles in terms of wavelet
expansions. This may lead to some insight into the nature of other global

(chaotic) structures where wavelet representations are natural tools. Consider



first the Lie series approach.

Theorem 3.1 Suppose that the system

i=f(z)

has a convergent Lie series through » € R" for all ¢ > 0. Then it has a limit

cycle through z with period 7 if and onlt if A(2) = (I,ad;, (ady)?. (ad})3, - )z

1s a characteristic vector of the infinite dimensional matrix

1T-5_=;3_?._.\
lrf_,—?
1 T

\

with eigenvalue 1.

Proof We have the expansion

| 75

Blla)= Z
n=0

for the solution of the equation through r. Similarly,

!(adj]”:r

3

(3.2)

l‘(i+T;I):Z(t+T)n

n!

(ady)"2
n=0
and so

n

i n (f)k‘r"'k

n=0k

r(t+T11)

=}
e~
=3

-1



oc  oc 1k L
= i (adf)ﬂ-’l”
2 Fh
o fk s Tﬂ—i n
= —!Z(n_k)'!(adf) X (33)
k=0 n=k

and the result follows. (m]
To consider the existence of limit cycles in the wavelet representation we shall
assume. without loss of generality, that we are looking for a periodic orbit with
period 1.

Lemma 3.1 If 2(1) is a periodic orbit with period 1, then the wavelet coef-

ficients of r for a fixed resolution j (j > 0) are periodic with period n = 27,

l.e.
Tjn = Tj(n421)-
Proof
Ti(n421) = ] ) ""'(I(]T~"_1'(n+2.i)(1)"1f
= f 2(1)V2=3¢q; (1 — 279 (n + 29))dt
— .T-,,‘n
since z(1 + 1) = z(t). ]

The next result follows directly from (2.6):



Theorem 3.2 In order that equation (3.1) has a limit cycle of period 1 it is

necessary and sufficient that
(m (0), A(z)) = (A% m? (0), A(2))

for all j > 0. m|

4 ‘Wavelets and Euler’s Method

Most of our detailed knowledge of nonlinear differential equations comes from
numerical computation. In this section we shall develop a generalization of
Euler’s well-known method to a numerical technique based on wavelet approxi-
mations. To begin. let {1} again be a wavelet basis as in (2.2) and consider

the nonlinear equation
r=f(r) , 2(0)=xp

where f(0) = 0.

Then,
1
w(t) =0+ [ J(a(s))ds
0
and so

(1) —z(t—277) :/ . flz(s))ds. (4.1)



Assuming z € L2[0,0c) (if not, we can always truncate r since we are only

interested in the solution on a fixed time interval) then

2(1) 2= Y zja¥inll) , 120

n

is an approximation to r at resolution j, and so, from (4.1). we have
Z -Tjﬂ‘e‘r‘jn(j) - Z rjntl‘jn(f - Q_J)
n

1
z/ ’_ f(sz,,u‘Jn(s)) ds

n

ernrjn(() - Z Iljnﬁ'jn%—l(i)
n T

1
E/_.}_ f (ZIjnl'jn(S)) ds.

Hence. by orthogonality of the wavelets, we get

Ijm = -t'jm—] = (f _ f (Z -Tjn l'jn(s)) dS‘ 7w-“j:r'.-'.!)< (42)

The bracket on the right hand side is an integral over the support of ";,,. The
main drawback with this expression is that it depends on values of »;,, for n > m
since the wavelets overlap. in general. In fact, if [~0;.0;] is the support of v';
and L = [0 /2] + 1. where [z] denotes the integer part of z, then (4.2) leads to

the difference equation
Tim = Tjm-1= F(Tjm-L, ", Tjm4L) (4.3)

for some function F. This is clearly not particularly convenient for numerical

computation since F' depends on ‘future’ values of z;,,. We can overcome this

10



difficulty with the following simple result, which essentially says that a nonlinear
differential equation may be approximated by a delay equation.

Lemma 4.1 Consider the differential equation

z(t) = f(z(t)) , =(0) = =0 (4.4)

(where f is continuously differentiable) which is assumed to have a unique so-

lution and associate with it the simple delay equation

y(i) = fly(t = 8)) , ylt) =20, =6 <1 <0 (4.5)

Then the solution of (4.5) converges to that of (4.4) as § — 0, on any compact
interval [0, 7] on which the solutions exist.

Proof We shall give a quick outline of this simple result. From (4.4) and (4.5)

we have
1
ril)y = :rg+] flz(s))ds
0
1
W) = ot [ Slats = H)ds
0
and so
1
()= [ (fale)) = Sluts - §)ds
0
where
eft) =x(1) — y(1).
Hence,

1

el < [ Uste(e) = SNl + [ 17w = Suls — 6lids
0 0

11



af,.. af
'8?(»1”(5)) D

(T(s))|| llu(s) — u(s — &)[|ds

1 1
< [ [wumﬁ+£

by the mean-value theorem, where T is between z(s) and y(s) and 7(s) is between

y(s) and y(s — 6). It is easy to see that we may assume that the matrix norms

9 (% (s))

’ and

gé(i(s})H are bounded independently of & (by M, say) and so

a simple application of Gronwall’s lemma shows that

lle()]] < €MIAf sup |ly(s) — y(s — 6)]|.
[0.T]

By uniform continuity of the solution of (4.5) over [0.T], the result follows. O
Lemma 4.1 and the reasoning leading to (4.3) now give the following general-
ization of Euler's method:

Theorem 4.2 Consider the differential equation

and let r;, be the wavelet coefficients of 2(7) at resolution j. Then the coeffi-

clents may be approximated by
Tim = Tim-1 = FlZim-2r_1.* "+, Tjm—_1) (4.6)
where, as before,
L=[o;/2]+1. (4.7)

Proof Indeed. the coefficients satisfying (4.6) are the approximate Fourier co-

efficients of the solution of the delay equation

i(t) = flz(t = L= 1)) (4.8)

12



O
Remark The accuracy of the approximation increases with j, i.e. as j —
oc , L — oc and lemma 4.1 then applies. This, of course, directly generalizes
the basic idea of Euler’s method-as the step length decreases, the accuracy

improves and discretization is equivalent to using a rectangular wavelet.

References

[1] S.P.Banks, ‘Mathematical Theories of Nonlinear Systems’, Prentice-Hall,

London, 1988.

(2] S.P.Banks, ‘Global Linear Representations of Nonlinear Systems and the

Adjoint Map’. Int. J. Control, 51, 1229-1240, 1990.

[3] 1.Daubechies, ‘The Wavelet Transform, Time-Frequency Localization and

Signal Analysis’, IEEE Trans. Inf. Theory, 36, 961-1005, 1990.

[4] 1.Daubechies, ‘Orthonormal Bases of Compactly Supported Wavelets’,

Comm. Pure Appl. Maths., 41, 909-996. 1988.

[5] S.G.Mallet, ‘Multiresolution Approximation and Wavelet Orthonormal

Bases’, Trans. Amer. Math. Soc., 3-15, 69-87, 1989.

[6] S.G.Mallet, ‘Multifrequency Channel Decompositions of Images and
Wavelet Models’, IEEE Trans. Acoust. Speech and Sig. Proc., 37, 2091-

2110. 1989.

13




[7] S.G.Mallet, ‘A Theory for Multiresolution Signal Decomposition: The
Wavelet Representation’, IEEE Trans. Pattern Anal. Mach. Vision, 11,

674-693, 1989.
[8] Y.Meyer, ‘Ondelettes et Operateurs’, Hermann, 1988.

[9] Y.Meyer, ‘Principe d'Incertitude, Bases Hilbertiennes et Algebras

d'Operateurs’, Seminar Bourbaki. no. 662, 1985-1986.

14



