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Abstract

In this paper we shall introduce a definition of poles of a nonlinear differential
equation and show that, in some cases, the solutions have an exponential rep-
resentation in terms of integrals over the singular varieties defined by the poles.
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1 Introduction

Much of the theory of linear systems of equations has been generalized to non-
linear systems. The ideas have been based largely on Volterra series and global
linearizations (see [1] and the references cited therein). However, apart from bi-
linear systems, there has been little success in finding a frequency domain theory
for nonlinear systems. In fact, most work starts from an assumed input-output
map in Volterra form and the spectrum is determined in terms of each kernel.
In this paper we shall consider a nonlinear differential equation and show how
to associate with it a set of natural singularities in multi-dimensional complex
spaces. Two special cases will be considered-nilpotent and rational systems. In
the nilpotent case it will be shown that the singularities are all ‘at the origin’
or, more precisely. are singular linear manifolds parallel to the complex axes.
This directly generalizes the linear case where the poles are all at the origin
with multiplicity the order of nilpotency of the system matrix. The rational
case gives rise to an even more remarkable generalization; this is that the solu-
tions of such a system can be written as sums of integrals of exponentials over
singular varieties.

In section 2 we shall derive the formal expansion of a system using a Lie series
type argument and the two special cases will be discussed in sections 3 and 4,
respectively. Much work remains to be done before anything like a complete
frequency domain theory of nonlinear systems can be achieved. A particularly

important step would be to characterize all rational systems, a point we shall



take up in a future paper.

2 Formal Solution
In order to set the scene, consider first the linear differential equation
r(t) = Az(t) ., z(0) = zy. (2.1)

Taking Laplace transforms, we have

sX(s) — z(0) = Az(s).
so that

5X(s8) = Ax(8) + xp.
~ Inverting the Laplace transform gives
(1) = Ax(t) 4+ zob(t) . z(0) =0 (2.2)

since £(6) = 1.
It follows that the system (2.1) is equivalent to the system (2.2) with zero
initial condition. Of course, the solution of (2.2) is
1
z(1) = €' r(0) +/0 eA=2)r06(s)ds
= 0+e™ /t e~ 45 208(s)ds
0

= el (4

as is expected from (2.1).



Equation (2.2) is, however, strictly speaking a distributional equation, al-
though in this case it is easy to make the calculation in (2.3) rigorous. For, if

1>0,

z(t) = U(1)e?'zg

where U is the unit step function. Hence,

(1) = U)Aezo+ 6(t)e? zo

Ar(t) 4+ 6(1)zo

since E‘f;l«" = & and &(1)p(t) = &(1)p(0) for any differentiable function p. (Here,
£ denotes the distributional derivative.)

Now consider the analytic nonlinear system
z(t) = f(z(1)) , x(0) = z0. (2.4)

We shall assume that this equation has a unique Laplace transformable solution.

Then, as in (2.2) we see that this equation is formally identical to the equation
z(t) = f(z(t)) + zob(t) (25)

with zero initial condition. However, it is now very questionable whether we can
even make sense of (2.5) as a distributional equation. One paossible route is to
try to use Colombeau’s theory of the multiplication of distributions [7] and to
express z(1) as an analytic distributional series. We shall take a more pragmatic

approach and express equation (2.5) as an infinite-dimensional Volterra series



using Lie series techniques [2], although it is important to note that the product
of delta functions can be defined rigorously and has the expected properties.

To do this we define the functions g; inductively by g1(z) = 2 and

2925)  f(z)  if i is even

gi(z) =
6‘_94.;‘%3_(3_) ~xp ifiis odd
Then,
gi(r) - 61— .
B Bg,-(-l‘} . dgi(x)
= g @)+ )= 0

= gail(z) + 8(1)g2i41(x).
Hence we obtain the linear system
G = AG + 6(1)BG , G(0) = Gy (2.6)
where
G=(91.92.93 )7,

A = (a;j). B = (b;;) are infinite-dimensional matrices defined by

aij = by

bij = baip1
and Gg is given by

Go = (0, £(0), 20, ((81)£)(0), ((8)20)(0),-- )7,



where 0 = 3/dr.
We can obtain a more explicit expression for Gy in terms of Lie derivatives,

To do this we define the vector fields v(7) by

[ ifi iseven
'l‘(fr) =

rg i1 is odd

(1.e. v(7) 1s a constant vector field if 7 1s odd). We also require the two functions

i/2 if 7 1s even
£(i) =
(i—=1)/2 ifi 1s odd
and
p(7) = number of bits in the binary expression of i minus 1.
(i.e
?' = b,u(_i')b,u[i')—l Ho b]b() (28]
where
by =0or1for 0 <k < pli)
and

bw,‘) = 1)

Then we have

Lemma 2.1 G = (g10. g20-gs0. - - -) where

gio = Lr(:‘)(LL(f(f})(Lv(f(f(i)))(‘ : ‘Lg(fp(:)—l(,‘)}gui')m}))lro



Lemma 2.2 Let
13 ta Tk
(i oo ) = / ] . / eAr BeAlrz=r1) g ... BeAlr-1-rr-2) g
o Jo 0
eAlPe=P-1) BGou(t; — p1)---u(ty — px)dpy -+ - dps. (2.11)
where, again, u = 6. Then
F,k(f) = (t.t,---.1).
Proof First note that, since u(r) = §(7), (2.10) implies that
1 Ty Tk=1
fk(f] — f f / fA(r—-r]-]BEA{T,—-r;}B“IBEA(-,-,‘H—TJ:)BGO
0o Jo 0
XU(T])---U{TkJG,T]'--di. (212)

since u = é. Now put

We have,
1 1—pm 1—pPk—1
&(n.w.---.u)zf / f e01 BeAlra=r) B ... BeAlPk-1—pr-2)
’ 0 Jo 0
BeAlr =) BGou(ty — py) - - ulty — pi)dpy - -dpy.

The result now follows. O

Next we define the k-dimensional Laplace transform of 4 by

rk(sl,---.sk)=/ f il 5 by Je™ o s el
4] 0

Lemma 2.3 If £7{X(¢;,--+,1,)}(s1. -, $n) denotes the n-dimensional Laplace

transform of X (#;.---.1,), then




and

[LQ(EAU BE—AhE’“’B)(Sl y 52)],’j

nlm!  gntm+lgrt v(i)g s

n=

o
3
1]
o

&)
I
o

where

v(i) = 27t (2 (2" Hi 4 1)) + L

Proof By definition of 4 and B we have

oo oc 4m
l
(EAY]B),‘j = § :E :-n_ 2ne ké?k"rl.J
k=1n=
o 4n
- Z’_l(sz N
— n
n! i+1,)

from which the second equality readily follows. ]

By a simple induction argument, we can calculate the n'® order kernel in the
Laplace domain:

Lemma 2.4 We have

‘Cﬂ

—
N

(Al BeAltz=t1) g . .BeA(rn—r.,_;)B)] -

ij

S5 Y 3 St

0p2=0g2=0  pn_1=0gn_1=0r=0

n—1 (p-'f =+ Q£}! 1 1
1o { pilge] 3‘2“+q‘+1 oot bui).j (2.13)




where

v(i) = 2 w(i) + 1

and w is given inductively by

w(i) = p(n—1)

=

—_
—

—
Il

2P1(297 4 1)

P (2 p(l — 1)+ 1).

g =
—_
—~
_

It now follows from lemma 2.2 that

Ti(s1, -, 8x) = Kk(51,- -, 6:)Go

where

n- pe+a)t 1 1
Hi:ll{({ qr - 5:-[1),_7' (2.14)

for all 51. - - -, s; for which the power series converges. Suppose that I'r(s1, -+, sk)
is analytic apart from on the singular varieties V% C CH,1l<k< e,

Definition We call 1} the poles of the system (2.4) (or (2.5)). (Zeros can
be defined in a similar way.) Particularly important classes of systems are the
nilpotent ones in which g; = 0 for large 7 and those in which the ‘transfer func-
tions’ Tx(s;y,---.sx) are rational. We shall examine the nilpotent class in the

next section.

10



3 Nilpotent Systems

Definition An equation of the form (2.4) (or (2.5)) is called nilpotent if

9i = Lui)(Leqetin (- Lyggutn=aip))) = 0

for i > N. for some N € N.

This is equivalent to the Lie algebra generated by the vector fields :rg-é‘%: and
f(.r}% being nilpotent.
Theorem 3.1 A nilpotent system has a finite Volterra series.
Proof This follows easily from lemma 2.4, since if gi = 0for i > N then by
construction of v(7) the kernels of order > n are zero if 2(n — I)+1 > N.
This follows from the fact that the factor 61y in (2.12) ensures that the first
nonzero term in (2.12) has index 2(n — 1) + 1. ]

(This should be compared with a similar result of Crouch. [6])

Recall that a linear system
t=Az, z € R"

1s nilpotent if and only if A™ = 0 for some m > 0. This is the case if and only

if A has the form

(0*---*
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with respect to some basis. Clearly, therefore, the denominator of the transfer
function is 5™ and so all the poles are at s = 0, with multiplicity m.

It i1s remarkable that the analogous result holds in the nonlinear case:
Theorem 3.2 The k™ order poles (1 € k < L) of a nonlinear system of the

form (2.4) are given by
81 :0,"',3_& :O>

where L is the highest order nonzero kernel. The multiplicity of the poles
depends on the order of nilpotency of the system.

Proof This follows directly from (2.12). O
Remark The multiplicity of the poles is related to ©v(1). In fact. if g, = 0 for
v > N. then the multipheity of s; (1 € £ < n—1) is given by the highest order
of p¢ + q¢ + 1 for which p; and ¢ occur in a ©(1) for which g,(1,(z0) # 0. Note

that the order of nilpotency and order of the poles depends on zg.

4 Rational Systems

In this section we shall consider systems for which the ‘transfer functions’
Tr(sy,--+,sx) are all rational, and we shall prove that any solution of such
a system can be written as a sum of integrals of exponentials over the singular
varieties of I'y. This will generalize the linear case, where every solution is of

the form
()= Zaié"\'t
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where the );’s are the eigenvalues of the ‘A’ matrix. Since the singular sets are
now algebraic varieties in C* (or P*(C), the projective space), the sum must be
replaced by an integral. This result could be proved by applying the topological
ideas in [3] and Cauchy’s theorem in k dimensions, but we shall give a proof
based on the result of Palmadov [5] for the corresponding case of linear partial
differential equations. In fact, we can derive it directly from the following result
([4]):

Theorem 4.1 If P(D) is a partial differential operator in R" with constant
coefficients, then there is a finite set {4;(¢.z)}{_; of polynomials in z and ¢

such that if u satisfies the equation P(D)u = 0, then u has the representation
T
u(z) = Zf-4f(c.z)e-fff'<)dmc)
J=i

for some set {p;} of measures in C". O
Remark This result is also true for systems of operators and the measures can
be shown to be bounded in some sense.

Now consider the k'" order kernel Tx(sy.---,s;) of the nonlinear system and

assume that it can be written in the form

_ _ J Realsa,---,8%)
Fulon oo = B |

where the maximum order of monomials in Py ; is greater than that in R; ;. (Re-
call that Ty is actually a vector of rational functions with components Ry ;/ P ;.)

Then each rational function gives rise to a linear, constant coefficient partial dif-
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ferential equation
Py i(Dy,--+, De)u=0

where the numerator term Ri ; in Tx can be regarded as the boudary conditions
on u. Theorem 4.1 now immediately gives our main result:

Theorem 4.2 Consider a nonlinear differential equation of the form (2.4) which
has rational ‘transfer functions’ in the above sense. Then the solution can be

written in the form

oc Tk

20)= 33 [ Arate.me O )

k=0i=1
for some set of measures yu;,; and a set of polynomials Ay ;. Here, 7 is the
k-dimensional vector ({,1.---.1). ]
Remark This theorem shows that nonlinear ordinary differential equations
with rational kernels have solutions with exponential representations in terms
of integrals over the singular varieties. Thus we have a direct generalization of

the elementary linear case, familiar in systems theory. In the nilpotent case the

sum is finite and the integrals are over hyperplanes parallel to the axes.

5 Conclusions }

In this paper we have generalized the notion of characteristic or singular values
of a linear system of differential equations to nonlinear ordinary differential

equations. Two natural classes have been identified; i.e. the nilpotent class and
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the rational class. (Of course, the former is a subclass of the latter.) In the
nilpotent case we have seen that the ‘poles’ of the system generalize from the
linear case in a remarkable way. Moreover, in the rational case an exponential
representation of the solutions can be shown to exist.

1t will be important to find conditions on f(z) which gives a complete char-
acterization of rational systems and this will be studied in a future paper. Also,
it is desirable to have a better understanding of the nature of product opera-
tors when the arguments are distributions, perhaps other than the simple case
of delta functions here. For this. it is necessary to use Colombeau’s theory
of the multiplication of distributions in which it is proved that the product of
delta functions does not have a representative distribution. This is also under

investigation.
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