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Abstract

A method of designing an observer for a form of nonlinear systems is
presented. The method gives one way of solving the comlexity in generalizing
the well established theory of linear observers to the nonlinear systems in the
form considered. The method is demonstrated on a practical model of the

Ball and Beam system.
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1 Introduction

In this paper we present a method for designing an observer for nonlinear

systems of the form

i(t) = A(e)o+ B(z)u (1)

y(t) = C(z)z

The method gives one way of solving the complexity in generalizing the well
established theory of linear observers (see; [4], [5], [6] and [7]) to the nonlinear
systems in the form given in equation (1) above.

This problem has been addressed before by A.S. Hauksdottir and R.E.
Fenton in 1988 and they have presented a method of design which requires
transforming the nonlinear system in the form of (1) into what they called a

nonlinear observer form (by analogy to the linear observer form) given by:

z° = A°(z°)z° 4+ B°(z°)u (2)

gt} = C%°




where the superscript ‘o’denotes observer form, and

aff2f) 1 0 . 0
ad(z?)] 0 1 .« 0
A =
1
aZ{z°) 0 0
by (=)
b3(=%)
BD(EO) —
b2 (2°)

c°= { 1000 ]
then they design an observer in analogous to the linear case. The major
complexity with their method is the nonlinear transformation from system
(1) to system (2) essentially required in the design. ‘This involves solving
a system of partial-differential equations and can get extremely involved,
especially for higher-order systems (n > 2) ’([3)).
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2 Nonlinear Observer

In this section we develop an approach for designing an observer for systems

in the form of (1). Consider the nonlinear system

t = A(z)z+ B(z)u (3)

w = H(z)z

where z is the state vector, u is the control input, w is the output mea-
surements of the system and they are of dimensions n, m and r respectively.
A(): R* — R, B(.): R* — R™ and H(.) : R* — R™ are continu-
ously differentiable matrix-valued functions with H(z) being the observation
on the states. A stabilizing control for the above nonlinear system has been
buplished by the same authors (see [2]).

For the above system we define a nonlinear observer of the form
z = F(z)z+4 G(z)z + T(z)B(z)u (4)
where T'(z) is a matrix satisfying

F(z)T(z)— T(z)A(z)+ G(z) =0 (5)



From equations 3, 4 and 5 we get

T (z)
dz

= F(z)(z-T(z)z)

d . . \ .
(e=T(2)e) = -T(e)e - ——iz+2"T(a)i

0T (z)
Y

(A(z)z + B(z)u)z (6)

where F(z) can be assigned arbitrary eigenvalues.

If we define
(=2—T(a) )
Then (6) will be
¢ = Fla)( + hz) ®)
where
he) = -2 p(z)e + By (9)

Lemma 1. For the matrix F'(z) having assigned negative eigenvalues and
a bounded h(z)*, ((t) will converge to a ball of certain diameter.

Proof One can write equation (8) in the form:

¢ = Fol + (F(z) — Fo)( + h(z) (10)

*The boundness of 9_1‘;_(:5) will be discussed later in this paper.



where Fjp is a constant (chosen) stability matrix. Then
t
¢ = Mo+ [ eRUI(F(z) - Fo) + h())ds (11)
0

With F, being a stability matrix we have that ”eF°‘ < Me " where M

and wy are positive numbers, so that if we take norms to equation (11) we

get:

€11 < Mem* Gl + [ MemoCII(F(=) = B ¢l + [IW(=)llds (12)

Let
y =i (13)

then
vSO+M [[W(o)I(F(@)- F)llds + M [[e=e [h@)lds  (14)

and
¥ < My(®)|(F(z) - Fo)ll + Me* [(a)] (15)

where C' in equation (14) is a positive number. If we chose the eigenvalues of
the matrix F(z) to be all equal to —) (this is possible as we have that both

matrices F((z) and Fy can be assigned arbitrary eigenvalues), it follows

|(F(z) = Fo)l| < d; d>0 (16)
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then
t
¥ < Me*yo+ M [ =9t |ln(z))| ds (17)
0
If we substitute back on y we get

t
ICH S M ol + M [ eldmoielomd e ds

t
< Me* |Gl + eldmwo)t {lwo=de} |Ih(a))|

Wo — d

M(1 — eld-wo)t

< el + T gy (18)
Wy —

and the result follows with (18) determining the diameter of the ball
where ||(|| converges. 0.
By the appropriate choice of the eigenvalues of the matrix F'(z) which will
determine d and also noticing that wg is determined by the chosen stability
matrix Fo, we can make sure that the diameter of the ball defined by equation

(18) is small. Then we can write

<l — 0 (19)

or

z—=Tz — 0 (20)



Suppose that the matrix

H(z)
T(z)
is invertible. Then
HE) | | HE) |
T(z) T(z)
and therefore
Ha) | ||
T(z) z(1)

using (3) and (20).

3 Stability Analysis

Let us write

then
u(t) = K(z)My(z)w+ K(z)My(z)z

= K(z)Mi(z)H(z)z + K(z)M,(z)z

7
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Define

from equation (3) we get

z = (A(z)+ B(z)K(z)Mi(c)H(z))z + B(z)K (z)Ma(z)({ + T(z)z)

(A(z) + B(z)K(z))z + B(z)K (z)M;(z)¢ (26)
Also we have from (25)

( = 2-T(2)z—

and the composite system (equations 26 and 27) is:

) |

where the eigenvalues of the matrecies (A(z) + B(z)K(z)) and F(x) can be

A+ BK BKM, 0

(28)
0 F

~9T(A+ BK)z + BK My(z

assigned arbitrarily.
System (28) can also be written in the form
# A+ BK BKM,
¢

—Z[(A+ BK)z] F-ZBKM,z

’ (29)
¢
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where the term —%EBKM;.C:}: has been put in the form —%gBKMsz.
Let us now consider the general case of reduced order observer, where we

have that

s , YEE, wekE"T

then system (3) becomes

y Au(z) Ap(z) y Bi(z)
= + U (30)

w Axn(z) Axn(z) w By(z)
with the following dimensions: Aji(z):rxr; Apa(z)irx(n-r); Az(z):(n-r)xr
Aja(z):(n-r)x(n-r); By(z):rx1 and By(z):(n-r)x1.
As in the linear case, the vector y is available and the control u is assumed

known, then
v = An(z)y + Ax(z)w + Bi(z)u
gives us
¥ — Au(z)y — Bi(z)u = Apy(z)w (31)

with A;3(z) as an observation on w.



From (30), we now have the following

w = Ap(z)w+ Asn(z)y + Bx(z)u

¥ — Au(z)y— Bi(z)u = App(z)w (32)

and we want to design an observer for the above system.

The proof of the following lemma (lemma 2) follows directly as in the

linear case, for detailes see ([7]).

Lemma 2. The pair (H(z), A(z)) is observable if and only if the pair

(A12(z), A2a(z)) is observable.
In order to construct an observer, we recall that an identity observer for

system (3) is given by
z=(A(z) - L(z)H(z))z + L(z)H(z)z + B(z)u (33)
Then an identity observer for system (32) can be defined in the form:

b = (An(e)— L(z)A1n(z))d + Az(z)y
+L(z)Arx(z)w + By(z)u
= (Azx(z)— L(z)A12(z))d + An(z)y + By(z)u

+L(z)(y — An(z)y — Bi(z)u) (34)
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selecting the (n-r)xr matrix L(z) so that (Azz(z) — L(z)A;5(z)) is a stability
matrix. We recall here that following the observability theorem we can chose

the appropriate matrix L(z) which assigne fixed eigenvalues to (Asz(z) —

If we let

then (34) becomes

z = (Axn(z)— L(z)A12(z))z + (Azna(z) — L(z)Ara(z)) L(z)y

+ (Au(z) — L(z)An(z))y + (Bz(z) — L(z)Bi(z))u (35)
z=F(z)z+ G(z)z + T(z)B(z)u (36)

where
F(z) = Apa(z) — L(z)As(z) (37)

G(z) = ((Aza(z) — L(z)A12(2)) L(z) + (Anr(z) — L(z)Ars(2),0)  (38)

11



T(z) = (~L(z), In-r) (39)

Its clear from equations (37-39) that all the matrices which construct the
observer (36) are expressed in terms of the ”chosen” matrix L(z). This raises
the requirement that the matrix L(z) should be bounded. To get this bound
we consider equation (37) and let us assume that the matrix (A12(z) A%, (z))

is invertible. Define the "generalised inverse” of the rx(n-r) matrix to be

Aly(z) = ADy(z)(Ana(z) Aly(2))™ (40)
Using (40) with (37), we get
L(z) = Az(z)A7y(2) — F(z)Aly(2) (41)

Recall that for A an mxn matrix, the notation ||A|| denotes the nonneg-
ative square root of the sum of squares of the moduli of the elements of A;
|A|> = trA" A and ||A|| > 0 unless A=0, then ||[A]l = 0. Then from equation

(41) we can get

IL(2)]l < | A22(2)]| | AT ()] + [1F ()] ]| A7 (=)l (42)

noticing that the matrix F((z) is bounded by the moduli of the largest of its
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chosen eigenvalues, (42) gives the required bound on the matrix L(z) which

in turn gives bound on the matricies G(z) and T'(z) (see eqns.(38) and (39)).
Also from (42) we can get an estimate of %, this can be done by taking

the derivative of (41) with respect to z, i.e.

0A(z) 08F(z)

which provide us with the inequality
oL 0A] d0A "
o IR ERET] et Y - [Ree
0Al,(z 0F(z .
LTI el B R [ AT

and this bounds g—‘g. Similarly from (38 and 39) equation 43 provides a bound

oG . 4 oT
on 32 and =

We recall that the composite system is in the form

3 A+BK BEM, || 0
£ (44)

¢ 0 F ¢ ~2L1(A+ BK)z + BKMy()z

the eigenvalues of the matrices (A(z) + B(z)K(z)) and F(z) are to be as-

signed arbitrary and % 1s bounded. This system can also be written in the

form
z A+BK BEKM, ||z 0 0 T
= + (45)
¢ 0 F ¢ —%Z(A+ BK) BKMz | | ¢
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Lety) = (z ()7, then we have

=T o4 Mz (46)

where T'(z) and II(z) are as defined in (45) also I'(z) is a stability matrix
(with chosen eigenvalues).

One can write (46) as
¥ =Toy + (I(z) — To)¥ + H(z)3 (47)

where T’y is a constant stability matrix then, following the same steps as in

the proof of lemma 1, we get

1l < Ne™* Ioll + [ Nem[|(=) ~ Toll + [T(2)[] (=) ds  (48)

erot

where “ < Ne ™' with N and w positive numbers.

Let
IT(2) — Toll + ITI(z)|| <
by Gronwall’s inequality, we have

1] < el ||y (49)
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which proof the asymptotic stability of (46) provided that w > Ne.

Remark. From (37) we have
F(z) = Az(z) — L(z)Ar(z) (50)
Then in reference to the proof of lemma 1, we have

1F(z) = Foll = [I(A2a(2) — L(z)Arz()) — (A22(0) — L(0)A12(0))]]
= [[(A2a(z) = A2(0)) — (L(z)Ara(z) — L(0)A12(0))]|
= [[Az(2) = A25(0) — L(z) Arz(z) + L(0)A12(0)
= L(2)A12(0) + L(z) Ax2(0)]|
= [[(Aza(z) = A25(0)) — (L(z)Arz(2) — L(z) Ar2(0))
+ (L(z)A12(0) — L(0)A12(0))]
< [I(Aze(z) = A2(0)]| + || L(2)]] (Arzz) = Ar2(0))]

+ [[(L(z) = L(0))]] [ Ar2(0)) (51)

which states the condition of equation (16) in terms of the chosen matrix

L(z). In summary we have proved the following theorem:
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Theorem 1. For nonlinear systems in the form
z(t) = A(z)z+ B(z)u (52)
y(t) = C(z)z

where z is the state vector, u is the control input, w is the output mea-
surements of the system and they are of dimensions n, m and r respectively.
A(): R* — R¥ , B(.): R — R™ and H(.): R — R™ are continu-
ously differentiable matrix-valued functions with H(z) being the observation
on the states.

A nonlinear observer can be defined for system (52) as
3 = F(z)z+ G(z)z + T(z)B(z)u (53)
where T'(z) is a matrix satisfying
F(2)T(z) - T(z)A(z) + G(z) = 0 (54)

For this observer, if we define ( to be the difference between observer states

z and T(z)z, i.e.
(=z—-T(z)z (55)

Then with matrix F(z) assigned negative eigenvalues and a bounded h(z)

16



[defined by equation(9)], ¢ will converge to a ball the diameter which is
determined by equation (18).
Considering the general case of a reduced order observer, the elements of

nonlinear observer (53) are given by

F(z) = Az(z) — L(z)A12(2) (56)

G(z) = ((Azz(z) — L(z) Ara(2)) L(z) 4 (Azr(z) — L(z)Ann(2),0)  (57)
and
T(z) = (- L(z), In--) (58)

where system (52) has been written in the form of (30), and L(z) is a chosen

matrix which satisfy the following inqualities

1L < A A7) + (@) |45 (59
and
dL(z) 0A7,(z) 0Az(z) .
%52 < o[22 4 | 22 gy
S LOT| e e [T

and as all the matrices which construct the observer are defined in terms of
L(z), the above inqualities provide bounds on matrices F(z), G(z) and T(z)

17



as will as bounds on their rate of change with respect to the state vector

z(t).
With the information about the unobservable states of system (52) pro-

vided by observer (53), and writting the assumed invertable matrix

H(z)
(61)
T(z)
in the form
H(z)
= [M;(z), Ma(z))] (62)
T(z)
a stabilizing feedback control for nonlinear system (52) is given by
u(t) = K(z)Mi(z)H(z)z + K(z)My(z)z (63)
and the composite system is
T A+ BK BKM, T 0 0 T
= +
¢ 0 F ¢ ~%L(A+BK) BKM,uz || ¢

Letp = (z ()7, then the above system can be written in the form

¥ =T(z)y + O(z)y (65)

18



If we define T'g as a constant stability matrix then we have that ”er"t <

Ne™* where N and w are positive numbers,then system (65) is asymptoti-

cally stable provided that w > Ne. ' 0.

4 Example

In this section we shall consider the application of the above theory to the
Ball and Beam system shown in Fig.1.

In this system the beam is symmetric and is made to rotate in a vertical
plane by applying a torque at the point of rotation (the centre). The ball
is restricted to frictionless sliding along the beam (as a bead along a wire).
This allows for complete rotations and arbitrary angular accelerations of the
beam without the ball losing contact with the beam. We shall be interested
in controlling the position of the ball along the beam i.e. we would like the
ball to track an arbitrary trajectory.

Let the moment of inertia of the beam be J, the mass of the ball be M,
and the acceleration of the gravity be G. If we choose the angle ¢ of the beam

and the position r of the ball as a generalised coordinates for this system,

19



then the Lagrangian equations of the motion are given by

0 = 7+ Gsing — r¢?

to = (Mr?+ J)¢S + 2Mri¢ + MGreosd (66)

where ?; is the torque applied to the beam and there is no force applied to

the ball. Using the invertable transformation
to = 2Mr7¢ + MGreosd + (Mr* + J)u (67)

to define a new input u the system can be written in state space form as

T To 0
I z1z; — Gsinzy 0
= + u (68)
I‘3 Ty 0
y = o

where 2 = (z4, 25, z3,24)T =: (r, 7, ¢,q'ﬁ)T 1s the state and y = h(z) :=ris

the output of the system (i.e. the variable that we want to control).

20



System (54) is in the form

T
)
T3

T4

where

For this system we notice that n=4 and r=1 (i.e.

0 1
a 0
) 0 0
0 0

available at the output).

From the above we see that

Al?A{z =

21

0 0 I
f(za) 0 T2
0 1 I3
0 0 Ty

I

Z2

I3

Iq

2 4

I3 | I3

3 + i +e

- u (69)

only one state, z;, is



so that the assumption of (30) is satisfied.

4.1 Determination of the matrix F(z).

We recall that
F(z) = Azn(z) — L(z)A12(z)

Then

—33(33) 0 0
We want to chose I; above so that F(z) has the desired eigenvalues. Let

these desired eigenvalues for this system be Ay, A; and A3 (real and negative

eigenvalues). Then the elements of the vector L(z) will be

Li = —(A14+ A2+ Xs)
! (A2 4+ A Az + X))
’ f(z3)
R
L e BT
f(ma)
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so that

kl f(mg) 0

F = -k
(z) 01

k
| Ty 00

where kl = (A]_ +A2+A3), kz = (A1A2+A1)\3+A2)\3) and k3 o (Al)\;,))\g). Let us

chose A; = A; = A3 = —2, then from the above we have that k; = —6, k; = 12

and k3 = —8 and so
—6 f($3) 0
F = -12
(z) f(z3) 0 3
-8
[ Tey 0 O
and
6
L = 12
(z) on
8
L f(=zs) |

it follows that

G = —64

(z) Z4 000
—48
Jey 0 00




and

T(z)=| =2 9 1 ¢

It easily seen that (5) is satisfied.

It follows that

and

= (71)

E.00 1

For a tracking problem we recall (see [1]) that the control is given by
u=kMHz+ kM,z — R"*BTg, (72)
where

k=-R'BTpPgz (73)
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and s; is the vector lim,_,..s where s is the solution of
$=—(A—BR'BTP)Ts 4+ Qr (74)

and r is the set point. With the calculations carried out so far we are now

able to form the composite system below

z5 il 0 f(zz) 0 0 0 © T 0

z3 0 0 0 1 0 0 0 T3 0

Ty = 0 0 0 0 o0 0 0 zg [T |1 |
Z (22-24) 0 0 0 —6 f(zz) 0 || = 0

. —64 =12

Z3 m 0 0 0 7(zs) 0 1 Z3 0

. —48B —8

L= ] [ e 00 Oy 0 0f|as] |1

The simulation results of the above system in Fig.2 show that the closed
loop system with the control given in equation (72) provides good tracking

for the trajectory 5 * cos(p: * ¢/30).
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5 Conclusion.

In this paper we have studied a method for designing an observer for nonlinear

systems of the form:

#(t) = A(z)c+ B(z)u

y(t) = C(a)e
In the method we have generalized the theory of linear observer to nonlin-
ear systems in the form given above. Similar to the linear observer theory,
we have seen that the convergence of the observer states to the exact sys-
tem states is determined by the appropriate choice of the eigenvalues of the
‘observer matrix 'F(z), which gives us in the nonlinear system a ball of con-
vergence defined by equation (18).

We have shown also that all the elements of the observer i.e. F(z), G(z)
and T'(z) are defined in terms of a chosen matrix L(z) (eqns. 37-39). Then
it has been shown that L(z) is bounded with respect to the change in the
states (eqn.36) which in turn bounds the matrices F(z), G(z) and T(z). The
condition of equation (16) has also been reduced to a condition in terms of
the matrix L(z) (eqn.51). The result of this paper have been demonstrated
on a practical Ball-Beam system.
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