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TRACKING THE FEATURES OF A SPATIALLY
DISTRIBUTED CONTINUOUS FIELD

(THE IDEALISED 2D, DETERMINISTIC CASE)

Abstract

This is the first of several reports on research that aims to utilise a model of the surrounding
field together with measured data therefrom to locate and orientate an observer. A single
valued solution is developed to calculate the position of a vehicle in a continuous field
environment described by a known polynomial from a minimum number of equispaced field
measurements laken at that location and known coefficients of the polynomial. Where
insufficient measurements from a single scan of the field are available, a formula for utilising
extra data from several scans has been produced. The formulas have been demonstrated in
many example fields, two of which are presented here.

The investigation and test results to date have been confined to the purely deterministic case
and future reporis in this series will address the effect of noise.

1. Introduction

Over the past decade or so, great interest has been shown in achieving autonomy of moving
vehicles [1]. Detection and avoidance of obstacles within the traversed domain is often a key
criterion in choosing an acceptable path for the mobile through the domain between-
prespecified start and destination points. Obstacles might

(a) be objects insurmountable by the vehicle or
(b) represent merely “difficult terrain” features.

In case (@), the obstacle must be avoided totally at all costs. In case (b), the feature shbi
avoided only to the extent that some overall cost function (involving perhaps journey time,
energy utilisation, overheating etc.) is minimised.

Generally, there will exist some form of domain map providing 2 priori information of
obstacle and feature location to the on-line vehicle guidance controller. This map may be a
shop-floor layout plan [2] for a factory mobile or, perhaps, a satellite image of iceberg
distribution for navigating Arctic waters. In addition, the mobile will carry onboard obstacle
detector systems (based on vision, ultrasonic and/or tactile sensors), together with some form
of position-reckoning system (compass based, inertial, scanning laser triangulation etc.).
These, used together, should permit correlation of obstacles and features observed by the
vehicle (i.e. within its field of view) with members of the set of obstacles prestored on the
map. Indeed, such correlation may be essential for recalibration of the position-reckoning
system from time to time or continuously. This is because the position-reckoning system can
be prone to drift and the resolution of the domain map may be insufficiently precise for
accurate navigation with respect to the real life obstacles in real time.

The actual path traversed by the mobile through the spatial domain will determine the features
and obstacles actually encountered therein on a particular journey, and hence the particular
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images that are picked up by the onboard scanning system. Of course, the actual path will
differ continuously from the planned path (to only within acceptable limits hopefully). A task
of the feature- and obstacle- detection systems is to measure such deviations and either initiate
the necessary mid course corrections automatically or, at least, correct the readings of the
position-reckoning system in the light of the real world observations.

1.1. Tracking within a Continuous Field

The foregoing discussion concemned essentially discrete features within a spatial domain
although, in the case of ice-flows for instance, these can merge into semi-continuous features.
Many surface geological formations viewed from altitude can also present remarkably regular
continuous patterns over long distances and these can provide a useful aid to aeral
navigation. The same is true of large scale underground geological structures [3], the features
of which can assist mining and tunnelling machine guidance [4]. Such geological fields can be
modelled as multd layer sandwiches of ingredients that differ significantly in their physical
properties such as their optical reflectivity, natural radiation emission, density and mechanical
hardness. The layering can be remarkably consistent over thousands of square metres. The
layering is obvious from laboratory testing of core samples, and from human observation of
rock faces exposed in the course of mining operations. Moreover, scanning optical [5] and
tactile sensor systems [6, 7] can reproduce an electronic replica signature of the layering, the
latter on line and the former at safe distance behind the mining machine or between cutting
cycles.

During mining operations it is required that the machine follow the geological structure so as
to extract a band of preselected consecutive layers from the sandwich,

(a) to avoid dangerously hard layers (i.e. continuous obstacles) above or below and
(b) to extract those layers that are richest in the desired mineral.

In general, the layers are remarkably constant in thickness but, unfortunately, the sandwich
structure as a whole is rarely level or even flat. This is because of large scale earth movements
subsequent to the epoch of layer formation. The gentle bending and twisting of the geological
world in which the mining machine operates is one reason for automatic guidance with
respect to the features of the formation. Merely following a straight line, (as defined by a pre
directed laser beam for instance) is rarely adequate for a mining- (as opposed to tunnelling-)
machine. The other reason for automatic guidance is that such a machine, even if correctly
launched within a flat geological formation, would soon drift off course, just like any other
vehicle, ship or aircraft released with its controls locked with respect to the vehicle body:
chassis, hull or fuselage.

In the mining application, research to date has focused on using data from only a single scan
of the field to locate the machine at any particular instance, or has merely used moving
average techniques over recent scans to attenuate the effect of field measurement noise on the
positional estimate. No serious attempt to incorporate spatial model of the field within the
estimator and its memory has been made. The fusion of optimal positional estimation and
geostatistical models, although attractive as a vague idea, has proved difficult to formulate so
far. There is a need to get back to basic concepts and in this report we begin by posing and
solving the simplest possible problem of the genre. It is intended to add details later.



2. Idealising the Continuous Field Tracking Problem
2.1. Modelling of the Field

Let H be a measure of the physical property (hardness, reflectivity, etc.) of the material in the
field, the distribution of which is to be scanned, sensed and tracked.

In this two dimensional version of what, in general, would be a three dimensional field, H
would be a function of distance x, measured along the contours of the formation and y, the
distance measured orthogonally to x from a boundary (say the upper ore, as shown in Fig. 1)
of the field. Thus

H=H(x,y) (D

in the 2D situation. However, we shall confine attention to perfectly isotropic situations as
regards the x direction so that the field description reduces to simply

H=H®) (2)
0<y<y, (3)

where y,is the constant depth of the total formation.
Although discussion in earlier Sections has suggested discrete layering of the formation we
shall assume here that the field characteristics can be described adequately by a function H(y)

that is continuous in y, subject to limits (3) of course. In particular we here assume a
polynomial representation

HY)=aqy+ay* +......... +a,y" (4)

of order n sufficient, with appropriate choice of constant parameter values a;...a,, to represent
all the features of interest within the field i.e. to produce a map of H(y) with adequate relief.

Now the machine will sample the function H(y) only at specific values of y that will depend on

the scan number j and the sample number i within the scan. Thus we must confine attention to
only the locations

y=y,J) &)
1<i<m ©

where m = the number of samples per scan. Here the samples in each scan are assumed to be
equispaced at intervals Ay as shown in Fig. 1 so that

y(i,J) =y (J)+ (i —1)Ay )
For all scan numbers j therefore, the scan width is a constant given by

y(m, j)=yo(J)=(m—-1)Ay 8
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but each scan J 1s subject to floating limits specified by:
Yo() =¥, J) < (m=1DAy+y,(j) ®
2.2. Modelling the Machine Trajectory Through the Field

The object of the tracking exercise is to find successive y(j) values (from the measured values
of H(y), knowing equation (4) and some initial value, say yy(1)) as the machine moves
through the field.

Now if m<n, there will be insufficient data from a single scan j to allow calculation of y,(j) in
general. Information from previous scans will be required together with a knowledge of the
form (though not necessarily the parameter values) of the equation of the machine trajectory
with respect to chosen boundary of the formation which forms the x-axis. Since scans take
place only at discrete x-locations, here assumed nearly equispaced at &x,

x= jax (10)
the above mentioned trajectory can be expressed in the discrete form:
Yo()=yo(J—1)+g(j)dx 11)

In general g(j) will be x-dependent and therefore vary from scan to scan but, for this
preliminary report, we shall assume that g(j) is constant, i.e.

g(J) = g = aconstant (12)

This would apply exactly for example to a flat, though not necessarily level, geological
formation and to a machine trajectory that is straight (in a Euclidean sense) but not necessarily
parallel to the field. It would apply exactly also to a curved field provided the curvature of the
machine satisfied equation (12). As an approximation, the assumption (12) would be
allowable also provided the variation of g(j) were small over the number of scans r necessary
in the memory of the tracking algorithm (yet to be designed). Based on assumption (12), it
follows that the offset dy between successive scans is given by

0y =y,()) =y, (j—1) = gbx (13)
E = g =a constant (14)
dy

2.3. Representing the Field after Scanning and Sampling

Now associated with scan j (taken at station x=jx from x=0) will be produced an m-valued
discrete sampled function of H(x,y)=H{jax,y(iy)}. Hence restating equation (7)

YU, N=y()+0G-DAy, 1<ism (15)



where yy(/) is an unknown variable (the value of which is the object of the tracking exercise).
Now, although for a field that is isotropic in x-direction (as assumed here), field H needs only
one spatial coordinate or argument, (i.e. H(x,y) can be denoted simply as H(y)), the sampled
function needs two arguments. This is not because x; is unknown but because y is unknown
and x-dependent (since the initial value of y(i,j), i.e. yo() is unknown and j-dependent). We
therefore denote the jth discretely-sampled H function, produced at location y(i,j), by the
symbol H{i), 1<i<m.

2.4. Statement of the Overall Tracking Problem

In terms of the notation introduced in Sections 2.1 to 2.3, the idealised tracking problem here
can be formally stated as follows:

Given H{fi), 1< j<r, 1<i<m, i.e. given m samples, taken in the y direction at known
constant intervals Ay starting at unknown yy(j), from each of r scans separated in the

x direction at known constant intervals dx, of field H(x,y) where the constant coefficients
a;,a;,...,a, of its polynomial representation

H(x,y)= H(y)=a1y+azy2 ....... a,y (16)

are also known and, given that the path of the machine is linear in x, y space so that:

dyo

—= = unknown constant g (17)

dx
find g, and hence y,(j), 1< j <r, given launching position y,(1).
Clearly it is computationally desirable to keep integer r to a minimum for a given integer m.

Fig. 2 illustrates the problem very simply. Effectively, we are given r batches, equispaced at
oy, each of m samples of H(y) equispaced at Ay, 8y being given by

dy = gbx (18)

where Ox is known but constant g is not. The initial position y,(1) is given and 8y is to be
found. The solution of the problem is considered in Section 3.

3. Method of Solution
3.1. Special Case (Single Scan) Problem
By way of introduction we first consider the special case of

dy = mAy and (19)
mr=n (20)
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so that effectively we are given n consecutive samples of H(y) equispaced at known interval
Ay as shown in Figure 3. We shall here consider initial value y,(1) to be unknown since 8y is
known in this special case (via equation (19)) if Ay is known. The problem therefore reduces
to finding yo(1) from the n given samples of H(y) and a knowledge of Ay. Since the number of
given samples = order of the polynomial describing H(y) in this case the problem is clearly
tractable. The method proposed is based on the following analysis.

This special case can be considered as a single scan problem producing the n equispaced
samples needed to determine yy(1). i.e. we can effectively set

m=n and - (21)
r=1 (22)

and the n samples of H(y) can be denoted by H,(i), 1<i<n. Now, if we denote first,
second.....n-1 th order finite differences between the samples as follows

AH, (i) = Hy(i +1) - Hy (i), 1<i<n-1 (23)
AH (i) = AH (i +1) = AH, (i), 1<i<n-2 (24)
ATH () = A7 H G +1) - A7 H ), 1<isn—gq (25)
AH () = N2H (i +1) - A72H (), 1<i€n—(n-1),ie.i=1 (26)

It is obvious from (23) to (26) that with increasing order of the finite differences, the number
of values from the given n ordinates of H,(i) reduces progressively until the differences of
order n-1 yields only a single unique value, A*1H;(1). Furthermore, this difference is
evaluated at the unknown value of y =y(1). For simplicity of notation we may therefore
write

A7 H, ()= A" H{y, (1) @7)
or, if it is understood that A"1H is evaluated only at y;(1) we may write more simply
A H () =A"H (28)

Now as shown in Appendix A, the following relations apply between the n-1th finite
difference and the n-1 th and the n th derivatives of H w.r.t. y, all evaluated at the same value
of y (= yo(1) here) i.e.

A H

) -1,
e =D"H +-(—”-2—)D HAy (29)

where D™1H is merely a linear function of y, i.e.

D™'H=(n-1'a,_ +n'ay (30)



and D"H is a constant i.e.
D"H =n!a, (31D

Thus, since Ay, n and the coefficients a,, and a,,.; are known 2 priori, and since A*"!H may be
computed by successive differencing of the n equispaced samples of H measured, the value of
y can be determined directly from (29), which is merely a linear algebraic equation in y. The
resulting value is of course yy(1), the y-location of the first sample. Successive values of y
across the scan are readily found of course by successive addition of known increment Ay.

3.1.1. Finding the Sample Spacing

An interesting variant on the above problem is finding Ay if this is unknown a priori, but yy(1)
is given instead. An additional sample H(n+1) is needed thus allowing computation of

A'Hy(1)= A" H (2) - A H (1) (32)

since two n-/ th order differences are now calculable. Appendix A readily shows that, if we
denote A”H (1) simply as A”H then

A'H
AY"

= D"H =constant = n!a, (33)

where difference and derivative again being evaluated at the same value of y (here = yy(1))
and, from (29) and (33) we now deduce

D™H
Ay = 34
Y D H(AH N H-(n-1)/2) (34)

i.e. a simple linear equation relating Ay to yp(1) in terms of known finite differences and
known polynomial parameters. An example of the use of equation (29) is given in Section 4.

3.2. Solution to the Multiscan Tracking Problem

We now return to the general case of m <n, where m+1 = number of samples per scan, so
that more than a single scan is needed to provide sufficient samples of H(x,y) to permit the

calculation of the constant but unknown machine movement, 8y, between successive scans
(see Figs. 1 and 2).

Generalising the notation of equations (23) to (26) to allow for variable scan number j we
may write

AH;(()=H;(i+1)-H;(i), 1<i<m,1<j<r (35
NHi(i)=AH;(i+1)-AH;(i), 1<i<m-1,1<j<r (36)



ANH()=A"H (i+1)-A"H;(i), 1<isSm+1-q,1<j<r (37

A"H; ()= A""H;(i+1)-A""H;(i), 1<i<m+1-m,1<j<r, @5)

re.i=1

The above equations define a notation for different orders (1 to m) of finite difference
between consecutive samples within general scan number j. Of particular interest here is
A™H ,{0 which is single valued (given only m+1 H-samples) for any chosen scan j since only
the value for i =1 is applicable. We may therefore simplify the notation for this m’th order
finite difference as follows

A"H (i) = A™H;(1)= A™H, (39)

Similarly we can define notation for different orders of finite difference between H samples
taken for a given value of interscan sample number i, thus

8H;(i)=Hy()-H;(i), 1<i<Sm+1,1<j<r (40)
82Hj(i)=8Hj(i+1)—8Hj(i), 1ism+1,1£j<r-1 (41)
8PH, (1) = 8P H ()-8 H, (), 1<i<m+1,1€j<r—p+] “2)

8 H(i)= A7 H ()-8 H;(), 1<i<m+11<j<r+1-r, @
iLe. j=1

The r’th order finite difference will be of particular interest and, being single valued for a
given i, can be defined by the simple notation

0" H (i)=& H, (i) (44)

Operator &, 1< p<r can be applied not only to Hi) but also to its orthogonal finite
difference functions AYH j(i), 1< g <m, so that

s {aH, (i} = 87 {arH,,, ()} -8 {a'H, ()} (45)

In the particular case of p=r and g =m, we note that 8’{A"’Hj(i)} will be single valued

since only the integer values j = 1, i =1, are applicable for r+1 scans of m+1 samples each.
Thus the notation may be simplified to

§{amH, (0} =& {amH, )} =8 {A"H]} 46)

The r-1 th order difference across the scans, i.e. 6"‘{A”'Hj(i)} can take two values

depending on whether j is set to 1 or 2. Here we shall always choose j=1 so that we may
write, again for notational simplicity:



& {AmH, ()} =8 {AmH,@)} =5 {AmH} (47)

Appendix B proves that, having calculated 8" {A’”H} and 5’{A’"H} from the r+1 scans

spaced at 8y, each of m+1 ordinates spaced at Ay then the desired unknown machine shift, dy,
per scan can be calculated simply from the formula

_ D" H/D"H +mAy /2
Y S (AH) /& (AH)—(r—1)/2

(48)

provided the product of integers r and m equal the order n of the polynomial H(y),
i.e. provided

m+r=n (49)
D"H is again given by

D"H =n!a, (50)
and D"/H by

D" 'H =(n-1)a,_;+nla,y (51)

and, for calculating the terms D"H, &1(A™H) and 6"(A™H) we set
Y=y (52)

where launch position y,(1) is known 2 priori. An examples of the use of the formula is given
in Section 4.



4. Examples

4.1 The Single Scan Case

Consider the polynomial

7
H(y)=Y ay

i=l

where a, =0.29159

a, =-0.5379
a, =0.40998
a, =-0.1484
a; =2.7089

a, =-0.2405
a, =0.00825

A plot of this polynomial in the range [0,6] is shown in Fig. 4
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Fig. 4. A 7th order polynomial field function
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Now the polynomial function is sampled at points y; ,i=1,..,7 with Ay=0.8 and y,=0.5 (yet to
be determined using our algorithm). Seven sampled values thus obtained are

H(y,)=5.4099
H(y,)=3.6288
H(y,) =6.5245
H(y,)=9.0635
H(y;) = 6.0441
H(y,) =1.1466
H(y,)=2.1986

Solving equations (29) to (31) for y yields

1 A"H a,_ n-1
- - A 53
nta, Ay"™ na, 2 2 53)

n

n=1

=

For n=7 and Ay=0.8 this becomes

y, =1.7646+0.0917 A"™'H (54)
For the this purely deterministic case the above sampled values yield

A"™'H =-13.7853 (55)
Hence equations (54) and (55) implies

¥, =0.5 (as expected)

4.2 The Multiscan Case

An example of multiscan tracking is given here. Fourth order polynomial function used here
is

4
Hy) =Y ay' (56)
i=]
where a, =-2.624
a, =2.8790
a, = -0.605
a, =0.0357

(7

11
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Fig. 5. Sampling field function in 3 scan

A plot of this curve is shown in Fig. 5.

Degree of polynomial n =4
Initial Sampling Position y =1
Sampling Interval Ay =1
Number of Scans r+l1 =3
Samples per Scam m+1 =3
Change of Height per scan 8y =1 (To be determined)

Result of this sampling is shown in the table below.

Sample Scan Number Scan Scan
No 1 Number 2 Number 3
1 -0.314 2.0 4.6
2 2.0 4.6 6.0
3 4.6 6.0 5.57

Table 1. Sampled Values of the Polynomial Field

With the above parameters and using the polynomial coefficients of equation (57), equations

(48), (50) and (51) yields

—=2.333

Oy

T (ATH) /S (AH) -1

12



Where two double differences are calculated using sampled values of the Table 1 as

' (A"H)=0.857 (59)
0"(A"H)=-1.486 (60)

Putting these values in equation (33) implies

oy=1 (As expected)

5. Conclusions

A single valued solution has been developed to calculate the position of a vehicle in a
continuous field environment described by a known polynomial from a minimum number of
equispaced field measurements taken at that location and known coefficients of the
polynomial. Where insufficient measurements from a single scan of the field are available, a
formula for utilising extra data from several scans has been produced. The formulas have been
demonstrated in many example fields, two of which are presented here.

The investigation and test results to date have been confined to the purely deterministic case
and future reports in this series will address the effect of noise.

13



6. Appendices
6.1 Appendix A

From Taylor’s Theorem

AH D=, B? D4 ;4 pr D"
—=DH+—Ay+=— Ay + = AP+ AY" 2 Z Ay
Ay 20 T Y T Y T A
now

A’H=H(y+A2y)-2H(y+Ay)+ H(y)
n=1

D? D? D4 n
= H+ DHQAY)+ 228 + = D 2ayy + A +i~l-l~(2Ay)"" +2-'-(2Ay)"
: . n—1. n:

2 3 a-1 n
- 2(H+ DHAy+%Ay2 +—D—A)’3 +PiAy‘+ ...... g - Ay™! +D—Ay" )+H
3 : i n.

H Ay + Higher order terms in D and Ay

AH=H(y+A3y)=3H(y+2Ay) +3H(y+Ay) H(y)
=1

-—H+DH(3Ay)+2—(3A)) +———-(3Ay} + (3Ay) R -
n-_

4 (3Ayy
n!

n—1 n
-3(;: +pHA+ L a7 + 2 aayy + 2 aayya. + 2 2yt 4 2 J
A 3! 4! n-1! n!
DZ 5 D3 " D4 i Dn-l - Dl ,
+?{H +DHAy+EAy +-§!—Ay +T!—Ay p R +n_“Ay +n—!Ay )+H
AH D*H .
ST = D’H + 8 Ay + Higher order terms in D and Ay
Ay
Thus, finally we get
AH
—g = o el == D"HAy + (no. higher order terms)
Ay 2!
Therefore
A'H n-1
Ay D , 61)

14



6.2 Appendix B

For an nth order polynomial (see Appendix A) we can write

n=1 _
gy nf:D"‘H+” .
Ay 2!

D"HAy (62)

Let n=m+r and if F(y)=A"H is an nth order polynomial in y and

Br—lH -1 n "'1

——=D"'F+——D'F5 : 63
ayr-l 2! y ( )
then

S _FO) _ pry+ ™ D™ HAy + higher order terms

Ay™ Ay 2

therefore F(y) can be written as

F(y)=Ay" [D'"H +%D"”'l Hij] + higher order terms
D™'F(y)=Ay" [D"‘D"’H + %D"‘D’"” HAy] + D" higher order terms]

D™'F(y)=Ay"| D™'D"H + %D"‘D’"”Hijl + D" [higher order terms]

D™ F(y)=Ay™"| D"'H + %’—D"HAy:l +[no higher order terms]

Hence D"'F can be written as

D™'F= [D""H +%D"HAy}Ay”‘ (64)
Differentiating again
D'F =D"HAy"™ (65)

Now using equations (63), (64) and (65) implies that

&'A"H
Byr-—l

= (D”"H +%D"HAyJAy’" +rT*1D"HAy’"8y (66)

15



r=lam
g ol =D"-1H+{3’-Ay+—-—’ lﬁy}D"H
8y " by" 277 2

Similarly

SAH

=D"H D"™H=0
oy Ay" ( )

Hence

SA"H
Ay”

= (D""H ¥ %D"HAyJBy"‘ + rT_lD“HBy'

Now equation (68) implies that

- & (A™H)
8 r=1 -
4 dyAy"D"H

Therefore equation (69) becomes

SRR 8 (A"H) r-1_, & (A"H)

=(D""H+%D"HAy) ey

Ay" SyAy"D"H 2 Ay"D"H

8 'A"H =(D""H +-i”—D“HAy)6 (&) T Lgramm)
2 &D'H 2

6'A’"H(D""H +% D"HAy)

=5 (A’"H)—r—z'—la'(A'"H)

oyD"H
dy _ 1
-l B - m -] ream
samp( 2T H m ) 8 ATH) -8 (A H)
D'H 2 2

Hence shift per scan dy is given by

_ D"'H/D"H+mbhy/2
T8N (ATH) /8 (A"H)—(r-1)/2

dy
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