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Abstract

The curvilinear velocity (VCL) of boar spermatozoa between standard microscopy glassware decreases when the
slides are coated with the hydrophobic polymer polystyrene (PS) compared to the less hydrophobic poly(methyl
methacrylate) (PMMA) coating. Sperm from three boars were observed and analyzed using particle tracking
software. VCL did not differ significantly between coatings of different thickness, indicating no penetration of the
sperm into the coating and that only the surface layer of the polymer film interacts with the sperm and buffer
medium. The curvilinear velocity of sperm between PS-coated surfaces was significantly reduced compared to
PMMA surfaces (p < .0001), and this was attributed to a stronger hydrophobic effect between PS and water. The
size of this effect varied between different boars, perhaps as a consequence of variations in hydrophobicity of
sperm from different boars or different ejaculates. The modification of surface properties in this way may improve
our understanding of sperm behavior and may provide improvements to assisted conception techniques as animal
or human sperm used in assisted conception are frequently manipulated in laboratory plastics as part of diagnostic
procedures (e.g. semen analysis) or before injection into an oocyte or during the co-incubation with the oocyte in
IVFE. Controlling the velocity of sperm using the interaction properties of inert polymer coatings could lead to new
sperm selection procedures for clinical use or the development of model systems to better understand sperm-

surface interactions.
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1. Introduction

The propulsion of mammalian spermatozoa occurs as a consequence of the forces generated by the beating
flagellum as it translates through a viscous fluid; these forces are significantly affected by the presence of nearby
fluid-solid interfaces [1]. However, the interactions between sperm and biological or man-made surfaces have been
relatively poorly investigated to date. Many observations suggest that sperm preferentially accumulate near the
surfaces of microscope slides between the fluid boundary and the surface [2-4] and theoretical models to explain
the observation have been proposed [5]. However, such models are limited in scope in that they assume the
physical and chemical properties of surfaces that sperm may encounter in biology are both uniform and identical,

which is clearly not the case.

Following deposition, motile sperm typically travel through the female reproductive tract from the site of
insemination to the site of fertilisation [6]. Depending on the species concerned, this will invariably involve sperm
encountering a number of different epithelial cell types with radically different apical topography and surface
chemistry of the glycocalyx. Direct observation suggests that interaction with the epithelial surface is important in
many aspects of the sperm’s journey [7, 8]. However in addition to surface chemistry, sperm interaction with
epithelial surfaces may involve interaction between specific receptors, or may be influenced by mucous secretions
or local ionic concentrations [6]. Moreover, during the sperm transport process the sperm surface chemistry may

also undergo considerable modification associated with sperm capacitation or sperm ageing [9].

In contrast to the sperm’s journey in vivo, ejaculated or surgically recovered animal or human sperm used in
assisted conception procedures are frequently manipulated in laboratory plastics as they are either prepared to be
co-incubated with an oocyte in IVF [10] or directly injected into an oocyte [11]. In either case, sperm may spend
several hours suspended in tissue culture fluid or accumulating at the interface between the fluid and surface of the
laboratory plastic in the container in which they are held. Clearly this environment is significantly different from
that encountered in vivo and it has been suggested that improvements to infertility procedures might be possible if

laboratory processes and equipment better mimicked in vivo conditions [6].

In recognition that the surface chemistry of laboratory plastics may not be optimal for sperm, recent studies have
focused on how sperm survival in laboratory plastic [12] or sperm movement through microfluidic channels [13]
can be significantly altered by relatively subtle changes to the surface chemistry. This study investigates how
detailed measurements of sperm motility can be altered by the hydrophobicity of surfaces. Static sessile contact
angle measurements are used to determine contact angles from which surface energy is determined and so a
quantifiable measure of hydrophobicity is found. A Computer Assisted Sperm Analysis (CASA) system is used to

provide objective data on sperm kinematics.



65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
38
89
90
91
92
93
94
95
96
97
98

2. Materials and Methods

Percoll was purchased from Fisher Scientific (Loughborough, United Kingdom). Atactic polystyrene (PS)
(molecular weight My = 220 kDa and polydispersity D = 1.02) and poly(methyl methacrylate) (PMMA) (My =
120 kDa and D = 2.0) were purchased from Polymer Source, Inc. (Quebec, Canada) and had no additional
functional groups, copolymer units or side chains added and therefore the chains remain inert. All other chemicals

were of analytical grade and were purchased from Sigma Aldrich (Dorset, United Kingdom).

2.1. Sperm preparation

2.1.1. Collection and Washing of Spermatozoa

Sperm-rich semen samples were collected from fertile boars kept by JSR Genetics (Driffield, East Yorkshire,
United Kingdom). The semen was filtered through gauze to remove gel material and diluted in Beltsville Thawing
Solution (BTS: 206 mM glucose, 20.4 mM trisodium citrate, 14.9 mM NaHCO;, 10mM KCl, 3.4 mM Na,-EDTA,
and 50 pg/mL kanamycin sulphate) by JSR and received the day after collection. BTS is a widely used extender

for boar sperm that preserves fertility for at least 3 days at ambient temperature [14].

Sperm were separated from the diluted semen by sedimentation through a density-gradient system of iso-osmotic
Percoll in a saline-based medium. Once the supernatant layers were removed the sperm pellets were gently
resuspended in Tyrode’s medium (116 mM NaCl, 3.1 mM KCl, 0.4 mM MgSO,, 0.3 mM NaH,PO4, 5 mM
glucose, 21.7 mM sodium lactate, 1 mM sodium pyruvate, ImM ethyleneglycoltetraacetic acid (EGTA), 20 mM
HEPES (adjusted to pH 7.6 at 20°C with NaOH), and 3 mg/mL bovine serum albumin (BSA); at 38°C the final pH
was 7.6 and osmolality was 300 mOsm/kg). The presence of bicarbonate/CO, has been shown to affect the motility
of boar spermatozoa [15], and so aliquots of 300 mM NaHCOj saturated with 100% CO, were prepared in advance
and a volume added to the resuspended sperm to give a final concentration of 15 mM. These aliquots were stored

under 5% CO; in air to prevent loss of CO, during incubation between experiments.

2.1.2. Incubation and Preparation for Analysis

Preparation of samples is based upon the accepted guidelines for clinical assessment [16] as follows. The sperm
suspension was incubated at 38°C for 10 min before motility assessment. An 18 puL sample was removed from the
suspension, transferred to a pre-warmed microscope slide, and sealed by a 22 x 22 mm pre-warmed coverslip; this
volume of suspension provides a measurement height of 37.2 um, which prevents sperm from moving in and out

of focus during measurements without constraining rotational motion [17].

2.2. Film coating and characterization
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2.2.1. Spin coating

Substrates of silicon wafer (Prolog Semicor, Ukraine) were cleaved into approximately 1 cm?® sections, sonicated
in chloroform and then toluene for 20 min in each, and cleaned for 1 h in an oxygen plasma cleaner. The cleaned
substrates were then immediately coated with the relevant polymer using the well-established spin coating
technique [18]. A range of polymer concentrations (2%, 4%, 6%, 8%, and 10% w/v) dissolved in toluene were
used and all spun at 3000 rpm for 30 s. The resulting thin polymer film coatings form a rigid glassy layer in which
the polymer chains remain confined and, as PMMA and PS are both insoluble in water, polymer will not dissolve
into the overlying media which contains sperm. PS and PMMA were chosen due to their biocompatibility as well
as being exceptionally well studied systems in terms of their surface and bulk properties in their glassy state. Both
polymers are components of standard laboratory plastics used in fertility laboratories but the structure of the films
produced in this work are better controlled down to the nanometer length scale and their chemical composition is

devoid of any additional components required for bulk manufacturing.

2.2.2. Measuring film thickness

The thickness of the films was determined using an M-2000 spectroscopic ellipsometer (J. A. Woollam Co., Inc).
The film temperatures were controlled using a Linkam heating stage (Linkam Scientific Instruments Ltd, Surrey,
UK) with TMS94 heat controller. A sealed chamber (Linkam Scientific Instruments Ltd) specifically designed for
use on the ellipsometer with a nitrogen gas flow was used to minimize atmospheric effects from moisture and dust
settling on the films. The raw ellipsometry data were fitted with the widely used Cauchy model, which allowed the
thickness values of the films to be determined as shown in Figure 1.

[FIGURE 1 HERE]

2.2.3. Contact Angle

All films were mounted onto the measurement stage of a Theta optical tensiometer (Attension, Biolin Scientific,
Espoo, Finland) including a fixed Linkam heating platform (Linkam Scientific Instruments Ltd) with TMS94 heat
controller. Images were fitted using the native software to determine static contact angles and surface tensions
were calculated from these; contact angles present a more direct observation of hydrophobicity, but surface tension
provides a parameter that does not depend upon droplet volume, atmospheric conditions, and other experimental
variables. All measurements were performed at room temperature using the static sessile method with Milli-Q
filtered water as the liquid phase component.

[TABLE 1 HERE]

2.3. Microscopy and tracking analysis

Videos were recorded for 5-10 seconds using an Infinity2 microscope camera (Lumenera, Ontario, Canada)
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mounted on an Olympus BH-2 negative high-phase contrast microscope (Olympus, Tokyo, Japan) fitted with 10
times and 20 times objective lenses. Sample temperatures were maintained at 38°C using a Warm Stage (Linkam

Scientific Instruments Ltd).

In order to extract the curvilinear velocities, a custom-built package was developed in-house using LabView 2012
(National Instruments UK, Newbury, UK) based on previous work developed for tracking self-motile particles
[19]. The videos were processed to remove debris and dead cells from analysis; the brightness of each pixel was
determined over a frame, and if this brightness remained over all frames the object (either immotile cell or debris)
was considered unfit for tracking. These pixels were subsequently removed from all frames to produce a flat-
fielded video. Following this processing cells were selected manually from the first frame of the video. Contrast in
brightness between the selected cell and the background provided the point of reference from which the package
tracked the motion of the sperm, recording the position and temporal co-ordinates for further analysis. On-screen
pixels were converted to physical distance using an image of a Neubauer haemocytometer taken under the same
microscope settings and analyzed using ImageJ (National Institutes of Health, USA). Analysis of 5 videos (before
flat-fielding) were conducted to ensure the video processing did not affect the results, and there was found to be no

difference between raw and processed videos.

3. Results and Discussions

3.1. Film Thickness

The contact angle of PS was found to be greater than that of PMMA as seen in Table 1. This difference in
hydrophobicity is clear from sample images in Figure 2 used to calculate the contact angle consistent with other
investigations on the hydrophobicity of these polymer films. The surface tension was also comparable between the
two polymer species in line with other work [20, 21]. It is also important to note that whilst there is a notable
difference between the measured contact angles on PMMA and PS, the results between different film thickness are
consistent between each polymer species. An approximately 90 nm thick PMMA film was made from 2% (w/v)
solution but was discarded as the film had dewetted the surface.

[FIGURE 2 HERE]

The distributions of curvilinear velocities between each polymer surface are shown in Figure 3. This setup acts as a
control to ensure that film thickness is not a factor in determining motility characteristics, but the physical nature
of the films is such that sperm are not expected to penetrate into the rigid glassy film. Given this expectation,
sperm velocities were compared over the thickness range of each polymer species to confirm a lack of effect of
film thickness on VCL. The datasets obtained for PS and PMMA were both non-normally distributed. Analysis of

Variance (with bootstrapping) was performed on log-transformed data confirmed this, indicating that there was no
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statistically significant difference in VCL between PS films of different thicknesses (2% n = 32; 4% n = 39; 6% n
=23; 8% n =61; 10% n = 62). Similar analysis was performed on the PMMA dataset using Bonferroni corrected
Mann-Whitney testing (standard transformations did not yield a dataset that satisfied the assumptions of ANOVA)
showed no significant difference between PMMA films of different thickness (4% n = 39; 6% n = 111; 8% n =
134; 10% n = 129). A lack of difference in sperm motility between films of different thicknesses is not unexpected
given the previous discussion regarding the similarities in contact angle measurements for each polymer species.

[FIGURE 3 HERE]

These results indicate that film thickness does not affect the velocity of sperm for either of the two coated surfaces
and that only the surface layer and film composition is important; this finding indicates that long-range forces due
to the substrates are not affecting the results. Thus, in the absence of a good solvent or thermal energy to induce a
glass transition (both PMMA and PS have glass transition temperatures above 90°C), the sperm will be restricted
to interacting solely with the surface layer of the film. To confirm this, the films were subsequently examined
visually using an optical microscope and no sperm were found to have penetrated into the film at any thickness,

confirming the previous result that only the surface of the film influences the curvilinear velocity of the sperm.

3.2. Film composition

Having confirmed that film thickness did not affect the motility of sperm, the data from all film thicknesses in the
previous section were combined into two groups, PS (n = 217) and PMMA (n = 417). These pooled data from the
same boar (hereafter referred to as boar 1) were non-normally distributed and therefore a Mann-Whitney test was
performed to assess differences in motility between the two surface types. Curvilinear velocity was found to be
significantly greater for PMMA than PS, U = 111745, p <.0001,r =.61. To ensure that this effect was not due to
any abnormality or deficiency in the sample from boar 1, sperm from an additional two boars were measured in the
same manner. For both of these additional boars (boars 2 and 3) the VCL was also found to differ significantly
between the two types of polymer coating for sperm from both boar 2, U =20537,p <.0001, r =.25 and boar 3,
U =9368,p <.0001, r =.38. Note that the effect size (r) for boar 3 (r = .38) was stronger than that for boar 2 (r =
.25). The distributions of curvilinear velocities for all three boars are shown in Figure 4.

[FIGURE 4 HERE]

In all instances the sperm from all boars moved with a greater median velocity between PMMA coated surfaces
compared to PS surfaces. Both polymer films are expected to be completely chemically inert and physically
constrained such that any differences in median velocities are not attributed to toxic effects of either surfaces. To
test this, the percentage of motile sperm (defined as those moving with speeds greater than Spm/s) for all three

boars was determined from the original videos and no significant difference was found in any boar between the
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two surfaces. The larger average contact angle for PS (93.2° + 0.2°) indicates a higher hydrophobicity for this
surface compared to PMMA (67.5° + 0.2°) as shown in Figure 2. The sample must be considered as a three-
component system comprising the water-based Tyrode’s buffer, rigid polymer surfaces, and the motile sperm cells.
Whilst the hydrodynamic interaction between the solvent and the surfaces is well characterized in terms of the
hydrophobicity of the polymer films [20, 21], the sperm cells also display surface charge or hydrophobicity. The
exact nature of the surface charge of the sperm cell is difficult to quantify as the sperm surface is highly
heterogeneous [22, 23] and displays a significant amount of redistribution and re-ordering of the surface molecules
in response to environmental conditions [24-26]. However as these experiments were conducted using sperm
prepared in an identical manner and suspended in Tyrode’s medium, the considerations relating to the surface
structure of the sperm present systematic errors that do not detract from the comparison of PS and PMMA as

surfaces for sperm motility.

It has already been shown that the hydrodynamic interaction between two boundaries and a self-motile cell leads to
aggregation of the cells at the surfaces [5], but in their work the authors did not consider the properties of the
surface beyond the condition that they are flat and rigid. The hydrophobic polymer surfaces will exert a force
across the aqueous solution [27], which in turn will affect the distribution and motion of sperm. For instance, the
repulsive interaction between the PS surface and the water can be reduced if sperm aggregate near the interface
and provide a “screen” between the Tyrode’s buffer and the surface. Any such increased aggregation at a rigid

boundary may reduce the overall curvilinear velocity of the sperm.

Whilst the balance between the interactions of the surface-solvent, sperm-solvent, and surface-sperm provides a
mechanism to explain the difference in the curvilinear velocities between PMMA and PS surfaces, the variation in
the magnitude of this effect between different boars is most likely due to differences in the distribution and
concentration of surface molecules on sperm [28, 29]. However further experiments to quantify the two-
component interaction between sperm-surfaces and sperm-solvent are necessary to accurately model the

underlying cause of the difference in median VCL presented in Figure 4.

4. Conclusion

The role of the surface in sperm motility was first highlighted in the 1960’s, but to date there has been little
progress in determining the effect of surface properties on sperm velocity. We have shown that an increase in
hydrophobicity of the two flat polymer surfaces decreases the speed of sperm in a solution between the two
surfaces. The absence of any surface molecules for binding as well as a lack of surface structure or topography
suggests that the cause of the variation in sperm speed is due to the underlying interaction forces between the three

components of the system.
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At present there has been little work in understanding the fundamental interaction between sperm suspension and
solid boundaries, and yet these systems are routinely used in both research and clinical laboratories. Further
standardization of laboratory consumables is required to ensure that a difference in materials used to conduct
laboratory procedures does not introduce additional variations in motility assessments. It is noteworthy that in the
development of a microfluidic chip the authors modified the surfaces to reduce hydrophobicity of their system

[13].

The results of this work highlight a future possible clinical application in manipulating sperm motility through
suitable selection of polymer films or coatings of laboratory consumables. Current intracytoplasmic sperm
injection techniques use mechanical immobilization [30] or a retardation medium [31] to select the sperm, but
suitable use of polymer coatings may provide an alternative mechanism to slow the sperm selected for injection.
Moreover, the development of a standardized surface on which to observe sperm motility as part of diagnostic
procedures such as semen analysis, may help to reduce the known variations in motility assessments between staff
and laboratories [32] and may even provide a new training tool or the development of model systems to better

understand sperm-surface interactions [7, 8].

The systems presented here are the simplest possible (a flat, uniform polymer surface) and so a logical progression
from this work will be to introduce variations in the surface to affect the hydrophobicity through surface
topography [33], or by introducing variations in surface properties [34-36] that are already known to stimulate

heptotactic motion in a range of cells [37-39].
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Figure and Table Legends
Figure 1: Thickness of polystyrene (PS) and poly(methyl methacrylate) (PMMA) films spun from solutions of
different polymer concentrations in toluene. As expected a higher concentration of polymer in the solutions results

in a thicker film. All films were spun at 3000 rpm for 30 s, and film thicknesses were measured using ellipsometry.

Table 1: Contact angle and surface tension determined from static contact angle measurements of Milli-Q water on

coverslips spin coated with either polystyrene (PS) and poly(methyl methacrylate) (PMMA).

Figure 2: Contact angle images of Milli-Q water droplets on polystyrene (PS) (top) and poly(methyl methacrylate)
(PMMA) (bottom) coated coverslips. The curved boundary line shows the fitted model to the droplet, and the
straight lines are the tangents at the film-water-air interface. The larger spread of fluid over the PMMA surface

results in a smaller contact angle, showing that PMMA is less hydrophobic than PS.

Figure 3: Curvilinear velocities of sperm between poly(methyl methacrylate) (PMMA) (grey) and polystyrene (PS)
(white) films of different initial polymer solution concentrations. The resulting film thickness for each polymer
and concentration is shown in figure 2. Analysis of variance (with bootstrapping) performed on log-transformed
PS data and Bonferroni corrected Mann-Whitney testing of PMMA data showed no significant difference in

velocity over the different solution concentrations, implying that the film thickness does not affect sperm motility.

Figure 4: Velocity distributions for three separate boars between poly(methyl methacrylate) (PMMA) (shaded) and
polystyrene (PS) (white) coated surfaces. . Mann-Whitney testing showed that the curvilinear velocity between
PMMA is significantly greater than PS for boar 1 (U = 111745, p < .0001, r = .61), boar 2 (U =20537,p <

.0001, r =.25) and boar 3 (U =9368, p <.0001,r =.38).
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Table 1: Contact angle and surface tension determined from static contact angle measurements of Milli-Q water on

coated coverslips.

Solution Contact Angle, degrees Surface Tension, mN m’’
Concentration (w/v) PS PMMA PS PMMA
2% 94.1+0.1 - 73.8+1.1 -
4% 93.2+0.1 69.5+0.1 72.7+0.9 683 +1.2
6% 92.5+0.1 65.9 0.1 71.6 £0.8 704 +1.5
8% 92.7+0.1 66.7 £0.1 73.8+1.6 719+1.4

10% 93.5+0.1 67.9+0.1 73.7+1.0 724 +1.8



