The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Genetic Based Motion Planning and Evaluation for the B12
Mobile Robotic System.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79447/

Monograph:

Leung, C.H. and Zalzala, A.M.S. (1993) Genetic Based Motion Planning and Evaluation for
the B12 Mobile Robotic System. Research Report. ACSE Research Report 493 .
Department of Automatic Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

GENETIC-BASED MOTION PLANNING AND EVALUATION OF THE B12
MOBILE ROBOTIC SYSTEM

C. H. Leung and A.M.S. Zalzala

Robotics Research Group,
Department of Automatic Control and Systems Engineering,
University of Sheffield

Research Report #493

INTRODUCTION

Motion planning for mobile robots is concerned with providing a feasible and efficient
path to accomplish a given task. Although many solutions may exist, a condition for
obtaining the best (or near best) option may be imposed by the user, where a criterion in
terms of the total distance traversed, energy expended or minimum execution time must
be achieved. The planning procedure is made more complicated if the robot has to detect
and avoid static or dynamic objects in the workcell.

Nonetheless, when a real-time implementation is considered, a moderate computational
complexity is considered for the planning algorithm, hence allowing an efficient on-line
execution and interaction with the environment sensors. In this paper, genetic
algorithms are investigated as a potential solution for real-time motion planning of
mobile robots. Genetic algorithms are theoretically and empirically proven to provide
robust search in complex spaces with the advantage of being computationally simple yet
powerful in their search for improvement. They had already been shown to be suitable
for motion planning of articulated robots where robust convergence was reported [1].

The work reported in this paper investigates a more detailed and sophisticated approach
to mobile robot path planning in 3D space involving moving (or disappearing)
obstacles, thus accommodating for the concept of intelligent control within a dynamic
environment. In addition to reporting the successful results of the genetic planning
algorithms, this paper presents an actual implementation utilising the B12 mobile robot,
where maps stored through the on-board sonar array are manipulated by the genetic
algorithm to present a feasible motion.

WHY GENETIC ALGORITHMS ?

Although different optimisation methods have been developed (e.g. calculus based
methods, enumerative schemes, random search algorithms, etc.), these conventional
optimisation methods are shown not to be robust enough in certain applications. Despite
the fact that genetic algorithms have been applied successfully to optimisation problems
[2,3], one central theme of research has always been robustness, the balance between
efficiency and efficacy necessary for survival in many different environments. Thus,
genetic algorithms differ from standard optimisation and search procedures in a number
of important ways [4,5].

Motion planning procedures are rather complicated because of their interaction with the
outside world and handling unexpected events. Previous research showed conventional
optimisation methods are not robust enough for the job [6] while genetic-based
algorithms performed better [1]. Mobile robot motion planning using genetic algorithms
had already attracted some attention from the robotics community. Cleghorn [7] used a
Symbolics 3670 machine to develop his algorithm while Harvey [8] advocates real-time
dynamic neural networks as the medium of evolution. Both papers reported the genetic
solution to be a far less computation intensive approach to path planning. One of the
drawbacks of the A* algorithm, which is used in many of the existing motion planning
programs, is that the size of the search-tree is exponential.

THE DEVELOPED ALGORITHM

Prior to the planning process, a global knowledge of the environment is needed and is
translated in the form of a terrain map. Firstly, a set of valid random paths are generated
as the initial generation. In order to prevent the robot wandering endlessly inside the
workeell, a weighted vector of motion is employed during the path construction phase,
that is, the direction of motion from the robot's current position towards the goal has
more chance to be chosen than other directions. A fitness value is assigned to each path
and the one with the best fitness is stored for future usage. Secondly, pairs of paths are
chosen randomly for mating, and those with better fitness will have more chance to be
drawn out for mating. The reproduction process repeats until some arbitrary number of
generations is reached. It was found that the best path might come from any of the
considered generations yet the average fitness value generally improved for successive
generations. The structure of the genetic algorithm is described in the following sub-
sections.

Space decomposition

In this approach to motion planning, a global model of the environment is considered
with knowledge of the 3D space surrounding the mobile and including any obstacles,
where collision-free motion is catered for in both static and dynamic cases, as will be
discussed later. Amongst various methods, the space decomposition approach is the
most used by researchers [9] where the space is divided into blocks and attempts are
made to minimise the computation time required for path generation.

For the genetic algorithm, both free space and obstacles are represented as a collection
of blocks of equal size. In addition, the position of a block in 3D space is represented by
a 2D map for x and y dimensions while the z altitude is given as discritized contour
values prefixed to the particular block, as shown in Figure (1).

0 1 2 3 4 3 6 7 2
2 3 2 3 5 2 1 1]
0
ST 3 2 3 i z 1
1 | =
4 3 2 1 2 3 3 z 1 1«—-|Tcpology
2 =
4 ¢ 3 2 3 4 3 2 2 [
3
3 3 2 1 2 3 2 2 Z 1
4 oHEe]
2 2 2] 3 1 f 2 2 2
5
2 2 1 g 3 2 1 1 2 2
6 Obstacle
3 2 1 2 2 1 1 2 2 1
7
2 7 1 1 [1 2 3 2 1
g

Figure (1): Representation of 3D space

Coding the parameters

The robot path is coded as a string of n number of points represented by their Cartesian
co-ordinates as { (x(,y0.20), (X1,¥1,21)s --» (Xp:¥p-Zn) }. with all values stored in a
binary form to be of use in the genetic formulation. Nonetheless, this coding method
yields variable-length paths and a proper genetic structure is required to deal with it, in
particular while performing crossover.

The objective function

The efficiency of the planned path is calculated based on minimising three factors: the
total traversed distance, the energy consumed in climbing slopes and the total time
required for executing the motion. Hence, the mobile robot will avoid wandering around
the terrain or climbing unnecessary slopes.

The first random generation

To generate a population of paths, a random walk within the bounded decomposed
space is used, where all individuals link a start block with an end block while any path
including an obstacle is rendered as invalid. Initiating the random walk from the start
block is very inefficient for a large grid, while initiating the random walk from both
ends and looking for intersection points is somehow more tolerable. Nonetheless, the
approach in this work is to present some directional guidance for the path generator.
This guidance 1s presented in the form of limiting transitions from one block to another,
as shown in Figure (2). In Figure (2), both N and SE directions are invalid to avoid
obstacles while NW and NE diagonal directions are also waived to avoid the obstacle's
corner (optional).

Reproduction

To perform reproduction, a roulette wheel is deviced with division sizes proportional to
the fitness value of the paths they hold. A replica of the selected path is put in the
mating pool.

The efficiency of the mating process is affected by the size of the pool and the existence
of replicas. Performing crossover is not straight forward because of the variable-length
coding and, more important, since a random crossover would produce a discontinuous
motion. Thus, the path pair is checked for points within a certain proximity (coincident,
one or two blocks apart). If one is found and is not coincident for both paths, a random
segment is generated to connect both points, hence providing the possibility of
CTOSSOVeT.

N.W N N-E

Figure (2): Restrictions on motion

Once again, following a conventional mutation procedure will present motion
discontinuities and a special process is devised. For this algorithm, if mutation occurs at
a random point along a path, the remainder of the unmutated path between that point
and the goal is destroyed and replaced by a randomly generated segment. Consequently,
the mutation probability parameter is set as appropriate to control the rate of the
procedure.

Production strategy

Enrolling only the best paths increases the average fitness of the next generation.
However, the rate of convergence of the algorithm is controlled via a number of
production parameters, as shown below. Hence, setting the proper parameters may help
to minimise the computation time which is of particular interest for this real-time
system.

Permitting a replica in the mating pool provides more than one copy of a good
individual and may affect the rate of convergence. The size of the mating pool is varied
from 50% to 100% of the population size in order to experiment with keeping the
goodness for the next generations. Moderate mutation rate is used so as not to destroy
the good individuals within the generation. A large population size provides better
information via its individuals but leads to more computations than a smaller size.

PLANNING IN A DYNAMIC ENVIRONMENT

A further difficulty is encountered when a dynamic model of the environment is
considered where moving obstacles must be taken into account. If the location and time
of occurrence of the moving obstacles is known in advance, a number of terrain maps
are generated combining both the stationary and moving obstacles at certain points in
time, as shown in Figure (3). Hence, the planning process will be as described above but
with the algorithm checking the validation of the path within a terrain map at different
time instances and the paths hitting obstacles being discarded. As this is performed in
real-time with the processing and data collection alternating, the robustness offered by
the genetic structure is very much appreciated.

01 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
0 0
1 1
2 2
3 3
4 (R) 4
s s R)
] 6
7 7
8 8
9 9
Terrain Map at Time=T+1 Terram Map at Time=T+21
01 2 3 4 56 7 8 9 01 2 3 4 5 6 7 8 9
o | | 0
1 1
2 4
3 3
4 4
5. 5
5 R 6 R)
7 ?
8 8
9 9 |
Terrain Map at Time=T+3t Terrain Mep at Time=T+4t
®Rubut
.aning obstacle

Figure (3): Terrain map at different time intervals
THE REAL-TIME IMPLEMENTATION

The genetic motion planner is implemented for the control of the RWI B12 [10] mobile
robot, where the processing power is provided via a 386-based PC. The windows-based
software package provides a real-time interface with the B12 where the terrain maps are
scanned and updated using the on-board sonar transducers [11,12]. In addition, the
application program runs in a multitasking environment, providing for the controller
program to execute in the foreground while the communication with the robot is
executed in the background. The user interface allows for two modes of operation, a
manual mode where the terrain map is specified by the operator, and an automatic mode
where mapping the environment and updating the grid depends entirely on the Sensory
data. In both modes, the genetic algorithm is employed to present a feasible motion
which is then down loaded to the robot. Figure (4) shows the interface output for an
auto-driven set-up.

=) B12 Robot Path Planning f=]s!
Terrain _ Path Motion Results Settings Exit Help

TERRAIN MAP (AUTO DRIVEN;

HOW TO OPERATE -

Place the Robot in the plant
with s front facing one
of the wall and about 30cm
apart Make sure the Robot
is ON before clicking the
OK button The Robot will
move inside the plant and
construct a Terran Map
automatically Chck the
PAUSE button to stop
moving or the OK butlon
to finish

1 am now moving, Please

Jwait!

UNTITLED MAP

Figure(4): Auto-detected terrain map
Detecting obstacles

The B12 moves itself randomly in the environment, detecting any obstacles and building
an initial terrain map using the on-board transducers. Since the ultrasound beam angle
with respect to the obstacle is known, the location of an obstacle is calculated by adding
the angle of the transducer with respect to the robot to the angle of direction that the
robot is pointing to with respect to the obstacle. Thus, the x and y co-ordinates of the
obstacle are obtained from the distance measured by that transducer. This practical
implementation of the system considers a constant height for the z co-ordinate. If the
detected obstacle is outside the map then its presence is ignored. However, due to the
characteristics of the ultrasonic sensor, false readings may sometimes be obtained [12]
and a verification procedure is executed before adding the obstacle onto the map. This
verification is accomplished by checking whether any obstacles in the old map lies
between the robot and the distance measured. If not, then this new obstacle is added to
the map otherwise another firing takes place to double check the detection.

EXPERIMENTAL RESULTS

The test program is written in C++ for Windows which provides a menu-driven package
for setting the genetic parameters, B12 and the interface signals in addition to a real-
time display of the motion environment and further analysis screens.

Experiments are conducted considering a terrain of 10x10 as the workspace, a map is
created where blocks (0,0) and (9,9) are assigned as the start (S) and end (E) blocks,
respectively. The mobile is required to move from S to E while avoiding any static pre-
defined obstacles or wandering new objects.

For the static environment, the B12 is instructed to ignore any new objects in the
workspace. However, for the dynamic environment, the B12 is tested by introducing
three objects moving at constant speed with known directions. The computation time

required by the real-time system when navigating through the dynamic world is much
more intensive (a ratio of 4:1) since continuous data acquisition and detection is needed
in addition to re-computing the planning procedure. Nonetheless, the modest
computational power of a 386 PC may be increased to achieve a better performance.

Considering a fixed number of generations of 25 the best paths in every generation can
be stored and displayed, as shown in Figures (5) and (6) with the final results presented
in Figure (7). The planning procedure is displayed on-line in a graphical form (see
Figure (8)) which aids the operator to detect any functional problems, while the motion's
statistical data is stored for further analysis by the user, as indicated in Figure (9).

Test results

In testing the genetic algorithm, different parameters give different rates of convergence
as well as in which generation the best path occur. The following parameters were
found to be the most effective to achieve an efficient run:

1. Population size : 40-50

2. Mating pool size : 40-50 % of the Population Size

3. Replica: allowed

4. Mutation rate : 0.01-0.05

IS CAPROGITCWIN\BIN\GENE TIC_EXE ~|s

<

RESULTS OF THE FIRST GEHERATIOHN :

Path Step Time Fitness Parent Statistical Data

1 16 24.5 28.53]] Best Results...

2 26 37.7 42.74 L] 1] 1.0verall Performance :

3 17 23.6 2B.64 8 @ Auge Fitness : 36.63 (1)

y 17 28.6 35.64 © O 2.Particular Path :

5 21 29.2 32.20 06 O Best Fitness : 20.68 (1)

6 20 29.6 35.58 14 1}

7 21 31.2 38.18 o 0

8 23 31.4 35.44 1] 1]

9 25 35.3 39.32 6 0

18 24 37.2 44.22 0 @

11 19 24.6 26.63 1} 0 This Generation...

12 28 26.6 3B8.56 © © Auge Fitness : 36.63

13 24 39.1 Lu6.08 8 o Best Fitness : 20.68

14 25 37.8 44.79 B 8

15 20 28.1 38.12] [}

Press [N] for Hext, [5] to show the Best Path..._)

Press [X] for Mext Generation or [F] to the End... :
k4

1w

Figure (5): A test run during a generation

CAPROGYTCWINIBINY\GENETIC.EXE

THE BEST PATH IN THE FIRST GEMERATION

NN NI RSN S ESREECSCSAEEEEEEES

Path Ho. 17 Actual Map Time: 28.6
8[0,8] 1[1.1] 2[2,2] 8[3,2] &[&,2] 2328421118
S[4,1] 6[4,2] 7[5,2] 8[6,3] 9[7,3] E3EE230211

18[7,4] 11[7,5] 12[8,6] 13[9,7] 18[9,8] 4321230211

15[9,9] XEE2343221

stop 3881232201

2222318222
2218321128
3212210821
2011118321
2822821111

Parent 1: 8, Parent 2: @
Fitness Value= 20.68
Average Ualue= 36.63

Press any key for Hext Generation..._

S R TR

Figure (6): Results of one generation

= d CAPROGITCWINIBIN\GENETIC.EXE (2|

TIEle

Gen fug Best Gen Aug Best Actual Map Time: 20.6
1 36.63 20.68 16 27.92 22.198 23204211110
2 33.79 22.73 17 27.82 22.51 E3EN230211
3 33.22 23.51 18 27.22 21.51 5321230211
4 32.36 22.51 19 27.90 21.51 BAR2343221
5 39.22 22.10 20 27.81 21.51 anm1232201
6 29.12 21.51 21 26.95 21.51 2222310222
7 30.05 22.51 22 27.86 21.51 2218321128
8 30.14 22.15 23 26.70 21.51 3212210821
9 38.06 22.51 25 26.55 21.51 2011118321

18 29.49 22.15 25 27.13 22.18@ 2022821111

Press any key to Exit..._

‘E' i

| : ' : —t

Figure (7): The motion planning results

DISCUSSIONS

This section shows the results of the genetic planning algorithm using different
production strategies. The mutation rate, population size, size of mating pool and the
permission of replica is changed to detect the best structure.

Mutation rate: The program is run with three different values of 0.005, 0.1, and 0.5. It
was noticed that the higher the mutation probability is, the slower the rate of
convergence becomes although a better feasible path is obtained. Since the system
operates in real-time, the proper mutation rate must be chosen for the successful
operation of the algorithm, which may require a trade-off between execution speed and
motion cost.

Size of mating pool: This is varied between 15 and 40 with an increment of 5 at each
of six experimental runs. The best convergence was obtained with a size of 20 which is

about 40% of the population size.

Permission of replica: A better convergence of the genetic algorithm was obtained

when replica was permitted.

Population size: The population size is increased from 10 to 50 with an increment of 10
at each experimental test. It was noticed that the total execution time increased by about
70% when the population size was doubled. However, the best rate of convergence and
the occurrence of the best path is associated with the run with the largest population

size.

=] B12 Genetic Motion Planner
Terrain Path Motion Results Settings Exit

PATH PLANNING (COMPUTER SIMULATION)
1 2 3 4 5 & 7 8B 9 10

Starting Block (1,1

Ending Block (10, 10)
Population Size 50
Mating Pool Size 25

Number of Generation 20
Mutation Probability: 022

Enrollment None
Replica: Allowed
Objective Value 17.98
Average Value 59.01

Static Envitonment

Choose other menus to
continue

C “ALINLEUNG\ROBOT1 MAP

Figure (8): Planning in a static environment

[2] Jong K. D., "Adaptive system design: a genetic approach”, Trans. IEEE on
Systems, Man and Cybernetics, pp.566-574, vol. SMC-10, 1980.
[3] Grefenstette J., "Optimization of control parameters for genetic algorithms", Trans.
IEEE on Systems, Man and Cybernetics, pp.122-128, vol. SMC-16, 1986.
[4] Goldbery D. E., Genetic Algorithms in Search, Optimization and Machine
Learning, Addison Wesley Publishing Company, 1989.
[5] Holland J. H., Adaptation in Natural and Artificial Systems, Ann Arbor, The
University of Michigan Press, 1975. '
[6] Sahar, G. and Hollerbach, J.M., "Planning of minimum-time trajectory for robot
arms", In Int. J. Robotics Research, Vol. 5, No. 3, pp. 91-100, 1986.
[7] Cleghorn T. F., Baffes P. T. and Wang L., "Robot Path Planning Using A Genetic
Algorithm", Proc. 2nd Annual Workshop on Space Operations, Automation and
Robotics, pp. 383-390, 1988.
[8] Harvey I. and Husbands P., "Evolutionary robotics", IEE Colloguium on Genetic
Algorithms for Control and Systems Engineering, pp. 6/1-4, May 1992.

4 [9] Fujimura K., Motion Planning in Dynamic Environments, Springer-Verlag, 1991.
[10] RWI Inc., BI2 Mobile Robot Base-Guide to operation (ver 2.1), 1993.
[11] RWLInc., G96 Sonar Board-Guide to operation (ver 1.1), 1993.
[12] Leonard J. J. & Durrant-Whyte H. F., Directed Sonar Sensing for Mobile Robot
Navigation, Kluwer Academic Publishers, 1992.

