The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Distributed Real-Time Adaptive Control of Mechanical Arms
with Practical Implementation..

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79446/

Monograph:

Ziauddin, S.M. and Zalzala, A.M.S. (1994) Distributed Real-Time Adaptive Control of
Mechanical Arms with Practical Implementation. Research Report. ACSE Research Report
494 . Department of Automatic Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

_ . G295 C8)

FAN
\‘,

DISTRIBUTED REAL-TIME ADAPTIVE CONTROL OF
MECHANICAL ARMS WITH PRACTICAL IMPLEMENTATION

S.M. Ziauddin and A.M.S. Zalzala

Robotics Research Group,
Department of Automatic Control and Systems Engineering,
University of Sheffield,
P.0.Box 600, Mappin Street, Sheffield S1 4DU, United Kingdom
Email:rrg @sheffield.ac.uk

Research Report #494
January 1994

Abstract

Adaptive controllers employing the highly coupled and non-linear dynamics of robot
manipulators are computationally complex, which present a major obstacle in their real time
implementation for industrial applications. This paper describes a solution to this problem by
employing a parallel processing approach. The parallelism inherent in the adaptive
controllers is exploited to obtain an efficient implementation and reduce the overall
computation time to within the limit acceptable for real time control. The distributed globally

stable adaptive controller is implemented on a network of T-800 transputers for the six joint
PUMA 560 arm.

Keywords: Adaptive Control, Automation, Parallel processing, Robots.

1. Introduction

Present day commercial robot manipulators are equipped with simple single joint PID
controllers based on the assumption that the highly coupled and non-linear dynamics of the
manipulators can be approximated by a linear model. These simple control schemes degrade
the performance of the manipulators especially when large variations in payloads or tasks are
encountered. For this reason as well as the fact that model parameters of existing
manipulators are not known exactly, more efficient control schemes, such as adaptive
control, are required. Advanced adaptive controllers compute the motor commands via the
full non-linear model of the manipulator with the significant advantage of providing for
global stability. However, the practical implementation of such control schemes in real time
has always been difficult due to their inherent computational complexity. In order to
implement these controllers for a full six joint arm and have it in operation on-line it is
essential to employ parallel and distributed processing techniques to facilitate the
computations for real-time applications.

This paper presents a distributed globally stable adaptive controller for the six joint PUMA
560. Scheduling of tasks onto processors has been done using DF/IHS (depth first implicit
heuristic search) algorithm[4, 6]. In addition the formulation is mapped on a network of
transputers thus providing a practical multi-processor adaptive controller. Computation time
of 9.3 m.sec. has been achieved for the six link arm which is well within the maximum limit
of 16 m.sec. imposed by the mechanical resonance frequency of manipulators.

The paper starts with an overview of adaptive controllers for robots. The next section
discusses application of parallel processing in robot control. Next, implementation issues,
decomposition of the adaptive controller into sub-parts and its scheduling is discussed, hence
describing the complete distributed system. Finally, results of practical implementation on a
network of transputers are presented, and conclusions are drawn.

2. Adaptive robot control

Several approaches to adaptive controller design for manipulators exist in literature. The
approach of initial efforts has been to model the manipulator as a linear system and to apply
existing adaptive control methods [1]. The major assumption here is that good results can be
achieved if the model parameters being identified are not changing rapidly. Stability has
always been an issue in this approach and no proof has ever been given. Another approach to
adaptive control of a manipulator has been to base the control on the full non-linear model of
the manipulator [10, 13]. The significant advantage here is the ability of proving
stability. A famous example is the adaptive controller by Slotine and Li [10] ipZk

Lyapunov function is used to prove stability by showing that the output errors converge to a
sliding surface, which in turn implies that the tracking errors converge to zero. These
Lagrangian based controllers can be broken down into sub-tasks rather easily and appear to
be good candidates for parallel processing. However, the amount of computation required
for a six joint arm is too much for economical implementations. Another class is that of
recursive adaptive controllers [12, 17]. They have the same convergence properties as their
Lagrangian counterparts. Their structure is similar to the recursive structure of the Newton
Euler equations for the inverse dynamics of manipulators. This makes it difficult to map them
onto a network of processors but because of their lesser computational complexity they are a
better choice for parallel processing and have been used in our work. The recursive version
of the adaptive controller by Slotine and Li is given below:

Initialise: w(0)=-g

v(k) =v(k-1)+d(k)g (k)
w(k)=w(k—-1)+d(k)q, (k)

Upward:
wi(k)=w(k=1)+d(k)g; (k)+v(k-=1)xd(k)g. (k)
e(k)y=v(k)—w(k)
f; =.5v(k) X Rw(k)+.5w(k) X Rv(k)+.5Rw(k)xv(k)+ Rw (k)
10
F(k)=F(k+1 ‘a,
Downward: (k) (r+)+2fkal

i=]

(k) =d’(k)F (k)= K5,
a, =—Fle.f;

The different terms of the controller are defined below. All the components are with respect
to base link co-ordinates.

v(k) Spatial velocity of link k.
w(k) Spatial reference velocity of link k.
w (k) Spatial reference acceleration of link k.
B Local force component of link k calculated from R, the ith placement matrix.
F(k) Summed force of kth link and above.
(k) Required torque at kth joint.
K, P Strictly positive definite gain matrices.
10
a,,R They are defined as [, = 2 Ra, where I, =the 6 %6 inertia matrix of

=1
link k. R, is the 6 X6 sparse placement matrices with ones at the places of
inertia matrix elements and zeros elsewhere.

oI d s Jys ey Py P, »m} i e the set of inertia elements of kth link and

I ESZEA N gy

p, = mr, where m is the mass of link k and r, vector from the link co-

a e{l, .J

ordinates to the centre of mass of the link.

d(k) Spatial vector representing the joint axis.
q.9 .9 Joint angles and their derivatives.
G995 Desired joint angles and their derivatives.

q, =q,—A(g—q,) where Ais a positive definite gain matrix.

§ =q —q,
g Spatial gravity vector

3. Parallel processing in robot control

Most of the research efforts of implementing robot control on parallel processors have been
limited to inverse model calculation using Newton Euler (NE) equations. There have been
two approaches to this. The former is the hardware approach which develops a dedicated
hardware architecture as fits a computational flow of the NE equations. The latter is the
software approach that develops scheduling algorithms to assign NE equations onto parallel
processors in an arbitrary architecture. As an example of the former approach Nigam and Lee
[5] proposed a pipelined structure which is not effective for a robot having six or less DOF
due to the initial pipe delay. Lathrop [3] proposed two schemes for NE and Lagrange Euler
(LE) equations both of which require special purpose VLSI chips. Lee, Mudge and Turney
[5] proposed a special purpose processor which functions as an attached processor of a
general purpose computer for computing joint torques. As example of the latter approach
Kasahara [6,15], achieved a time of 8.4 m.sec. for NE equations on three 8086/8087
processor pairs. Hashimoto and Ohashi[14,16] implemented their resolved NE equations on
four transputers to achieve a time of .66 msec. for a three DOF arm. In adaptive control
application Sinha and Ho [18] achieved a time of 6.4 msec. for a single joint adaptive control
algorithm which assumes a linear robot model. Chung and Daniel [21] achieved update rates
of 780 Hz, 390 Hz and 195 Hz for servo, inertia and link parameters respectively for a three
DOF arm. No application for any globally stable adaptive controller for a full six DOF arm
has been reported. The need for an efficient and economical parallel processing scheme for
adaptive control for an industrial manipulator has always been there.

4. The distributed system
4.1 Implementation Issues

A key simplifying aspect to the derivation of the controller is the use of the spatial vector
notation of Featherstone [11] which allows translational and rotational quantities to be
combined in a single six dimensional vector. This notation considerably reduces the
complexity and number of equations of the resulting controller. Several practical
considerations can greatly influence the actual efficiency of the algorithm. Using the
Denavit-Hartenberg conventions the following choice of reference frames minimises the
number of frame transportations: Velocities, accelerations, inertias and local force
components should be expressed in the link's own frame of reference. Joint axes and summed
forces should be expressed with respect to the frame beneath them. These transformations
have been carried out and the adaptive controller in its final shape is given below.

Initialise: w(0)=-g

Upwards: v, (k)= X:'](vk_l(k—1)+dcq'(k))
W, ()= X7 (w,, (k=1)+dyg, (k)
w, (k) = X (w;_, (k= 1)+ dog, (k) +v,_, (k= 1) x dygq, (k)
e (k)=v, (k)—w.(k)

Downwards: fki =.5v, (k) X Rw, (k)+.5w (k)X Rv, (k)+.5Rw, (k) xv, (k)+ Rw, (k)

10
F(k)=X["F (k+ 1)+ fia,
i=1

(k) =d X, F,(k)— K, (k)s(k)
a; =-Fe, (k) f;

In these equations the subscript k is to show that the spatial vector representing velocity, or
acceleration of any link & or the force on any link k is referred to its own link co-ordinates.

Xj. is the 6 X 6 spatial transformation matrix which transforms the spatial vectors from link i
co-ordinates to link j co-ordinates and d, =[001000]’, the superscript dash indicates

spatial transpose operation and the operator X represents spatial cross product. Note that the
joint k axis d(k) is a constant vector d, in k-1 co-ordinates. Having made these

transformations the next step was to customise the algorithm for PUMA 560 by putting the
values of the appropriate kinamatic parameters and the inertial parameters [7, 8]. Also as the
6 X6 matrix multiplications are not at all an efficient way of computing the equations,
particularly when there are quite a number of sparse matrices involved, the whole algorithm
was converted into symbolic form at equation level. For this purpose the symbolic
mathematics package MAPLE was used. In addition to simplification through the use of
MAPLE an important advantage gained was that dividing the algorithm into sub tasks
became relatively easy as the grain size could now be easily altered. Two different grain sizes
have been used in the scheduling as can be seen in the following section.

4.2 Adaptive controller decomposition

The recursive adaptive controller under consideration consists of a set of recursive equations
employing spatial algebra [11] in which the linear and angular components of motion and
force are combined into one six dimensional vector. The controller computes the motor
torques for each joint and also updates the inertia parameters of each link. These two
processes may be carried out in parallel.

Parallelism may be achieved if we divide the whole process into sub tasks that represent one
of the following :

e Such basic operations as addition, subtraction, multiplication and division.
e Calculations associated with independent equations.
e An intermediate arrangement of one and two.

In the task generation process it appears that maximum parallelism is achieved by forming
sub-tasks which represent such small fundamental operations as additions and multiplications
and mapping these onto a set of processors. However, this would produce tasks that number
in thousands. This is undesirable from the point of view of scheduling complexity and
communication overhead. The other alternative is to form equation level tasks. The main
bottleneck here is the computation of the local force components f,. They represent a set of
ten equations for each joint involving spatial operations. The above facts illustrate that the
task sizes in the first two cases are not suitable for efficient parallel processing and an
intermediate course of action has to be taken. In other words there has to be a trade off
between parallelism and communication overhead. This was made possible by the conversion
of the algorithm to symbolic form.

Considering the amount of communications involved two different grain sizes are being used
in the scheduling process, one having an average task size of 438 [Lsec. and the other having
an average task size of 256 [sec. i.e., roughly half of the previous one. The number of sub-

tasks for the two cases being 38 and 65 respectively. Task times have been obtained by
running each task on the target transputer and are thus very reliable. The schedules obtained
using these times are therefore expected to be very close to the real implementation except
for the fact that communications among processors would not be taken into account. The
effect of communications will be evident in the final section when the practical
implementation results are given.

4.3 Scheduling

The problem of scheduling a controller algorithm onto a set of processors is deterministic in
the sense that all information governing the scheduling decisions is known in advance. A task
graph representing task dependencies can therefore be formed. The availability of the
precedence constraints among the different sub tasks makes this problem suitable for static
scheduling. There are few known polynomial time scheduling algorithms even when severe
restrictions are placed on the task graph, the sizes of the sub-tasks and the number of parallel
processors. The task graph of the problem at hand is very general which does not permit the
use of polynomial time scheduling algorithms [19] therefore an optimisation approximation
algorithm known as DF/IHS (depth first implicit heuristic search) [4] has been used. This
scheme is a heuristically guided depth search for finding optimal or close to optimal
schedules. The main feature of DF/IHS lies in the fact that it does not require the
computation of heuristic function for all active nodes with the largest depth in order to find
the next branching node. This is made possible by a pre-processing stage which also helps to
generate a very accurate initial solution for the depth search thereby considerably reducing
the time of the search. Computer memory requirement for the algorithm is also quite low and
is of the order of m xXn where m and n are the number of processors and the number of sub
tasks respectively.

Using dynamic programming technique the critical path lengths for the coarse and finer grain
task graphs were found to be 6.27 m. sec. and 3.84 m. sec. respectively. These times
represent the minimum possible time for any schedule. DF/IHS was able to reach these times
for both grain sizes. The results of schedules are shown in figures 1 and 2. It is evident that
better schedules having increased processor utilisation are obtained using finer grain tasks.
However the amount of communication involved rises sharply.

5. Practical implementation on transputers

The resulting parallel system is communication intensive. Thus the advantage gained by
using smaller average sub-task size is lost when the increase in communication overhead is
considered. For practical purposes the coarse grain schedule provides better results. The
coarse grain schedule was implemented on networks of T-800 transputers having three and
four transputers respectively. The transputer networks are shown in figure 3 and the times
achieved are shown are shown in figure 4. DF/IHS schedule results are also given for the
sake of comparison. Effects of communication are very obvious from the results of figure 4.
In figure 3 (a) and (b) the transputer connected to the host (Sun Spark station)performed the
duty of distributing data to the other processors and collecting the results from them. The
actual algorithm was run on the remaining transputers. The program was developed using the
ANSI C toolset provided by Inmos. Computation times achieved for two and three
transputers are 10.7 and 9.3 m.sec respectively. These times are well within the maximum
limit imposed for real time control which indicate the usefulness of employing effective
parallel processing techniques to the adaptive robot control problem.

6. Conclusions

This paper presented a distributed implementation of a globally stable adaptive
controller for a six link industrial robot. All the previous results found in literature are
either for a single joint adaptive control algorithm or for an arm having three or less
links. Choice of correct controller has been found to be the most important factor in
achieving good results through parallel processing. Since the Lagrangian-based
controllers are not the best choice for practical implementations because of their
computational complexity, controllers based on Newton-Euler equations or having a
similar recursive structure are better candidates for parallel processing. The
communications-intensive nature of the problem imposes a lower limit on the average
size of the sub-tasks. Keeping the above facts in view, the reported distributed
adaptive controller for PUMA 560 running on three T-800 transputers achieved times
well within the real-time limit.

Fig. 1(a) Fig. 1(b)
3
20 2.5
) 15 2
Time 10 Speedup 1.5
m.sec. 1
5
0.5
ot 04
1 2 3 4 1 2 3 4
Number of processors Number of processors
Fig. 1(c)
100
Efficiency 95
% %0
85
80
2 3
Processors

Figure 1: Coarse grain schedule, (a) completion time versus number of processors, (b) speedup curve, (c)
Processor efficiency for two and three processor cases.

Fig. 2(a) Fig. 2(b)

20 5
Time 2 3
me
m.sec. 10 S uP 5
5 1
0¢ iR
1 2 3 4 5 6 1 2 3 4 5 6
Number of processors Number of processors
Fig. 2(c)
Efficienc 100
Yy
% 50
0

2 3 4 5 6
Processors

Figure 2: Fine grain schedule. (a) completion time versus number of processors, (b) speedup curve,
(c) Processor efficiency for two to six processor cases.

Host
Host
o Fig 3(b)

Fig. 3(o)

Figure 3: (a) three transputer (T-800) network.
(b) four transputer (T-800) network (PO is for communication with host.)

Fig. 4(a) Fig. 4(b)
r—0— schedule —ll— actual J [—&@— schedule —Jll— actual
20 3
15 2
Time 10 Speedup
m.sec. 1
5
0
1 2 3
Number of processors Number of processors

Figure 4. Actual implementation results (a) completion time versus number of processors, (b) speedup curve, (c).
(schedule results are also given for comparison)

References

10.

11
12

13,
14.

L7

18.

19.

20.

21

S. Dubowsky and D. T. Des Forges, "The application of model reference adaptive control to
robotic manipulators, "ASME JI. Dynam. Syst. Meas. Control, vol. 101, 1979.

J.Y. 8. Luh and C. S. Lin, "Scheduling of parallel computation for a computer controlled
mechanical manipulator,” IEEE Trans. System Man and Cyber. vol SMC-12(2), 1982.

R. H. Lathrop, "Parallelism in arms and legs," MIT, M. Sc. thesis, 1982,

H. Kasahara and S. Narita, "Practical multiprocessor scheduling algorithm for efficient
parallel processing,” IEEE Trans. Computers vol. C-33(11), 1984,

R. Nigam and C. S. G. Lee, "A multiprocessor based controller for the control of mechanical
manipulators,” IEEE J1. Robotics Automation vol. RA1(4), 1985.

H. Kasahara and S. Narita, "Paralle]l processing of robot arm control computation on a
multiprocessor system,” IEEE J1. Robotics Automation vol. RA-1(2), 1985.

T. J. Tarn, A. K. Bejczy, S. Hans and X. Yun, "Dynamic equations for Puma 560 robot arm,
"Department of Systems Science and Mathematics, Washington University St. Louis,
Missouri 63130, 1985.

T. J. Tarn, A. K. Bejczy, S. Hans and X. Yun, "Inertia parameters of Puma 560 robot arm,
"Department of Systems Science and Mathematics, Washington University St. Louis,
Missouri 63130, 1985.

K. S. Fu, R. C. Gonzalez and C. S. G. Lee, "Robotics: Control Sensing Vision Intelligence,"
McGraw Hill Book Company, 1987.

J. J. E. Slotine and W. Li, "On the adaptive control of robot manipulators,” Int. J1. Robotics
Research, vol. 6(3), 1987.

R. Featherstone, "Robot Dynamics Algorithms," Kluwer Academic Publishers, 1987.

M. W. Walker, "An efficient algorithm for the adaptive control of a manipulator," IEEE Int.
Conf. Robotics Automation, vol. 2(682), 1988.

J. J. Craig, "Adaptive Control of Mechanical Manipulators,” Addison-Wesley, 1988.

K. Hashimoto and H. Kimura, "A new parallel algorithm for inverse dynamics," The Int. JI,
Robotics Research, vol. 8(1), 1989.

H. Kasahara, "Parallel processing of robot arm dynamic control computation on
multiprocessors,” Microprocessors and Microsystems, vol. 14(1), 1990.

K. Hashimoto, K. Ohashi and H. Kimura, "An implementation of a parallel algorithm for real
time model based control on a network of microprocessors,” The Int. J1. Robotics Research,
vol. 9(6), 1990.

J. J. E. Slotine and N. Gunter, "Performance in adaptive manipulator control,” The Int. JI.
Robotics Research, vol. 10(2), 1991.

P. K. Sinha and P. L. Ho, Transputer based real time parallel adaptive control of a robot
manipulator,” in Parallel and Distributed computing in Engineering Systems, Elsevier
Science Publishers BV (North Holland), 1992.

T. G. Lewis and H. El Rewini, "Introduction to Parallel Computing," Prentice Hall, 1992.

I. J. Cornish and A. M. S. Zalzala, "Transputer benchmarks and performance comparison
with other computing machines," University of Sheffield, Research Report #467, 1993.

Y. Z. Chung and R. W. Daniel, "Parallel processing networks for adaptive controllers, "IEE
Proceedings-D, vol 140(1), 1993,

