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The Effect of Redundancy and Repair on the Performability of
Distributed Real-Time Control Systems With Repetitive Task

Invocation

A. Shallof and S. Bennett

Abstract. Distributed real-time control systems depend on producing correct software and proper
hardware architecture to support the software. Hardware components degrade with the time and
this can lead to hardware failure, which in a distributed real-time control system may be manis-
fested through the failure of some tasks to meet their deadline. The effect of random failure,
repair and redundancy on the completion of tasks of a system by their deadline have been investi-
gated. We show how a system with redundancy and with random failure and repair rates can be
modelled using the General Stochasic Petri net approach and how the performability of the system

can can be calculated using a method based on the modified Laguerre function.

Keywords : Distributed real-time control systems; modified Laguerre functions; reliability; per-
formability; GSPN.

1. INTRODUCTION

A hard real-time system is one in which every system activity has to be completed before a
certain deadline. When such system is implemented as a distributed real-time control system the
activities are performed in different nodes, activities that depend on each other and execute on
different nodes must communicate via some mechanism. Since the tasks have deadlines it is essen-
tial that the messages between nodes are delivered within bounded time and the message protocol
must provide appropriate support [1]. Activities are performed by tasks which are executed repeti-
tively at each of the nodes. A task is a software module that can be invoked to perform a particu-
lar function. In a hard real-time System a task is characterized by its timing constraints, precedence

constraints and resource requirements.
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Tasks can be classified into two types [2][3]: non-perodic and perodic. A non-perodi
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which when invoked is expected to execute just once and has an arbitrary arrival time and dead-
line. A perodic task is defined as one which is invoked exactly once per period and constitutes the
normal computation for the process under control. Most perodic tasks co-operate with each other
through communication to accomplish the overall control mission. The precedence constraints
among a set of tasks specify the sequential relationships between the tasks. A task A is said to
precede task B if task A must finish before task B begins.

Tasks may be preemptable and non-preemptable. A task is preemptable if its execution can be
interrupted by another task at any time and resumed afterwards. A task is non-preemptable if it
must run to completion once it starts. Whether a task is preemptable or not is mainly determined
by the nature of the application environment. The completed number of tasks depends on the relia-
bility because real-time constraints cannot achieved if system components are not reliabile. Stan-
dard reliability metrics do not provide measures of the performance of degradable distributed real-
time systems. Instead a combined performance-reliability metric, referred to as performability has
to be used. Performability is defined as the probability that a system reaches a certain accom-
plishment level over an utilization interval called a mission time [4]. Performability differs from
reliability in that reliability is a measure of the likelihood that all of the functions are performed
correctly whereas performability is a measure of the likelihood that some subset of the functions is

performed correctly.

In the literature there is no work which addresses the effect of redundancy and repair on the per-
formability of distributed real-time control systems. In this paper we describe how a particular
algorthim [5] can be used to find the effect of repair and redundancy on the performability of a
distributed real-time control system. This algorithm is based on the convolution operation between
task invocations starting from the last invocation and working backwards to the first invocation.
The convolution operation is performed using modified Laguerre functions. In section 2 we
describe the performability concept and modelling techinque and in section 3 we show how a par-
ticular system can be modelled in section 4 we give some results.

2. Performability Concepts and Modeling Technique
2.1 Performabiiity Concepts

Performability is defined as the probability that a system reaches a certain accomplishment level
over an utilization interval called a mission time. The performability model consists of a reliability
model and performance model. Relability is defined as the probability that the system stays in an

operational state throughout an interval. So it is clear the reliability model represents the
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components of the system that are working and it is based on knowledge of component failure and
repair rates. The performance of a distributed real-time system depends on producing correct
software which matches the specification of the application and on the proper hardware architec-
ture to support the software. Hardware components degrade with time and hence faults can appear
through hardware failure. Also because it is virtually impossible to prove the correctness of large
complex distributed real-time systems even after the normal extensive testing and debugging phase
of the software, additional program errors may surface after the system has been put into opera-
tion.

The performance model (reward model) shows how well the the system works with each possible
set of operational components. If the reward rates are defined to reflect the performance levels of
the system in different configurations then measures such as the expected total amount of work
completed in the mission time or the expected throughput of the system with failure and repair can
be computed. Thus the performability is a measure of the likelihood that some subset of the func-
tion is performed correctly over a specified mission time. From the above it is clear that the per-
formability model consists of a reliability model, a performance model and a way of combining
the results of the two models. In this paper we use modified Laguerre functions to find the perfor-
mability measures [5]. We define the repairable system by a stochastic process { X, +20 } where
X, describes the structure state of the system at time ¢ and Xe{1,2 -+ N} andwhere N
is the size of the state space of the process. We assume f; be the reward rate ( or the perfor-
mance level ) associated with the structure state /i and the vector f defines the reward structure.
The normal system behavior is analyzed by considering the task invocations during one planning
cycle [2]. Let random variable ¥ (r) represent the total accumulated reward in the mission inter-
val ¢ in a distributed real-time control system thus from the general transform equation of perfor-

mability [6].
Pi(xt)=prob[Y()<x|Xp=i ], i=1,..,N 1)
and
pY (1 8)=(d1+yF -0 )le )

where p**(y, 8) is the Laplace-Stieltjes transform (shown by +) of P;(x,r) in x variable and
Laplace transform ( shown by *) in t variable, F is the a diagonal matrix with entries fi
representing the reward structure; Q is the Markov generator matrix of the reward model , / is the

identity matrix and e is the column vector of all ones.
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Proposition [5] : Let p** (v,8) be the column vector representing the double Laplace transform of

the performability then
(1) the performability density is given by
px,t)=e” T ¥p il
i=0j=0
where

pij=R;;D

and

Rij = [Ri—].j A + Rf,j—l B +Rf-1.j——l C]

and the N X N matrices A, B, C and N X 1 matrix D as the follwing:

r -1
S = {KI+K’F‘ -20 +2KCIH

A = |K(JI-F)-2(0 -KCI)JS

B = rK(—I+F)—2(Q-—KCI)]S

C = |[KU+F 12(0 -m)]s
D =2K2Se

(ii) the performability distribution is given by

P(.1) =1~ 3 3P,k
i=05=0

where

P j=2K 3 S (1yimpt

m=i+1n=0
( 1 . e
F(pi‘j“pi—l,j) i>0 , j=0
1 . -
P#;,j“‘K,_g(P;,j—P,',j_O i=0 , j>0
l g "
F(Pi,j_Pi—l,j_Pi.j-l+pi—].j—1) i>0 , j>0

-
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furthermore
ok 3] Loy
PTi=K X;(t) Xp*in (10)
j=0 n=0

i

p#ij=zg#kja#i—k (11)
k=0

i ()= (i =1=Kx ),y ()= =1)f; _5(x) (12)

2.1.2 Algorithm :

The structure of the overall algorithm as follows:

1. Create the state space of the system during each invocation.
2. Compute the Laguerre coefficients .

3. Compute the Laguerre difference coefficients .

4. Choose the suitable value of K .

5. Compute the performability measures of the system .

2.2 Modelling Technique

We have used the General Stochastic Petri Net (GSPN) technique to develop the performability
model. A Petri net comprises of a set of places, a set of transitions and a set of directed arcs. In
the graphical representation of a Petri net the places are drawn as circles and the transitions as
bars. Arcs connect transitions to places and places to transitions. Places may contain tokens which
are drawn as black dots. The state or marking of a Petri net is defined by the number of tokens

contained in each place .

A formal definition of a PN is thus the following [7].
PN =(0P,T,A, M) (13)

where P is a finite set of places, T is finite set of transitons, A is a set of arcs and M is a mark-
ing. A transition is enabled when all of its input places contain at least one token. Enabled transi-
tions can fire, thus removing one token from each input place and placing one token in each out-
put place. Each firing of a transition modifies the distribution of tokens on places and thus pro-

duces a new marking for the Petri net.

The reachability graph of a PN with initial marking M is defined as the graph composed of all

markings that can be reached from M by means of sequence of transition firings.
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Another type of arc in a Petri net is the inhibitor arc. An inhibitor arc drawn from a place to a
transition means that the transtion cannot fire if the place contains at least as many tokens as the

multiplicity of the inhibitor arc.

A stochastic Petri net (SPN) is a Petri net where each transition is associated with an exponen-
tially distributed random variarable that expresses the delay from the enabling to the firing of the
transition. A formal definition of a SPN is thus [8][9]:

SPN =P, T,A,M,R) (14)

where P, T, A, M as in (13) and R is the set of firing rates associated with the PN transition.
The SPNs are isomorphic to continuous-time Markov chains ( CTMC) due to the memoryless pro-
perty of the exponential distribution of firing times . The sojourn time in each marking (state) is

an exponentially distributed variable with the average value [ Yy r 17!, where H is set of tran-
ieH

sitions that are enabled by the marking . The transition rate from marking M; to marking M; is

obtained as Y ry .
k € H,’j

By using these rules it is possible to devise an algorithm that automatically derives, from the SPN
description, the state-transition rate matrix of the CTMC. Thus it is possible to compute the steady

state probability distribution of markings by solving the usual matrix equation.
Mo =0 (15)

with the additional constant
=1 (16)
i

where Q is the infinitesimal generator whose elements are obtained from the model and I1 is the

vector of the steady state probabilities.

From the steady state distribution TI it is possible to obtain quantitative estimates of the behavior

of the model as given below.
1. The probability of a particular condition of the SPN.
If in the subset A of the reachability set R (M) the particular condition is satisfied the required

probability is given by

P{A)= ¥ m (17)
i€ A

2. The expected value of the number of tokens in a given place.
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If A(i,x) is the subset of R (M) and x is the k-bound for place p; then
k
Elml=3[nPAC(i,n)l (18)
n=1
3. The mean number of firings in unit time.

If A; is the subset of R (M) in which a given transition t is enabled the then mean number of
firings of ¢; in the unit time is given by
;2 X Im|gd B % (19)
M € A; L enabiedin M,
Generalized Stochastic Petri Nets[ 11 ] are logical extenstion of Stochastic Petri Net. In GSPN
there are two classes of transitions, timed transitions 7, and immediate transitions T; . Timed tran-
sitions have firing times distributed exponentionally, immediate transitions fire in zero time. If the
set of enabled transitions H comprises only timed transitions then transition #; (i € H ) fires

with probability r; / 3, r, where r; is the firing rate of transition and H is set of transitions
keH

that are enabled by the marking. If H comprises both immediate and timed transitions then only
immediate transitions can fire. If H comprises zero or more timed transitions and only one
immediate transition then this is the one that fires. When H comprises several immediate transi-
tions it is necessary to specify a probability density function on the set of enabled immediate tran-
sitions according to which the firing transition is selected. The subset of H comprising all enabled
immmediate transitions togther with associated probability distribution is called a switching distri-
bution [9]. A GSPN can be solved by using the fact that all states for which immediate transtions
are enabled are reached and left at the same instant of time. So before constructing the Markov
graph the reachability graph has to be modified.
3. System Modeling

Real-time systems are characterized by the fact that both logical and timing properties of the sys-
tem must be satisfied. There are two types of real-time systems: soft real-time systems and hard
real-time systems. In soft real-time systems tasks are are not constrained to finish by specific time
on each and every invocation. In hard real-time systems tasks have to meet specific deadlines on
every invocation. That is they have to be performed not only correctly but also in a timely
fashion. A general model for determining that real-time tasks meet their deadlines on every invo-
cation must include information on task and component redundancy. Assuming the system con-

sists of three nodes (4, B, C) . Two tasks may interrupt the main task in node B (+B) , one from
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the same node (D) and one from node A (14 ). Task tB will decide to either accept or queue the
query from fD or tA. When tB accepts the query it stops its current thread of control and starts
executing the response routine; it returns to where it left off after the response routine is com-
pleted and the repy tD or tA is made. Also we assume another two tasks can send messages to
task B, one from the same node (tE) and another from node C (tC) . When tasks tE or tC send a
message they remain blocked until they receive a reply from task B . If task B executes
"receive” before a message arrives it becomes blocked. Tasks tC or (E remain blocked until a
reply is recived from task /B . Assuming all tasks (¢A ;1B ,tC) are first invoked at t, with period
90 msec, 180 msec and 90 msec respectively and any task fnished before it is next invocation
waits. If any task unable to complete it is current invocation before its deadline it will discrarded.
Also assume node B has two processors which have random failure and repair rates and their
operation is :

(i) two processors are operational ( fault free ).

(ii) one processor operational ( fault free ) and failed processor under repair.

(iii) both processors are failed one failed processor is under repair and other waiting for repair

(iv) both processors are failed and both are under repair.

Fig. 1 together with tables 1 and 2 show a GSPN model based on the above assumptions.

4. Results and Discussion

In this section we will use the algorithm presented previously to analyze the model described in
section 3.

Figure 2 to 7 show the complementary distribution ( prob( Y (t) >x ) plotted against number of
tasks x with mission time ¢ as a parameter. Plots are shown for mission times between 30 msec
and the planning cycle time ( 180 msec ). For example we can see from figure 2 that with only
one processor in node B the probability of five tasks completing thier first invocation within a
mission time of 90 msec in 0.111063. A summary of the results extracted from figures 2 to 7 is

given in the following table.



one processor two processors* WO processors**
mission time+
number of tasks probability number of tasks probability number of tasks probability
30 1.7 as shown in fig.2 0.111964 1.9 as shown in fig. 4 0.134081 2.0 asshowninfig. 6 | 0.116142
60 2.9 as shown in fig.2 0.126059 4.0 as shown in fig. 4 0.115532 4.3 asshown infig. 6 | 0.106807
90 5.0 as shown in fig.2 0.111063 5.0 as shown in fig. 4 0.257497 5.0 as shown in fig. 6 | 0.288036
120 5.9 as shown in fig.3 0.103254 6.9 as shown in fig. 5 0.103704 7.1 as shown infig. 7 | 0.106209
150 8.1 as shown in fig.3 0.101661 8.9 as shown in fig. § 0.107961 9.2 as shown in fig. 7 0.101504
180 9.9 as shown in fig.3 0.107028 | 10.0 as shown in fig. 5 0.114666 | 10.0 as shown in fig. 7 0.125227

+ time in millisecond, * one repair,** two repairs

A comparison of the performance with one and two processors in node B is shown in figure 8. It
is assumed that the processors serve the tasks independently and on a first-come first-served basis,
As might be expected there is a higher probability that two processors complete the job within the
mission time than one processor. Figure 9 shows the repairability of the system which depend on
the failure and repair of the processors, the fi gure shows that when the repair rate is increased, that
is the transition time for t11 decreased, the system repairability increases. Similiarly the effect of
increasing the failure rate can be found by decreasing the transition time of t10 and this will result

in a decrease in repairability.

Thus the repairability depends on the probability of changing the token from place (p16) to place
(p15). Figure 10 shows the availability of one processor and two processors with one repair and

two processors with two repairs.

From the above it is clear the the availability is equal the probability p15 contains token is 1.0
plus the probability p16 contains token is 1.0 or may be found as 1.0 mines probability p16 con-
tains token is 1.0 and probability p14 contains token is 1.0 . Thus the system work if there is no
tokens in palce pl16 and place pl4 in the same time. Thus figure 10 shows the system has more

availabilty and less unavailability incase two processors with two repairs than one processor or
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two processor with one repair. Figure 10 shows that the system is more reliable with two proces-

sors than with one processor.

CONCLUSION

In this paper we have shown how the effects of redundancy and random failure and repair on the
performance of a simple distributed real-time system can be evaluated. The performability is then
computed by numerical evaluation. The algorithm used is one wich is based on a modified
Laguerre function. Distributed real-time control systems with redundancy give successful applica-
tions by reduced job completion time, higher probability of successful job complete and ‘the sys-

tem meet the time by which a task must finsh.

Transitions Comments
tl, 14 task A query delay for first and second invocations respectively.
12, t5 task A query response routine executed for first and second invocations respectively.
t3, t6 task A reply delay for first and second invocations respectively.
t7, 18 task D query response routine executed for first and second invocations respectively.
t9 task B processing the local job.
t10 failure of processor.
t11 end of the repair of one processor.
ti start of the repair of the processor.
t12, t13 processing the message from task E for the first and the second invocations,
t14, t17 task C message delay for first and second invocations respectively.
t15, t18 processing the message from task C for the first and the second invocations.
t16,t19 task C reply delay for first and second invocations respectively.

Table 1 : Description of the transitions of the Petri net.
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Places Comments
pl, p5 start task A query for first and second invocations respectively,
p2, p6 query ready for first and second invocations respectively.
p3, p7 reply ready for first and second invocations respectively.
p4, p8 received task A reply for first and second invocations respectively.
P9, pll start task D query for first and second invocations respectively.
pl0, p12 received task A reply for first and second invocations respectively.
pl3 local job in node B available.
pl4 failed processor, waiting for a repair.
pl5 both processor fault free.
plé processors under repair.
pl7 repair resource available .
pl8 end the local job in node B.
pl9 new local job in node B.
p20 end of the planning cycle.
p21 sart of planning cycle.
p22 a receive from task E executes.
p23, p26 start task E issues a send to task B in the first and second invocations respectively.
p24, p28 task E reply receive for first and second invocations respectively,
P25, p27 end of processing the message from task E in the first and second invocations respectively.
p29 task B executes a receive from task tC,
p30, p31 end of processing the message from task A in the first and second invocations respectively.
p32, p36 start task A issues a send to task B in the first and second invocations respectively.
p33, p37 task C message ready for first and second invocations respectively,
p34, p38 task C reply ready for first and second invocations respectively.
p35, p39 task C reply receive for first and second invocations respectively.

Table 2 : Description of the places of the Petri net.
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Fig. 2, The complementary distribution of the number of tasks
completed during the first invocation by one processor.
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Fig. 3. The complementary distribution of the number of tasks completed

with the ending of the planning cycle by one processor.
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Fig. 4. The complementary distribution of the number of tasks
completed during the first invocation by two processors
with one repair.
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Fig. 5. The complementary distribution of (he number of tasks

completed with the cnding of the planning cycle by two
processors with one repair.
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Fig. 7. The complementary distribution of the number of tasks
completed with the ending of the planning cycle by two

processors with two repairs.
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Fig. 8. The performance of one processor and two processors
during onc planning cycle.
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Fig. 9. Repairability of the processors during the planning cycle.
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Fig. 10. Availability, unavailability and reliability of one processor
and two processors with one and Iwo repairs during one planning
cycle.
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