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Abstract

In this paper we shall study the existence of periodic orbits and stability of
pseudo-linear systems. The Lie algebra generated by the system matrix function
will be the main tool.
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1 Introduction

In this paper we shall consider systems of the form
z = A(z)z (1.1)

in which A: R" — R”2 is analytic. Note that this system is equivalent to the

system

where

f(0)=0

and f is analytic. The main reason for studying the general nonlinear system in
the form (1.1) is to apply linear-like techniques. This has already been demon-
strated in [1],[2], where the ideas of micro- local optimal control and the use of

Lie algebras in stability have been discussed. By the analyticity of A(z) we may

write
A)= ¥ 4t (1.2)
[1j=0
where 1 = (i3, ,1,) is a multi-index and
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Of course, z! is a scalar function, i.e. z! : R® — R and dr e R"* for each
multi-index i. The dynamics of (1.1) are therefore completely characterized by

the infinite set of matrices A; , i> 0 (i.e. i; > 0,---,4, > 0).




We shall consider two aspects of the system (1.1)-periodic orbits and sta-
bility. In section 2 we shall consider the general case where {A(z)} generates a
semisimple Lie algebra and in section 3 we shall study Hamiltonian systems and
apply results of Conley and Zehnder [4],[5] to obtain the existence of periodic
orbits. Finally in section 4 we shall study the stability of Hamiltonian systems.
Stability in the more general case where {A4(z)} generates a semisimple Lie

algebra is considered in [3]. For the theory of Lie algebras see [9] or [6].

2 Spectral Theory and Lie Algebras

In this section we shall consider the system (1.1) with respect to the spectral
and commutativity properties of the matrices A;. Consider first the simplest
and most restrictive case in which all the matrices 4; , i > 0 are diagonalizable
and commute. Then the matrices A4; are simultaneously diagonalizable and we

can change coordinates and write equation (1.1) in the form
=Xy, 1<isn, yeC" (2.1)
for some functions A;. These equations can be integrated to give
yi(d) = edo MOOM 4y

: (2.2)

provided the integral exists. Consider the problem of finding periodic orbits of

(2.2) (and hence of (1.1)). From (2.2) we require that

T
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for some T, i.e.
T
/ Ai(y(t))dt = 2k;mi, 1< j<n (2.3)
0

for some integers k;. Suppose that the eigenvalues A;(y(t)) are pure imaginary

and constant (# 0) on the torus

To:{yeC:lyl=ci,ly2l=c2, -, |vn]| = en} (2.4)

for some constant ¢; > 0. Then, if [y;(0)] = ¢; , 1 < i < n, it follows from (2.2)
that the solution y(1) lies on the torus 7.. By the assumption on the eigenvalues,

we may write

Ai(y(t)) = 1py (2.5)

for some real numbers ;. Hence the condition (2.3) becomes

Qifj‘.'?
Hi

T =

(2.6)

We shall call the values p; , 1 € j < n,commensurate with respect to T if

there exist integers ky, .-, k, such that
T
.= < j<n. T
H; 27Tkj,l_J_n (2.7)

We have therefore proved
Theorem 2.1 Suppose that the matrices A; defined with respect to the system

(1.1) are mutually commutative and diagonalizable. Let P (€ C"Q) be such that

PA(z)P™! = A(z)



where A(z) is diagonal with the eigenvalues A;(z) of A(z) on the diagonal and

suppose that

Xlxy=ip; , |ZPH-‘T£[ =ck (2.8)

for some constants p; and ¢x. Then if the numbers {y;} are commensurate with

respect to T, the system (1.1) has a periodic orbit. D
This result is, of course, highly restrictive because of the condition (2.8).

However, by considering almost periodic solutions we can allow much more gen-

eral conditions on the spectrum of A(z). In fact we shall make the following

assumption on the transformed eigenvalues A;(y(1)):

Assumption A: (i) The eigenvalues A;(y(t)) are pure imaginary and continu-

ous.

(1) 0 < m; < |X;(y(1))] < M; < oc for some constants m;, M;.

Consider the following equations corresponding to (2.3):

i
uj(t)éfo i lateNr =ar , Lxd en

where p; = 1};. By assumption A, it is clear that there exist times T}, -+, T,

such that

y(Tj) =427, 1<j<n (2.9)
and that, moreover,

2 emp 2 1gien
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Lemma 1 Given any € > 0 there are integers k; (1 < j < n) such that
kpTp — koTyl <€, 1< pg<n.

Proof First note that if all the T;’s are rational, say T; = pi/qi, then the result
18 true since we can take
n
ki=q: [] s
i

giving
koTp = keTy , 1 €90 <0

Thus we may suppose that at least one 7; (say T1) is irrational. We may also
assume that 77 and the remaining 7;’s are ‘mutually irrational’ in the sense that
T, /T is irrational for 7 > 1. (Otherwise if T} /T, = v/w, say, we may consider
the reduced set wTi(= vTy),Ts,--+,T,.) By dividing by the maximum T, we
may clearly assume that 7; < 1 for 1 < ¢ < n. Consider the set
S={ Y |keTp—kTyl : 1< kyp k, < N}
1<pg<n
for some N. Each element of S is less than "Cy - N and since T} /T} is irrational
for i > 2 there must be at least N? distinct elements in S. Suppose the minimum

of the lengths of elements in S is 6. Then we must have
(N?=1)6< "Cy - N.

Hence, choosing N large enough gives the result. O



Theorem 2.2 Suppose that the eigenvalues of A(z) are pure imaginary
and satisfy assumption A. Then any solution of ( 1.1) is almost periodic.
Proof Let N be any positive integer and € > 0. Let T},---, T, be the times

defined as in (2.9). Then by lemma 1 there exist integers ki, - -, k, such that
[kpTp = kTy|l < €/N , 1 <p,g<n.

Let 7 = kyT,. Then, for the diagonaiized system (2.1), the components y;(t)
return to y;(0) within ¢/N of 7,27,-.., N7. By continuity of the solutions,
z(7),2(27), -, z(Nr) will therefore be ‘close’ to 2(0). Since N and ¢ are arbi-
trary, the result follows. O
In order to generalize the above results to the case where the matrices A; are
not mutually commutative, we shall suppose that the Lie algebra generated by
the matrices 4; , i > 0 is semisimple. Let £g denote the Lie algebra generated
by the set § C gl(C") = C"". First note the following:
Lemma 2 The Lie algebras generated by the sets {4; , i > 0} and {4(z) :

r € R"} are the same; i.e.

E’{Ai L 1>0) = ‘C{A(r):mER“}'

Proof It is clearly sufficient to show that
() A; € LiatryceRmy-
and that

(b) A(2) € Liy, 350y forallz€R”



To prove (a) note that since ‘C{A(r):rER“} is a finite-dimensional subspace of
gl(C™) it is closed, hence limé_.gi@'—‘?r_—“'—) € E{A(r):rER”] where e; is the
i*® unit basis vector of R™. Hence the partial derivatives Biz‘(r) € C{A(z):xERﬂ].
Similarly, the partial derivatives of all orders of 4 are in ‘C{A(a:)::rER“] and
(a) follows. To prove (b), simply note that, for any z € R", the finite sum
Eilio Aimi € E{A-'i>0}’ by linearity and so A(z) € C{A-‘i)O} by the closedness
'z 112
Assuming that g B ‘C{Ai:izﬂ} 1s semisimple we can write the usual Cartan

decomposition in the form

9=h+zga

o€l

where h is a Cartan subalgebra and each root space g, 1s one dimensional. (Here,
I is the set of nonzero roots.) It follows that equation (1.1) can be written in

the form

¢=H(z)z+ Y va(r)Eqz (2.10)
«€l

where the matrices H(z) , r € R" are mutually commutative and E, € g, for
ael.

Since the matrices H(z) are mutually commutative, they are simultaneously
diagonalizable and so there exists an invertible matrix P (independent of z)
such that PH(z)P~! = diag (M(2), -+, An(2)) 2 A(z). Put y = Pr in (2.10)

and we obtain

§=Kyy+ Y ta()Eoy (2.11)
a€l’



where

=1
o~
.

I

A(x) = diag (\(P™1y), -, Xa (P 1Y),

ﬁc:r(y) = Ua(p_ly)
and
Ea = PE,,P_].

Consider the j** equation in (2.11):

¥ = A (Y)y; + b (2.12)
where
bj = (Z fa(y)fay) :
ael i
Then

1 t 1
g () = A )\j(y)dfyj(o)+/ . Aj(y)d'rbj(s)d‘g.
0
Define the diagonal matrix-valued function

1 1
E(t,s;y(+)) = diag (efs N, A"“’"m) :

Then we may rewrite (2.11) in the form

t
y(t) —fo E(t,5;9) Y Taly(s))(E)ay(s)ds = £(,0;4)y(0). (2.13)

a€l

From (2.12) and (2.13) it follows that

d
Elyjl > (Re A (v)lyj| = ;]



and

d
2 14l < (Re 5 (u))lws| + 1851

ie.
1d 2
§a||yl|2 2 (Re My)llyll* - 18] |yl
1d -
sl < (Re X@)llyll® + 1ol |yl
(2.14)
where |b| = (lbi |' Y Ibﬂl)) Iyl = (iylls TRy iyﬂl) :A(y) = min RE ’\J(y) ) I(y) =

max Re A;(y). Now,

Bl 1yl = (bal- B l)eali- sy )T
< Y B 1B lvl*
ael

Since [74(y)| is bounded on any sphere S, = {y : ||y|| = a}, we may define

éa) = max 3 [Ta(y)| |l

a€el

Next we suppose that there exist spheres S,,, Sy with 0 < m < M such that
each Re Aj(y) > 0 for y € S, and Re X;(y) < 0 for y € Sps and that
Assumption B: minyes,, A(y) > £(m) , |maxyes,, Ay)| > (A1),

The next lemma then follows from (2.14) and (2.15):

Lemma 3 Under assumption B the annulus
A={y:m<y< M)
is an invariant set for the flow of (2.11). O

10



The compactness of A and the continuity of solutions now guarantee the
existence of an ‘almost cycle’ in the sense that for any ¢ > 0 there is a T such

that

lly(0) = y(T)|| < €.

(Simply consider the points y(0,y(1), »(2),--- in the flow of (2.12). This set
must have a cluster point.) However, this ‘cycle’ may not circulate around A,

To find conditions under which this holds, consider the ‘index’

_ 1 ¥ (1)
Y= — =L ) dt.
ind,y; 521 Im (yj(i) t

We have

Theorem 2.3 Suppose that
(a) Im Aj(y) > max {€(m),E(M))

or

(b) Tm i(y) < —max {£(m),£(M))
for all y € A. Then there exist times 1y, -- -, 7, such that

+1 (case (a))
ind, y; =
—1 (case (b))

Proof We prove case (a), case (b) being similar. By (2.12) we have

Im ¥ = 1m Ai(y)+Im &
Yj Yi

11



so that

. 1 /7 ;
ind,y; = ﬂ/ (Im Ai(y)+Im fi) dt.
; ;

Yj
Since the integrand is positive for all y the result follows. o
From lemma 1 we can find integers k;, - - - , kn, such that

kpTp — kyro| < €
for any € > 0. A cluster point to the set
{y(glel): y(EkQTE): e =y(€kﬂ7—n)] 3 f 2 -1

will give an ‘almost’ cycle which circulates around A.

3 Hamiltonian Systems and Periodic Orbits

In this section we shall consider Hamiltonian systems of the form (1.1). Recall

that a general Hamiltonian system is given by
z = JWh(1L, ) (3.1)
for some Hamiltonian function h(t,z) , z € R?" and

2

J = g Ri@n)",
-I 0

We shall be concerned only with the time-invariant case, but more general
nonautonomous systems can be treated similarly. For linear Hamiltonian sys-

tems we have
z=JSr = Ar

12



where S is symmetric and A is Hamiltonian, i.e.
ATJ+JA=0.

The Lie algebra of all such matrices is the classical symplectic Lie algebra
sp(n,R).

In order to state a condition under which system (1.1) is Hamiltonian, we
introduce the following notation. Let 1, denote the multi-index which has zeros

everywhere except for a one in the k** place and if i, j are multi-indices we define
i+j = (i + 31,0 in + Jn).

Let {Si}IiIZD be a set of symmetric matrices indexed by the multi-indices i =
(11,-++,1n) and let the ij'* component of any S; be denoted by s,i-j. We shall
say that the set {S;} satisfies condition P if
P: Y oitle-li o 37 i1,
j J

for any multi-index i and for any i,k € {1,---,n}.

Lemma 4 The system (1.1) is Hamiltonian if each A; is a Hamiltonian matrix
and the set {S;} = {—J A;} satisfies condition P.

Proof The system (1.1) is Hamiltonian if and only if it can be written in the

form
¢ = JVh(z)
for some function h and so it suffices to show that S(z)z = —JA(z)z can be

13



written in the form Vh(z). By Poincare’s lemma, this holds if and only if

0 0
a—rk ; 5,'3' (I‘)..‘L'J' = 3_.’5‘, z}: Skj (I).’L‘j

for each k,i. Thus, we must have

Ej: (5%‘3:':' (x)) z;+ %:Sij(l') =y (——-% ) z; + ;\;skj(a:)é

j

Now,

sij(z) = ) siyz!
i

and since A; is Hamiltonian, s; = —J(s};) is symmetric. Hence we must have

%: (%w(ﬂ) z; = z}: (é%skj(r)) z;, (3.2)

le.
20 (5=:$1'1") =33 (8}”1““1*) z;,
1 i J
or
Zzsiwhxi’q — ZZsi”fl'xi'zj (= i—13)
o T
. i i
Z 1+1k ZZ 1+1 -1; 1 (§:i'+1j)
F o
The result ;ow follows. 5

Now suppose that the matrices A; in (1.2) are Hamiltonian and satisfy con-

dition P. Then, since A; € sp(n,R) C sp(n, C) for each i we can write (1.1) in

14



the form

t=H(z)e+ Y va(z)Eaz, (3.3)
o€l

where H is in a Cartan subalgebra of sp(n, C) and T is the system of roots. We

may assume (changing variables if necessary) that H(z) is of the form

H(z) =

-2
L n(z) J
and the structure formulae for E, are given by
Eix 0 Eri 0
Eyi-a = y Byl , 1<k,
0 —Fy 0 -—Eu
-
0 Eiu+Ey 0 0
Exierao = p By = i<k,
0 0 Efk + Eki 0
0 FEy 0 0
Eq, = y Eoay, =
0 0 E; 0

where £X; + A\p (7 < k) and £2); are the roots of sp(n, C), and
Eir = (bix).

Proposition 3.2 If {S;} satisfies condition P then the system (1.2) can be

15



written in the form
z = JVh(z) (3.4)
where
I
h(z) = / S5(z)zdz
0

and the integral is over any path in R?" from 0 to .

Proof This follows from Poincare’s lemma and the fact that

JVh=Az)z
so that

Vh=—-JA(z)z = S(z)z

and

h(z) = Vhi
which gives

1 (1)

h(z(t)) = /0 hadt = /o Vh(r)dr

for any path ¢t — z(¢). O

Corollary We may write (3.3) in the form (3.4) where

h(z) = _/Or J (H(E)'f-i— >, vo(?)Ea':E) dz. (3.5)

agel

16



Our first result follows directly from [4] :
Theorem 3.1 If H(z) — H = diag(A1, -+, A, = A1, -, =An), Va(z) —

Vo, and
IVAi(2)l| = o(z) , [[Vva(z)]| = o(x)

as ||z]| — oc, then the system (3.1) has periodic orbits of all periods, provided
the linear system

¢=Hz+ ): vo Euz
o€l

is nondegenerate. O

To get more precise results on the number of orbits of period 1, we use the
approach of [5] . This is based on Lyapunov-Schmidt reduction to obtain a
finite-dimensional approximation to the associated variational problem. Since
the details are well known, we shall merely outline the idea in this case. To find
periodic solutions of (3.3) i.e. functions t — z(#) € R2" such that z(0) = z(1)

we introduce the functional

1
I(I):fn {é(i,_m-h(r(t))}dt

on the space of such functions. (A(z) can also be time dependent—this is a

simple extension of the following.) Then,
VI(z) = —Jz — Vh(z)
and so a critical point of I is a periodic solution of (3.3). Let D be the operator

17



on H!([0,1], R®") defined by

D(D) = {u€ H'([0,1],R*): u(0)=u(l)}

and
Du=-Ju , ueD(D).
Also define FF: H — H by
F(u)(t)=Vh(u(t)) , veH,
where H = L%([0,1], R*"). Of course,

I(u) = %(Au,u) — & (u),

where

The operator D is self-adjoint and has compact resolvent. Hence the spectrum

of D is a pure point spectrum and o(D) = 2rZ. Each eigenvalue has multiplicity

2n and eigenspace spanned by the loops

t — e*ep = (cos M)ey + (sin M)Jey,

1 <k < 2n and {e;} is the standard basis of R*™. If the spectral resolution of

D is {E, : A € R} then we define the projection
B
) = / dEy , B ¢27Z.
=B

18



IfZ=P(H)andY = (I - P)(H),then H=Z &Y and dimZ < oc. Thus, the

equation
Du—F(u)=0, ueD(D) (3.6)
is equivalent to the pair
DPu—PF(u)=0 (3.7)
DPty—PLF(u)=0 (3.8)

where PL =1 —-P. Putu=z:4+ye ZagY.

In order to solve (3.7) for y we note that it is equivalent to the equation
y= D5 P F(z +y) (3.9)
where Do = D|Y. If we assume that in equation (3.3) we have
Aiz)[ <e o [IVA(a)]| = o(z)
(3.10)
lva(z)| <c , |[Vua(2)]| = ofz)

as |[z|| — o, for some constant ¢, then it follows that || (z)|| < 4 for some

constant v and all z. Thus, if 7> 24, we have
|F(u) = F()l] £ 7llu— v

so that the right hand side of (3.8) is a contraction operator. Hence we can

solve (3.8) for y = v(z) € Y. Clearly v is Lipschitz and if
u(z) =z + v(2)

19



we have that (3.8) is equivalent to the equation
Du(z) = F(u(z)) = 0.
If g(z) = f(u(z)), then
Vg(z) = Dz = PF(u(z)).
The idea is then to consider the gradient system
i =Vg(z). (3.11)

Note that, as in [5), if : € Z we define z = =/ + £, where =/ = [:] is the
mean value of z, so that :* € Ner(D) and € € Ker(D)* N Z. This, with
the assumed periodicity of h allows the conclusion that (2/,£) € 72" x R®™
where 72" = R?" /Z*" (the 2n dimensional torus). Since we do not assume the
periodicity of h (in z) this conclusion does not follow here, and it is necessary
to have a nontrivial topology on the space of (z',€) to be able to apply index
theory. To get around this we assume that the dynamics have an unstable focus
at the origin. so that A(0) has positive real eigenvalues. Of course, such a system
is not Hamiltonian at 0. We shall assume that the system is Hamiltonian for
llz|| > 6 > 0, where (3.2) is assumed to hold and that this set is invariant. (We
clearly do not have analyticity here, so we consider the system in the form (1.1)
where A(z) is differentiable.)

Theorem 3.2  Under the above assumptions, if all solutions of (3.1) in {z :

||z|| > &} have mean [z(-)] bounded away from zero, then it has at least 2n

20



periodic solutions of period 1.
Proof Since z approximates the solution of (3.1) for large 3, we can assume

that 2’ = [2] > ¢’ for some &' > 0. Then, as in [5], we see that the system (3.10)

splits as
dz'
75 = ~QoF(u(z)
d§ g
d_S - Dé""QF(U(e)),

where Qo is the orthogonal projection onto Ker D and @Q projects onto Z &
Ker D. This system is defined on the set R®*\{z : ||z]| < §'} x R* for some
M > 0. Since the first space is homotopic to the (2n — 1)- sphere it has cup

long=2n — 1 (see [7]). The result now follows as in [5]. o

4 Stability of Nonlinear Hamiltonian Systems

In this section we shall generalize a result of [8] to nonlinear systems. The main

results in [8] concern the linear Hamiltonian system
t=Ar, z € R™, A€ sp(n,R). (4.1)
The Hamiltonian of this system is
1
Viz)= —E(JAI,I>.

This will be a Lyapunov function for (4.1) if V is a definite form, since then

L >00!‘L <0and
V 1 (" l ) 2 ('] 131 :E.)
2 : :

21



~5(7A- 4z,2) - 5(74z, Az)

i

—%(JAoAz,m) - —%(ATJAx,I‘)

= 0

since ATJ 4+ JA = 0. It is also shown that the system (4.1) is strongly stable
under small perturbations in A if and only if some linear combination of the n
quadratic first integrals (—=1)¥3(J4%*~1z,2) , k = 1,---,n s definite.

We shall consider the system
t=A(z)z , z € R™ | A(z) € sp(n,R)
and we shall assume that A(z) has a representation in the form

A(x)=Hz+ Y va(z)Eax (4.2)
a€el

where H is indepedent of . Then we have the following partial generalization
of the result in [8].
Theorem 4.1 If some linear combination of the quadratic first integrals I; =

(=D*¥3(JH**~1z,2) , k=1,--- nof the linear system
= Hz,
is definite (say Y axlx > 0) and
n
3 arva(a) (1)} (JH* Ea+ ETJH*"1) < 0

a€l k=1

for each z, then the system (4.2) is stable.

22



Proof LetV =37, ax(-1)¥3(JH?* 1z, z)> 0. Then

n

V=% ak(—l)*%(JH”“Ii, SEDY ak(—l)k—;-(JH%'lr,i).

k=1 k=1
Now,
(JH*"'Hg,z) = —(HTJH®" 1z 1)
= —(JH?"!z Hz).
Hence,

n

n
V= Zak(—l)“%(JHgk‘lEam, z)+ Zak(—l)k%(JH”"lr,Eor).

k=1 k=1
0O
Corollary 4.2 If —}(JHz,z) is positive definite and
> va(2)JHE, > 0
o€l
then the system (4.2) is stable. O

5 Conclusions

In this paper we have studied pseudo-linear systems from the viewpoint of pe-
riodic orbits and stability. The methods have been based on a decomposition
of the system in terms of the Lie algebra generated by the coefficient matrix
functions of the system. If this Lie algebra is semisimple then significant results
can be obtained, particularly in the case of Hamiltonian systems where the Lie

algebra has the classical symplectic structure. By diagonalizing the elements in

23



a Cartan subalgebra and regarding the nonzero root matrices as perturbations

we have obtained a number of generealizations of some well-known results.
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