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Abstract

In this paper we shall make a systematic use of the fractional integration opera-
tor to derive input-output maps in compact form for linear and bilinear systems
and general autonomous nonlinear systems. This will enable us to obtain simple
rational approximations to input-output maps.

Keywords:Nonlinear Systems, Fractional Integration, Rational Input-Output

Maps.




1 Introduction

A great deal of effort has been directed towards obtaining input-output maps
for several classes of systems. These response maps have been given, except for
linear systems, as functional expansions (see [1], [2],[3]). In this paper we shall
make use of the fractional integration operator ([10]) to derive input-output
maps in compact forms for linear and bilinear time-varying systems and general
autonomous nonlinear systems. This will lead to simple rational approximations
to input-output maps which have been obtained in other more complex ways in
[4].

In the case of nonlinear systems we shall use the global bilinearization of
such systems introduced in [1],[2],[3], where the state space becomes a space of
tensors. One could also use the approach of Brockett [7] or Sira-Ramirez [8],[9],
which are again based on Carleman linearization, or the Lie series approach
introduced in [4],[5].

In this paper we shall denote by LY?[0,T], 0 < T < oo the space of

absolutely integrable functions 2 : [0, 7] — R, with norm

T
Iz, = /0 l2()ldr

where || - || is any norm on R". For A4 :[0,T] — R"*" we define

lA()lleo = sup [IA(L)]].
T

tefo

Let I# denote the Riemann-Liouville integration operator of order y, where y



is a complex number with Re y > 0 from L"[0, T] into itself, defined by

1 } )
(I4g)(1) = Tmfa (t = 7)1 g(r)ds

for almost all ¢ € [0, 7], T being the gamma function.

If Re p< 0 we define
T¥ =y~
and we have, forall y,r € C
P e P e
where we define
Iﬂ = I-III+#

if Re = 0. Note that I’ =g.

2 Linear Time-Varying Systems

Consider the time-varying linear system
‘é—f = A(t)x+ B(t)u =z(0)=0

(¥) (2.1)
y=C(l)z 1€[0,T]

where u,z,y are respectively the input,state and output of the system with
dimensions m x 1,n x 1,7 x 1. The input-output map of this system is well-

known to be

y(t) = /Ohg(t,r)u(r)dr

(Hzu)(t) (2.2)



where

hs(t,7) = C(t)gs(t)gs' (7)B(7) (2.8)
and ¢z is the fundamental matrix satisfying

r = At)gs

P

(2.4)
¢2(0) = Inxn, (the identity)

The objective is to derive an equivalent characterization of Hyx. For this we

shall introduce linear operators A, B, C,1 between appropriate spaces (e.g. A :

LY7[0,T] — LY7[0,T), defined by

(Az)(1) = At)z(t)

(Bu)(t) = B(t)u(t) (2.5)

(Cx)(t) = C()2(1)
where 1 denotes the identity operator. (Using the same notation for the matrix
function A(t) and the operator A, etc. should not cause any confusion.) The
following lemma is trivial:

Lemma 2.1 If I denotes the fractional integral operator of order 1 then

11l =1.

We then have

Theorem 2.2 The input-output map Hy is given by

Hy=C(1-1A)'IB



for [|A()|lec < 1 and maps L*™[0, T into L17[0, T).
Proof This follows directly from the Neumann series. O

Example 2.3 In the linear time-invariant case, we have

{Z C(IA)"IBuJ (1)

k>0

(Hsu)(t)

>~ A (I Bu))

k>0

S cat f €= u(r)dr

k>0

— / Ce**=") Bu(r)dr
0

In general we also have the error estimate:

Proposition 2.4

L c & || Bt oo
s -3 cuaris) <! T T A
k=0 ‘ -
assuming [|A()||s < 1. ]

3 Bilinear Time-Varying Systems

Consider now the bilinear time-varying system

=A@)e+ 3, wiDi(t)x
(=) ¢ ° 1 (3.1)
y=C(t)z, z(0) = zq

for t € [0,T]. Then we have

Theorem 3.1 The input-output map Hy: associated with ¥/ is given by

-1

Hyu = c{1 - Z Iu,-Dl} 2o
i=1



where ||A(-)|lec < 1, and maps the ball of radius p in L*™[0,T] into L17[0,T]

for

1= || AC) s
T O T i 4| L
Liz1 1Di(los
Proof Indeed,
i
Hy =C(1-14)7"1 {1—(1 TA)~ ZIuD} Tg. (3.2)
However,
I - 14 € —
1= [lAC)|=s
since ||JA()]|ee < 1, and
(1 =147 " IuD| < |(1-14)" ZHIUDH
i=1
el ZMD (s - ]
< 1
since
W P o
e 7
Therefore,
IC()lles - llzoll
H U <
el < IO - p o, 0T
<  ©o0.



4 Nonlinear Systems

In this section we shall consider an analytic system of the form

(4.1)
y=g(z) te[0,T)

where 20 € R®, u(f) e Rand f : R* x R — R" and g : R®™ — R are
analytic functions. (We are considering the single-input single-output case for
simplicity; the general case follows in a similar way.) It is well known that this
nonlinear system can be transformed into a bilinear system in an appropriate
space of tensors if one uses the technique of Carelman linearization [11]. Hence,

if i denotes the multi-index (i1,---,i,) and ¢;, ...;. (z) 2 2} then

d A 4 ]
(=" @ =Ad+ Lyl dse

L

y=Go . ¢(0)=¢°
where ¢ is the tensor with components ¢;,,....;,(z) and the 4;’s with j > 0 are
tensor operators given in detail in [3] . The A;’s may be shown to be bounded
in an appropriate space ([5]) and so the next result follows just as in theorem 2:

Theorem 4.1 The input-output map Hg» of £ is given by
-1
Henu=G(1=1A0)7' {1 - (1=TA40)' Y w4,y ¢°

724

for ||Ao|lee < 1 and

D lull - 14l < 1.
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5 Rational Representations

In this section we shall show that the formulae developed above can be used to
derive rational approximations to input-output maps in a simple way. We shall
consider the case of time-varying bilinear systems as in section 3, but the ideas

generalize easily to other systems. Hence, consider the system (I') in (3.1), 1.

& = A(t)z + 0, wiDi(t)z
=) ¢~ = (5.1)
y=Ct)z , (0) ==y
where A(-), D;(-) and C(-) are analytic matrix-valued functions. In order to do

this we consider the algebra A of operators on C*"[0,T] C L*"[0, T] generated

by I and the multiplication operators M; : C*™"[0,T] — C“'"[0, T)] given by

M;(g)=fg , f,9€C“"[0,T]

where C“7[0,T] € L0, T) is the linear space of analytic functions on [0, 7.
We shall find a matrix representation for A in the following way. First consider
the case n = 1 for simplicity.

Lemma 5.1 The integration operator I has the matrix representation given

by

10
A
~ 1 =
I 010 I
00 %o




with respect to the Hamel basis {t'};5¢ of C*'1[0, T].

Proof Let f= Zigofffi € C*1[0,T). Then,

ti-!—l
If=% fi—
2T
and Z(fo, fi,-)T = (0, fo, f1/2, f2/3,--)7. O

Lemma 5.2 The multiplication operator M; has matrix representation

fo 0 0
fi o O A
B 2

Jo i fo

Proof If f= Zigofifi o = ijogjtj, then
fa=d_ > figit*
k>0i4j=k

and this is equal, term by term, to M;(go,91,---)7. m]

In a similar way, for the general case, we have a matrix representation for A
generated by the infinite matrices T ® I, , , My where I,, ,, is the n x n unit
matrix and f : [0, T] — R"*". Now let Z(k) and M/ (k) denote the truncation

of T and M, respectively, to k x k matrices where
Tlk)= FIF; ; Mplk) =FpM;F

and Pi(fo, f1, - )T = (fo, f1,-+, fi=1)T . fi € R***. We can therefore asso-

ciate the following approximate matrices with the corresponding operators in



(3.2):

Uj

c

— 1 i ! ] t(
. ( ) E'>U J

{ i * ] 1

( ) Zt)o ]

~

[ﬂ,ﬂ.
In,n
1(k)= P
I(k)
Ao
Al Ag
A(k) = P, o A
U;p
Ui Up
= Uiz Uiy
Dy
Di1 Dy
SR Di2 Dy

1)
B = Gy =+ 6

E u ence we have prove
1 ave p
I H h d
05
i >0
iz

10

Py

P

Py

Py



Theorem 5.3 The input-output map (3.2) of the bilinear system (£') in (3.1)

can be approximated by the rational function of u;; , 0< j<k—1:
_ k-1k-1 ‘
Hzu)(t)= | YD CiSijt? | o
1=0 j=0
where S;; is the ij** block submatrix (of order n x n) of the (k x n) x (k x n)
matrix

(1(k) = Z(k)A(R) (k) = 1(k) = T()VAGR)) ™ S T(k)Us (k)i (k)2

f=1

6 Conclusions

In this paper we have derived compact forms for the input-output maps of very
general classes of bilinear and nonlinear dynamical systems. These are based
on the fractional integration operator and Carleman linearization in the general
nonlinear case. We have seen that these representations can be used to derive
rational approximations to the input-output maps of systems in a way which is

not possible from the standard Volterra series.
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