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Abstract

Based on a perturbation theorem, a method of designing an observer for
nonlinear systems of the form ¢ = A(z)z + B(z)u is presented. It has been
shown that if the nonlinear perturbations satisfy some boundness condition,
the unobservable states of the nonlinear system can be estimated using a
linear observer designed for the linear part of the system. The method is

demonstrated on a practical model of the ball and beam system.

Keywords:Observers, Nonlinear Systems, ball and beam system, Pertur-

bation method.




1 Introduction

Although the observer design of a general nonlinear system is a problem of
central importance in control theory which has received more and more atten-
tion since 1970’s, most of the developed observer design methods are difficult
to employ. This is because nonlinear systems are extremely hard to analyse.
Therefore, in the last few years attention has been focused on designing ob-
servers for some classes of nonlinear systems with practical applications (see
(5] [3] and [4))

Both [5] and [3] have considered in their study of observer design the

following widely applicable class of nonlinear systems

#(t) = A(z)z+ B(z)u (1)

y = CO(z)z

which naturally describe many nonlinear systems, e.g. vehicle dynamics ([16],
[10], [12]), ship dynamics ([17], [15)), and aircraft dynamics([13], [11]). More-
over, a nonlinear damped oscillator ([14]), any system described by Van der
Pol’s equation, and many pendulum problems show such behaviour. Finally,
many nonlinear systems of more general classes may be put into this form by
employing a Taylor series expansion (including as many terms as is feasible).
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In [5] an observer design method is presented which requires transforming
the nonlinear system in the form of (1) into what the authors call a nonlinear
observer form (by analogy to the linear observer form) given by:

z° = A°(z°)z° + B°(z°)u (2)

y(t) = C°z°

where the superscript ‘o’denotes observer form. and
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Then they design an observer as in the linear case. The major complexity
with their method is the nonlinear transformation from system (1) to sys-
tem (2) essentially required in the design. ‘This involves solving a system of
partial-differential equations and can get extremely involved, especially for
higher-order systems (n > 2) ’([5]). In [3] a generalization of linear observer
design methods to nonlinear systems is presented. Using this method of
design, it has been shown that the difference between observer states 2 (the
estimated system states) and actual (unobservable) system states z converges
to a ‘ball "of certain diameter provided that some boundness conditions are
met. The work of [3] on the other hand does not require the nonlinear trans-
formations of system (1) to system (2) needed by the method of [5], therefore
1t removes the limitations of applying the method due to this transformation.
Also it reduces the computations associated with [5].

In this paper the nonlinear system is described as a linear part plus a
(seperated) nonlinear perturbation. Then provided that this nonlinear per-
turbation satisfies some boundness condition, the unobservable states of the

nonlinear system are estimated using a linear observer designed for the linear



part of the system.

2 Perturbation theorem

In this section the stability of a nonlinear system, where the nonlinearities
are represented as perturbation to the linear (stable) part of the system, will
be investigated. This is included in the following:

Theorem 1. For the nonlinear system

let
A(z) = Ao+ A1(z) @)

where Ao is the constant stable part of A(z) and A;(z) is the nonlinear

perturbations of Ay. Then if

A (z)]| < = (5)

where w and M are positive numbers determined by the matrix A, through

the following equation

”ert S Me—wt




system (3) is asymptotically stable.

Proof Consider the unperturbed linear system of (3) i.e.
& = Az (6)

From the linear stability theory, the Liapunov matrix equation for the above

system is:
ATP 4+ PAy= -1 (7)

and as Ap is a stability matrix, the above Liapunov matrix equation has the

solution [18]
P = e Ag"t Aotdt
-/D € € (8)

taking norms of the previous equation gives
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Now, for system (3) if we define the liapunov function
V =zTPz (11)

where P (as in equations 7 and 8) is a constant positive definite matrix
defined with respect to the unperturbed system (6). Then the time derivative

of V with respect to (3) is

V = TPz +<TP:

2T (A7 + AT(z))Pz + 2T P(Ao + Ai(z))z

—lz|* + 2 HmTAg"(x)Pm”

IA

= llzll* + 2l2]I* || 41(=)]l | P

M2
< =2l + = flall* | Axa)]

S L PR (12)

so that for stability of nonlinear system (3) we need

[Ax(2)]] < = (13)



3 Observer Design Method

Based on the previous perturbation theorem, an observer will be designed for
the unperturbed linear system of (3). Then, and using the estimated states
from this observer, stability of the closed loop system Will be tested against
the nonlinear perturbation.

Consider now designing an observer for system (3) i.e. for
z(t) = (Ao + Ai(2))z (14)
Let
#(t)= Fz+ Gz (15)

where F'is a stability matrix and F' and G are constant matricies, be an

observer for the unperturbed free system of (14) i.e. for

T = Agm
Lemma 1. Suppose there is a matrix T' (constant) which satisfies the
equation
FT-TA+G=0 (16)



then
z = Tz + eF((2(0) — 2(0)) — ‘/: eF*T Ay(z)z(s)ds)
Proof From (14) and (15) we have

%(z —Tz) = Fz+4 Gz —TAoz—TAi(z)z

= F(z—Tz)—-TA(z)z
As the matrix F' is stability matrix, the solution of (18) is
t
(z — Tz) = eF*((2(0) — 2(0))) — / eF=IT A, (z)z(s)ds
0

and equation (17) follows directly.

Equation (19) is in the form
t
(2 — Tz) = e4((2(0) - z(0))) + / F=T1(s)ds
0
where

(s) = =T As(z)z(s)

(17)

(21)

In equation (20), the eigenvalues of the matrix F' are negative (chosen)

and provided that (21) is bounded i.e. provided that

ITI(s)]| < e
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where € > 0, then we have that
z— Tz, t— o0 (23)

[Vidyasagar, 1978).

Instead of (14), if we consider the controlled nonlinear system

z(t) = (Ao+ Ai(z))z + (Bo+ Bi(z))u (24)

y(t) = Hoz (25)

then, as for the free system, the observer of the linear part of the above

system 1is
2=Fz+4 Gz + TByu (26)
where T satisfies (16), and equation (18) is now
d
:IE(Z —Tz) = F(z—=Tz)— T(Ai(z) + Bi(z)u) (27)
It is then straightforward to see that provided (20) is satisfied with
II(s) = ~T(4s(e)z + Bu(z)u) (28)

the convergence of (23) still holds.
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Suppose that the matrix

Hy
(29)
i
1s invertible. Then
-1
H, H,
&= g (30)
T T
or
=
Hy y(t)
~z, t— 00 (31)
T z(t)

Equation (31) means that in the limit we can get information about

system states z from the observation y and the observer output 2.

Let

Hy,
= [Mla M2] (32)

then

u(t) = KM1y+KM22

KM1H03+KM22 (33)
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If we define
(=z—-Tx (34)

as the error between the observation z and T'z, then from (24) and using

(33), we have

T = AQ$ =+ BQU =+ Al(ﬂ‘:):ﬂ + Bl(JZ)'U.
= (A0+BUK)$+BQKM2C

+ (Ai(z)+ Bi(z)K)z + Bi(z)K MaC (35)

Also from equation (34),

{ = :-T(z)z

F(—T((Ai(z) + Bi(z)K)z + Bi(z) K My( (36)

and the composite system is

T - .Ao - BDK BDKMg T
¢ 0 F ¢
(Ai(z) + Bi(z)K) Bi(z)K M, T
+ (37)
i —T(Ai(z) + Bi(z)K) —TBi(z)KM, ¢

12



If we set

T
v=a ¢ (39)
then the above system (37) can be written as
¥ =TV + I'y(z)¥ (39)

where T'o and T'y(z) are as in (37). For system (39), the eigenvalues of the
matrix I'g are those of (Ao + BoK') and F which can be chosen arbitrarily.
Then for stability of (39) the matrix I'y(z) should satisfy the following: (see

theorem 1 in section 2)

Wo

N2 < — 40
IT@)l < 33 (40)

where the positive numbers wy and M, are defined in
“er"tl < Mpe™** (41)

Both (40) and (41) means that the nonlinearities allowed in (39) will de-
pend on the stability of 'y (note that the eigenvalues of I'y are to be chosen

arbitrarily).
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4 Example

As an application of the result which has been proved in this paper, we shall
consider the example of the Ball and Beam system shown in Figure 1. (This
system has been also considered in [3]).

In this model the beam is symmetric and is made to rotate in a vertical
plane by applying a torque at the point of rotation (the centre). The ball
is restricted to frictionless sliding along the beam (as a bead along a wire).
This allows for complete rotations and arbitrary angular accelerations of the
beam without the ball losing contact with the beam. We shall be interested
in controlling the position of the ball along the beam i.e. we would like the
ball to track an arbitrary trajectory.

Let the moment of inertia of the beam be J, the mass of the ball be
M, and the acceleration due to gravity be G. If we choose the angle ¢ of
the beam and the position r of the ball as a generalised coordinates for this

system, then the Lagrangian equations of the motion are given by
0 = 7+ Gsing — rqlﬁz

i (Mr® + J)¢ + 2Mrri¢ + MGreosg (42)

"

where 2o is the torque applied to the beam and there is no force applied to
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the ball. Using the invertible transformation

to = 2Mrid + MGreosd + (Mr* + J)u

(43)

to define a new input u the system can be written in state space form as

T
Ty
T3

T4

I,

T2
z,22 — Gsinzs
T4

0

=

0

0

u (44)

where z = (z1,22,23,24)T =: (1,7, ¢, q.‘:)T is the state and y = h(z) :=r is

the output of the system (i.e. the variable that we want to control). System

(44) is in the form

3}
Ty
T3

T4

1 0 0 -
0 f(zs) O
0 0 1
0 0 0
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I

T2
.

I3
T4

where
o B |

and its clear that for this system only 2, is available for measurement at the
output. In order to apply the results of this paper, we write system (44) in

the form of equation (24), i.e. The above system can be written as

z(t) = Aoz + Bou+ Ay(z)z (46)

y(t) = Hpz

where the linear parts are

01 0 0
00 —9.8 0

Ao = (47)
00 0 1
00 0 0

16



0
By = { Hy = [1000] (48)

and the nonlinearities are

0 0 0 0
2
z; 0 9(33) 0
Ay(z) = (49)
0 0 0 0
0 0 0 0
with
2 z!
9(zs) = 9.8(3; + 5 — +--)

For the linear part of system (46), the pair (Ao, B,) is stabilizable and so
using a standard optimal control technique with Q = J and R = 1 (see [1])

we can get the control

u = —R'BTpz (50)
= —kz
where
k=[-1 —1.9383 13.5088 5.2932] (51)

i i



The above control will place the eigenvalues of the closed loop system (i.e.

[AQ — Bok]) at

—1.0849 + 71.8508
—1.0849 — 71.8508
—2.1182

—1.0053

And as we have only z;, at the output, a reduced order observer will be

designed for the rest of the states of system (46). Following [9], we write:

i An(z) Ap(z) Yy By(z)
w A21($) AQQ(E) w Bz(.’ﬂ)
with
An = [O]
Au = [1 0 0]
0
Ay = 0
5 0 o
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—0 -9.8 0-
Az = [0 0 1

_O 0 0_
B1=[U]

0
B, = 0

1-

Let the observer of the above system be

z = Fz4+Gz+TBu (53)
where
F - Azz - LA12 (54)
G = ((As2 — LAy2)L + (Az — LAy, 0) (85)
ik, L) (56)

We then follow standard procedures in chosing L so that F is a stability

matrix with suitable eigenvalues. Let these eigenvalues be equal to )\; =

19



Az = A3 = =2, then we have

Using this value for L in equations (54), (55) and (56) we get

and

-6

1.2245

0.8163

—24

6.5307

4.8978

1.2245

0.8163

6

—1.2245

—0.8163

-98 0

20
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With the matrix T given in (60), we can write the matrix

1 0 00
H(z) -6 100
= (61)
T(z) 1.2245 0 1 0
0.8163 0 0 1
and then find its inverse
[
1 0 00
-1
H(z) 6 1 00
= (62)
T(z) —-1.2245 0 1 0
—-0.8163 0 0 1
which enables us in turn to write
1
6
M, = (63)
—1.2245
—0.8163

21



and

S
Il

(64)

0 01

For this system, asw e have stated at the beginning of this example, we
would like the ball to track a specifictt ajectory. We, therefore, recall that

for a tracking problem of this kind the control is given by (see [1])
u=kMHz+ kM,z — R"'BTs, (65)

where k, M, and M; are as defined in equations (50), (63) and (64), s; is

given by

s = [(Ao — Bok)"] ' Qr (66)

and r 1s the set point.

Using the calculations obtained so far we can now write down the com-
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posite original (nonlinear) plant-observer system as follows:

Z ] 0 1 0 0 o0 o ol z 1 [o]
Ty 22 0 f(zs) 0 0 0 0 T2 0
3 0 0 0 1 0 0 0] zs 0
Ty | = 0 0 0 0 0 0 0|z |+]|1|€7)
Z —24 0 0 0 -6 -980]]| = 0
22 65307 0 0 0 12245 0 1| z 0
| % | 48978 0 0 0 08163 0 0|z | |1

The above system has been simulated and the results are shown in Fig.2.
The output of the observer i.e. the estimated unobservable states of the
original system are shown in Fig.2b. Using these estimated states in the
feedback of equation (65), the system provide good tracking for the trajectory

5 % cos(pt * t/30) as its clear in Fig.2a.

5 Conclusion.

In this paper we have obtained a simple method for designing observers for
a wide class of nonlinear systems based on a perturbation theorem. The

method has been shown to give good results in the case of a ball and beam.
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