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The groups of automorphisms of the Lie algebras of
triangular polynomial derivations

V. V. Bavula

Abstract

The group of automorphisms G, of the Lie algebra u,, of triangular polynomial derivations
of the polynomial algebra P, = K|[z1,...,x,] is found (n > 2), it is isomorphic to an iterated
semi-direct product

T" x (UAutx (Pn)n x (F;, x E,))

where T" is an algebraic n-dimensional torus, UAutx (Py)» is an explicit factor group of the
group UAutg (P,) of triangular polynomial automorphisms, F;, and E, are explicit groups
that are isomorphic respectively to the groups I and J"~2 where I := (1 + t*K[[t]],-) ~ K"
and J := (tK[[t]],+) ~ K. Tt is shown that the adjoint group of automorphisms of the Lie
algebra u, is equal to the group UAutx (Pn)n.

Key Words: Group of automorphisms, Lie algebra, triangular polynomial derivations, au-
tomorphism, locally nilpotent derivation.
Mathematics subject classification 2010: 17B40, 17B66, 17B65, 17B30.
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1 Introduction

Throughout, module means a left module; N := {0,1,...} is the set of natural numbers; K is
a field of characteristic zero and K* is its group of units; P, := Klx1,...,2,] = @,y K2
is a polynomial algebra over K where z® := z{*---a0"; 01 = 8%1,...,3,1 = % are the

partial derivatives (K-linear derivations) of P,; Autg(P,) is the group of automorphisms of
the polynomial algebra P,; Derg (P,) = @), P,0; is the Lie algebra of K-derivations of P,;
A, = K{xq,...,2,,01,...,0,) = ®a,BeN" Kz9P% is the n’th Weyl algebra; for each natural
number n > 2,

Uy, =Ko + POy + -+ P,_10,

is the Lie algebra of triangular polynomial derivations (it is a Lie subalgebra of the Lie algebra
Derk(P,)) and G, := Autg(u,) is its group of automorphisms; d; := ad(9;),...,d, = ad(d,)
are the inner derivations of the Lie algebra u, determined by the elements 9y, ...,9, (where
ad(a)(b) := [a, b]).

The group of automorphisms G,, of the Lie algebra u,,. The aim of the paper is to find
the group G,, (Theorem 5.3) and its explicit generators.

e (Theorem 5.3) Let I := (1 + t>K|[[t]],-) and J := (tK[[t]],+). Then for alln > 2,



1. G, =T" x (UAuwtg (Pp)n % (F), x Eyp)).
2. Gy = T" x (UAut g (Pp)n x (I x J"72).

The group T™ is an algebraic n-dimensional torus, UAut g (Py,), := UAutk (P,)/sh,, is the factor
group of the group of triangular polynomial automorphisms

UAutg(P,) := {0 € Autg(P,) | o(x;) =2, +a;, a; € Py fori=1,...,n}
modulo its normal subgroup
shy, :={o € Autg(Pp)|o(x;) =24, i=1,...,n—1; o(zp) =xn + \, X € K},

F/ ~ T and E, ~ J" 2 are explicit subgroups of G,, (see below and Section 4). The group
G, is made up of two parts: the ‘obvious’ one, T" x UAutg (P, ), and the ‘non-obvious’ one —
F! x E, ~1 x J*=2 — which is a much more massive group than the group T" x UAutx (Py)n.

The key ideas and the strategy of finding the group G,. A group G = G1 X¢; G2 is an
ezact product of its two subgroups (G; and G5 if every element g of the group G is a unique product
9192 for some (unique) elements g1 € G and go € Ga. The strategy of finding the group G, is
a (rather long) ‘refining process’ which is done in Sections 3—-5. It consists of several steps. On
each step the group G,, is presented as an exact or semi-direct product of several of its subgroups.
Some of these subgroups are explicit groups and the other are defined in abstract terms (i.e., they
satisfy certain properties, elements of which satisfy certain equations). Every successive step is a
‘refinement’ of its predecessor in the sense that ‘abstract’ subgroups are presented as explicit sets
of automorphisms (i.e., the solutions are found to the defining equations of the subgroups).

In Section 3, the first step is done on the way of finding the group G,. In Section 3, several
important subgroups of the group G,, are introduced. These include the group TAutg (P,), and
its subgroup 7, of triangular polynomial automorphisms with all constant terms being equal to
Zero,

Tn:={0 € Autg (P,) | o(x1) = z1,0(x;) = x; + a; where a; € (x1,...,2i-1),i=2,...,n}

where (x1,...,2;_1) is the maximal ideal of the polynomial algebra P;_; generated by the elements
T1,...,T;—1; and the group

Sh,_1 :={0 € Autg(P,) |o(x1) = 214\, ..., 0(Tp_1) = Tn_1+An_1,0(x,) = 2, where \; € K}.
The most important subgroup of the group G, is

Fni={c€G,|a(d)=01,...,0(0,) =},
as Theorem 3.8 demonstrates.

e (Theorem 3.8)

1. Gy, = TAutg (P,)nFr = FnTAut i (P)y and TAuti (P,)n, N F, = Shy—q.
2. G =T" X (Th, Xew Fn) =T" X (Fpp Xex Tn)-

As the groups T™ and 7T,, are explicit groups, the problem of finding the group G,, boils down to
the problem of finding the group F,,. This is done in Section 4.

e (Theorem 4.12) F, = Sh,,_o xF, X E,,,



where

Sh,—» = {oe€Autg(P,)|o(z1) =214+ N,...,0(@n—2) = Tp_2+ Ap_2a,
0(xp-1) = Tp_1,0(x,) = ©,, where \; € K};
pi@- 1fz:1,,n—1,

F, = {f€14+0p1K[[On-]]| f(pi0;) = {f(p V0, ifi=n

where p; € P,_1,i=1,...,n};

{e} ifn=2,
]E’ﬂ = n—1 .
Hj:2 E,; ifn>3,

0;+e(pj)0, ifi=j
E,: = e d: 1 KI[D;_ " (pi0;) = D;o; §\j )
J {ej -1 K[[0j-1]] | e](p ) {piai i .

As a corollary, the group G, is presented as an exact product of its explicit subgroups.
e (Theorem 4.13) Let I = (1 + t>K|[[t]],-) and J = (tK|[[t]],+). Then for alln > 2,

1. Gp =T" X (Tp, Xex (Shp—2 X Fy x E,,)) = TAutg (Pr)n Xew (F), X Ey),
2. Gy~ TAutg (Pp)n Xez (I x J772).

In Section 5, the explicit form of the groups T", UAut g (Py,)n, F, and E,, allows us to establish
commutation relations between elements of these groups (Lemma 5.1 and Lemma 5.2). From which
we deduce that the group UAut i (P,),, is a normal subgroup of the group G,,. In combination with
Theorem 4.13.(1), this fact yields the main result of the paper G,, = T"x (UAut g (Py,), % (F, xE,))
(Theorem 5.3.(1)), where F/, = 1+ 92_, K[[0,,—1]] C Fy..

At the end of Section 5, characterizations of the groups F,, , F, and E,, are given in invariant
terms (Proposition 5.6).

The canonical decomposition for an automorphism of the Lie algebra u,,.

By Theorem 4.13.(1), every automorphism o € G, = T™ X (T, Xex (Shp—o X F, x E,,)) is the
unique product

o =trsfe where t € T", 7 €7T,, s€ Sh, o, fE€F,, ¢ cE,.

This product is called the canonical decomposition of the automorphism o € G,,. In Section 6, for
every automorphism o € G, explicit formulas are found (Theorem 6.1) for the automorphisms ¢, 7,
s, f and ¢’ via the elements {o(s) | s € S,,} where the set S,, := {01, 2]02,...,2]_10;,..., 2} _,0, |
j € N} is a set of generators for the Lie algebra u,.

The adjoint group A(u,) of the Lie algebra u,. For a Lie algebra G, the adjoint group
A(G) is the subgroup of the group of automorphisms Aut g (G) of the Lie algebra G generated by the
automorphisms e° := > >0 ‘z—: where 0 runs through the set of locally nilpotent inner derivations of
the Lie algebra G. All the inner derivations of the Lie algebra u,, are locally nilpotent derivations
[2]. In Section 7, we prove that the adjoint group A(u,,) of the Lie algebra u,, is equal to the group
UAutg(P,), (Theorem 7.1).

2 The Lie algebra u,

In this section, for reader’s convenience various results and properties of the Lie algebras u,, are
collected that are used in the rest of the paper. The details/proofs can be found in [2]. Since
u, = @) D eni-r Kz®0;, the elements

[eY Q1 - i—1
Xoi=a%0; =272, 1'0;, i=1,....n; a=(ag,...,a,) e N, (1)



form the K-basis B,, for the Lie algebra u,,. The basis B, is called the canonical basis for u,,. For
all1<i<j<n,acN~!and e N1

0 ifi=j7,
BiXaJr,Bfei,j if 1 < j,

(Xais Xp,j] = { (2)

where e; := (1,0,...,0),...,e, := (0,...,0,1) is the canonical free Z-basis for the Z-module Z".
The Lie algebra u, = @, P;,_10; is the direct sum of abelian (infinite dimensional when i > 1)
Lie subalgebras P;_10; (i.e., [Pi—10;, Pi_10;] = 0) such that, for all i < j,

[Pi10i, Pj—10;] = Pj10;. (3)

The Lie subalgebra P;_10; has the structure of the left P,_;-module and p,_, (P;—19;) ~ P;_1. By
(3), the Lie algebra u,, admits the finite strictly descending chain of ideals

Up 1 i=Up DUp2 D - DUy D DUy p DUy ppq =0 (4)

where u,,; := 37, Pj_10; for i = 1,...,n. By (3), for all i < j,

Up i1 if 1 =7,
Up iy Un | C ’ 5
[Un,i, tn,j] {und_ if i< . (5)
For all i =1,...,n, there is the canonical isomorphism of Lie algebras
u; >~ un/un7i+1, Xoéyj — Xoéyj + Up,itl- (6)

In particular, u,_1 ~ u,/P,_10,. The polynomial algebra P, is an A,-module: for all elements
pE Py,

Ip
8£CZ' ’

Clearly, P, ~ A,/ > " | Ay0;, 1 — 1+ 3" | A,9;. Since u,, C A,,, the polynomial algebra P, is
also a u,-module.

Let V' be a vector space over K. A K-linear map ¢ : V — V is called a locally nilpotent map
if V = U;>1ker(8%) or, equivalently, for every v € V, §'(v) = 0 for all i > 1. When 4 is a locally
nilpotent map in V' we also say that § acts locally nilpotently on V. Every nilpotent linear map
0, that is 0™ = 0 for some n > 1, is a locally nilpotent map but not vice versa, in general. Let G
be a Lie algebra. Each element a € G determines the derivation of the Lie algebra G by the rule
ad(a) : G — G, b — [a,b], which is called the inner derivation associated with a. The set Inn(G) of
all the inner derivations of the Lie algebra G is a Lie subalgebra of the Lie algebra (Endk (G), [+, ])
where [f, g] := fg — gf. There is the short exact sequence of Lie algebras

Tixp=1x;p, Oixp= i=1,...,n.

020G =g Ei>Inn(g) — 0,

that is Inn(G) ~ G/Z(G) where Z(G) is the centre of the Lie algebra G and ad([a, b]) = [ad(a), ad(b)]
for all elements a,b € G. An element a € G is called a locally nilpotent element (respectively, a
nilpotent element) if so is the inner derivation ad(a) of the Lie algebra G. Let J be a non-empty
subset of G then Ceng(J) := {a € G|[a,b] =0 for all b € J} is called the centralizer of J in G. It
is a Lie subalgebra of the Lie algebra G.

Proposition 2.1 (Proposition 2.1, [2])
1. The Lie algebra u,, is a solvable but not nilpotent Lie algebra.

2. The finite chain of ideals (4) is the derived series for the Lie algebra uy, that is () =
Up i1 for all i > 0.



3. The upper central series for the Lie algebra w,, stabilizers at the first step, that is (un)(o) =u,
and (un)(i) =U,o foralli>1.

FEach element u € u, acts locally nilpotently on the u,-module P,.
All the inner derivations of the Lie algebra w, are locally nilpotent derivations.

The centre Z(uy,) of the Lie algebra uy, is KO,.

NS S

The Lie algebras u,, where n > 2 are pairwise non-isomorphic.

Proposition 2.1.(5) allows us to produces many automorphisms of the Lie algebra u,. For
every element a € u,, the inner derivation ad(a) is a locally nilpotent derivation, hence ¢24(®) :=

> iso adgf)l € G,. The adjoint group A(u,) := (2% |a € u,) coincides with the group
UAutg(P,), (Theorem 7.1) which is a tiny part of the group G,, (Theorem 5.3).

The uniserial dimension. Let (S, <) be a partially ordered set (a poset, for short), i.e., a
set S admits a relation < that satisfies three conditions: for all a,b,c € S,

(i) a < a;

(ii) e < b and b < a imply a = b;

(iii) @ < b and b < ¢ imply a < c.

A poset (5, <) is called an Artinian poset is every non-empty subset T' of S has a minimal
element, say t € T, that is t <’ for all ¢/ € T. A poset (S, <) is a well-ordered if for all elements
a,b € S either a < b or b < a. A bijection f: S — S between two posets (S, <) and (5, <) is
an isomorphism if a < b in S implies f(a) < f(b) in S’. Recall that the ordinal numbers are the
isomorphism classes of well-ordered Artinian sets. The ordinal number (the isomorphism class) of
a well-ordered Artinian set (S, <) is denoted by ord(S). The class of all ordinal numbers is denoted
by W. The class W is well-ordered by ‘inclusion’ < and Artinian. An associative addition ‘+’ and
an associative multiplication ‘-’ are defined in W that extend the addition and multiplication of
the natural numbers. Every non-zero natural number n is identified with ord(1 < 2 < --- < n).
Let w := ord(N, <). More details on the ordinal numbers the reader can find in the book [5].

Definition, [2]. Let (S, <) be a partially ordered set. The uniserial dimension u.dim(S) of S
is the supremum of ord(Z) where Z runs through all the Artinian well-ordered subsets of S.

For a Lie algebra G, let J5(G) and J(G) be the sets of all and all non-zero ideals of the Lie
algebra G, respectively. So, Jp(G) = J(G)U{0}. The sets Jp(G) and J(G) are posets with respect
to inclusion. A Lie algebra G is called Artinian (respectively, Noetherian) if the poset J(G) is
Artinian (respectively, Noetherian). This means that every descending (respectively, ascending)
chains of ideals stabilizers. A Lie algebra G is called a uniserial Lie algebra if the poset J(G) is a
well-ordered set. This means that for any two ideals a and b of the Lie algebra G either a C b or
bCa

Definition, [2]. Let G be an Artinian uniserial Lie algebra. The ordinal number u.dim(G) :=
ord(J(G)) of the Artinian well-ordered set J(G) of nonzero ideals of G is called the uniserial
dimension of the Lie algebra G. For an arbitrary Lie algebra G, the uniserial dimension u.dim(G)
is the supremum of ord(Z) where Z runs through all the Artinian well-ordered sets of ideals.

If G is a Noetherian Lie algebra then u.dim(G) < w. So, the uniserial dimension is a measure
of deviation from the Noetherian condition. The concept of the uniserial dimension makes sense
for any algebras (associative, Jordan, etc.).

Let A be an algebra and M be its module, and let J;(A4) and M(M) be the sets of all the
nonzero left ideals of A and of all the nonzero submodules of M, respectively. They are posets with
respect to C. The left uniserial dimension of the algebra A is defined as u.dim(A) := u.dim(7;(4))
and the uniserial dimension of the A-module M is defined as u.dim(M) := u.dim(M(M)), [2].



An Artinian well-ordering on the canonical basis B, of u,. Let us define an Artinian
well-ordering < on the canonical basis B,, for the Lie algebra u,, by the rule: X, ; > Xz ;iffi <j
ori=jand ap_1=PFn_1,-+s0m+1 = Bmt1,¥n > Bm for some m.

The next lemma is a straightforward consequence of the definition of the ordering <, we write
0 < Xq,; for all X, ; € B,,.

Lemma 2.2 If X, ; > Xg ; then
1. Xotnyi > Xptny,; for ally € N7L
2. Xo—ryi > Xpg_nj for ally € N1 such that « —y € N*™! and f —y € NI 71,
3. [Oky Xai| > [0k, Xp;] for allk =1,...,i—1 such that ay # 0, and
4o [ Xk Xai] > [Xqk, Xp5] for all Xy > Xo i such that [Xy g, Xoi] #0, t.e., ap #0.

Let €, be the set of indices {(c, )} that parameterizes the canonical basis {X, ;} of the Lie
algebra u,. The set (Q,, <) is an Artinian well-ordered set, where (o, 7) > (5, 7) iff Xo; > X35,
which is isomorphic to the Artinian well-ordered set (B, <) via («,i) — X,,;. We identify the
posets (Q,, <) and (B, <) via this isomorphism. It is obvious that

ord(B,) = ord(Q,) =w" P+ W - f w1, (7)

N C Q3 C -+ and By C By C ---. Let [1,0rd(Q,)] :={A € W|1 < X <ord(Q,)}. By (2), if
[Xa,hX,B,j} 75 0 then

[Xa,i; X@j] < min{Xa’i, X@j}. (8)
A classification of ideals of the Lie algebra u,. By (8), the map
o [Lord(Q,)] = T(un), A Iyi=Ivni= P KXo, (9)
(i) <A

is a monomorphism of posets (p,, is an order-preserving injection).
Theorem 2.3 (Theorem 3.3, [2])
1. The map (9) is a bijection.

2. The Lie algebra u,, is a uniserial, Artinian but not Noetherian Lie algebra and its uniserial
dimension is equal to u.dim(u,) = ord(Q,) =w" 1 +w" 2+ +w+ 1.

An ideal a of a Lie algebra G is called proper (respectively, co-finite) if a # 0,G (respectively,
dimg (G/a) < 00). An ideal I of a Lie algebra G is called a characteristic ideal if it is invariant
under all the automorphisms of the Lie algebra G, that is o(I) = I for all 0 € Autg(G). It is
obvious that an ideal I is a characteristic ideal iff o(I) C I for all o € Autg (G).

Corollary 2.4 (Corollary 3.7, [2]) All the ideals of the Lie algebra w, are characteristic ideals.
Each non-zero element u of u,, is a finite linear combination
u = )\Xa,i —‘r/,LXgJ + -4 Vka = )\on,i =+

where A\, u,...,v € K* and X,; > Xg; > --- > X5 The elements AX,; and A € K*
are called the leading term and the leading coefficient of u respectively, and the ordinal number
ord(X,,;) = ord(e, 1) € [1,0rd(Q2,)], which is, by definition, the ordinal number that represents the
Artinian well ordered set {(5,7) € Q| (5,7) < (a,9)}, is called the ordinal degree of v denoted by
ord(u) (we hope that this notation will not lead to confusion). For all non-zero elements u,v € u,
and A € K*,

(i) ord(u + v) < max{ord(u),ord(v)} provided u + v # 0;

(ii) ord(Au) = ord(u);

(iii) ord([u,v]) < min{ord(u),ord(v)} provided [u,v] # 0;

Corollary 2.5 (Corollary 3.8, [2]) For all nonzero elements u € w, and all automorphisms o of
the Lie algebra u,,, ord(c(u)) = ord(u).



3 The structure of the group of automorphisms of the Lie
algebra u,

In this section, several important subgroups of the group G,, are introduced and studied. It is
proved that the group G, is an iterated semi-direct product and an exact product of some of them
(Proposition 3.1, Theorem 3.8).

The groups T" and U,,. Let G, := Autg(u,) be the group of automorphisms of the Lie
algebra u,,. The Lie algebra u,, is uniserial, so

o(Iy) =1y forall A€ [1,ord(2,)], (10)
by Theorem 2.3. Moreover, by (9),
U(Xa,i) = )\OM'XQ,Z' + ... for all Xa,i € B, (11)

for some scalar Ay ; = A i(0) € K* where the three dots mean smaller terms, i.e., an element of
2o (8.5)<(oi) KX p,5- 1t follows that

Uy, :={o€G,|o(Xa:)=Xa;+ forall X,, € B,}

is a normal subgroup of the group G,,. The algebraic n-dimensional torus T™ is a subgroup of the
group Autg (A,,) of automorphisms of the Weyl algebra A,,,

T = {tn 2 = Nixg, O > A1, 1 <i<n|h=(\) € K™} ~ K*",
that preserves the Lie algebra u,. The group T™ can be seen as a subgroup of G,

T™ = {tx : Xoi = AN ' X, forall X, € By | A= (\) € K™} ~ K™
where A% := [T A

Proposition 3.1 1. The group U, is a normal subgroup of G, and U, = {0 € G, |c(0;) =
O+ fori=1,...,n}.

2. G, =T" x U, (the group G, is the semidirect product of T,, and U,,).

Proof. 1. We have already seen that U,, is a normal subgroup of G,,. It remains to show that
the equality holds. Let R be the RHS of the equality. Then U,, C R. It remains to show that
U, D R, ie., 0 € R implies o € U,,. We have to show that (X, ;) = Xo,i+--- forall X, ,; € B,.
We use induction on A := ord(X,,;) = ord((«, 7)) € [1,0rd(2,,)]. The initial case A = 1 is obvious
as Xo,; = 0, and 0(9,,) = 9, since o € R.

Let A > 1, and we assume that the result is true for all X < A. If X, ; = 0; for some j then it
is nothing to prove. So, let X, ; € B,\{01,...,0,}, i.e., « € N“"1\{0}. Let j = max{k|ay # 0}.
Then, by the very definition of the ordering < on B,, (or use Lemma 2.2.(3)),

[8j, Xa,i + - ] = ana—ej,i + .. and [@zszPk_lak,Xa,i] = O

Then applying the automorphism o to the identity [0;, Xq,i] = o Xa_¢; ; and using the fact that
0(9;) = 9; + u + v for some elements u € @2:j+1Pk_18k and v € ®}_;, 1 Pr—10k, we have

ajXae; it = 0(ajXae,i) =[0(0)),0(Xai)] = [0j + u+ v, Aa,iXayi+ ]
= )\a,ianafej,i + [U7 Aa,iXa,i] + [aj +u+twv,-- ] = Aa,ianafej,i +e

Hence, Ay = 1 since o # 0.

2. By the very definition of the groups T™ and U,,, T" NU,, = {e}. As U, is a normal subgroup
of G, it suffices to show that G,, = T"U,, i.e., every automorphism o € G, is a product ¢7 for
some elements t € T" and 7 € U,,. By (11), 0(9;) = X\i0; +--- for all i = 1,...,n and for some



A=(A1,...,\n) € K*. Then tyo(9;) = 0;+--- foralli =1,... ,n where t, € T". By statement
1, 7:=txo € Uy, hence o = t;lT, as required. [J

The group TAutg (P,) of triangular automorphisms of the polynomial algebra P,.
Let Autg(P,) be the group of K-algebra automorphisms of the polynomial algebra P,. Every
automorphism o € Autk (P,) is uniquely determined by the polynomials

)y i=o(z1),..., 20 = o(xy,).

The inclusions of the polynomial algebras P, C P> C --- yield the natural inclusions of their
groups of automorphisms Autg (P1) C Autg(P) C --- where an automorphism o € Autg (P,) is
extended to the automorphism of the polynomial algebra P, ;1 by the rule o(z,41) = Tni1.

The group of triangular automorphisms TAutk (P,) of the polynomial algebra P, consists of
all the automorphisms of P, of the following type:

a(xi):)\ixi—i—ai, izl,...,n, (12)

where a; € P,_1 and \; € K* for i = 1,...,n. The automorphism o is uniquely determined by the
elements a; and \;, and we write o = [a1,...,an;A1,...,An]. There are two distinct subgroups
in TAutg (P,): the algebraic n-dimensional torus T" (where a3 = --- = a,, = 0) and the group
UAutg(P,) of triangular polynomial automorphisms (where \y = --- = X, = 1). Moreover,
UAutg (P,) is a normal subgroup of TAutg (P,) and

TAutK(Pn) =T" x UAutK(Pn). (13)

The group UAutg (P,) of triangular automorphisms of the polynomial algebra P,.

Every element [ay,...,a,] := [a1,...,an;1,...,1] € UAutg(P,) is uniquely determined by the
polynomials a; € P;_1,i=1,...,n.

Proposition 3.2 The exponential map w, — UAutg (P,), § — €® := 20 ‘2—:, is a bijection with

the inverse map o — In(o) :=In(1 — (1 —0)) := = > .+, (1_1.‘7)1.

Proof. By Proposition 2.1.(4), the exponential map is well-defined. Let us show that for every
automorphism o = [ay,...,a,] € UAutk(P,) there is the unique derivation § = Y"1 | b;0; € u,,
(where b; € P;_; for i = 1,...,n) such that ¢ = e’. Consider the system of equations where {b;}
are unknown polynomials such that o(z;) = €%(z;), i = 1,...,n, that is z; + a; = x; + (1 — 9)(b;)
where 0 := — Zz’Zl ﬁ is a locally nilpotent map on P,,. Then

bi=(1-9)""(a) = (Y 9)(a) € Py

J=0

For each o € UAutK(Pn)7 the map 1 — o : P, — P, is a locally nilpotent map. So, the map

In(o) =—>";5, (1_1.‘7)1 makes sense. The rest is obvious. [J
For every element [aq,...,a,] € UAutg (P,),
[a1,...,a,] = ePnein-19n-1. . @101 (14)
For each natural number i = 1,...,n, the map P;_1 — e/i-1% p; — ePi9% is an isomorphism of

abelian groups. The group UAutx (P,) is an iterated semi-direct product of its subgroups ei-19:

1=1,...,n,
UAutg (P,) = eFn=19n 5 efn=20n-1 5 ... 5 P00 (15)

The set of all K-derivations Derg (P,) = &I, P,0,, of the polynomial algebra P, is a Lie subalge-
bra of the Lie Weyl algebra (A4,, [+, ]), and u,, is a Lie subalgebra of Derx (P, ). Each automorphism
o € Autg(P,) induces an automorphism of the Lie algebra Derg(F,) (the change of variable)



by the rule § — odo~! where § € Derg(P,). In particular, a(a%i)a_l = 52, where 2} := o(x;).
Moreover,
0 " 9o ()
) ax; ;:1 U( 8.’EZ ) J ( )

Let o € TAutg(P,) be as in (12). Then the automorphism oc~! € TAutg(P,) and so o~ ! =
(b1y...,by; )\fl, oo A0 for some b; € Pi_y, i =1,...,n. For the automorphism o the equality
(16) takes form

a:i_xla+z )86K8+ZP]18 (17)
J=it+1 j=it1
The groups Sh,, 7, and UAutg(P,),. Important subgroups of TAutk (P,,) are the shift group
Shy,:={o:z1 =21+ p1,. s Tpn—=> Tp+pn|p €K,i=1,....,n} ~ K" (18)
and the group
Tn:={0=[0,a2,...,an;1,...,1]|a2(0) = a3(0,0) = - - = a,(0,...,0) = 0}. (19)

So, an automorphism o = [a1,ag,...,an;A1,...,Ay] € TAutg(P,) belongs to the group 7, iff
A1 =---= A, =1 and all the constant terms of the polynomials a; are equal to zero. Notice that
Tn € UAutg(P,) C TAutg(P,). For each ¢ > 1, let m; := 2221 xjP;, the maximal ideal of the
polynomial algebra P; generated by the elements z1,...,z;. Set mg := 0. So, an automorphism
o € UAutg (P,) belongs to the group 7, iff o(m;) =m,; for alli =1,...,n. Let

TAutg (Pn)n = {o € TAutg(P,)|o(xn) = A\pzy + an where A\, € K*, a,, €m,,_1},
UAutg(P,)n, := {o € UAutg(P,)|o(x,) =z, + a, where a, € m,_1},
sh, = Sh, NFixraut,(p,)(T15-- 1) = {0 € Shy [o(x;) =23, i =1,...,n —1;

o(zn) =z, + A\ A € K} = K9 .= [AOn

Ne K}~ (K, +).

The subsets TAut g (P,,), and UAut g (P,), of the group TAuty (P,) are not subgroups, but sh,, is
a subgroup. Clearly, TAutg (P,) = TAutx (P, )nsh,, TAutg (P,), Nsh, = {e} and the group sh,
is a normal subgroup of the group TAutk (P,,). Therefore, the sets TAutx (P,,), and UAutx(P,),
can be identified with the factor groups TAutg (P, )/sh, and UAutg(P,)/sh,, respectively, and
as a result they have the group structure. Under these identifications we can write

TAutg (Pp)n = TAutg (Py,)/shy,, (20)
UAut (Po)n = UAut s (Po)/shn. (21)
Proposition 3.3 1. ou, 07! =u, for all o0 € TAutx(P,).

2. The map w : TAutg(P,) — Gn, 0 = (wy : u — ocuoc™ ), (where u € u,) is a group
homomorphism with ker(w) = sh,,.

3. The map w : TAutk (Ppn)n — Gn, 0 = Wy, is a group monomorphism.

)
Proof. 1. Since TAutg (P,) is a group, to prove statement 1 it suffices to show that ou, o=t C
u, for all elements o € TAutg (P,). Sincew,, = > | P,_10;, it suffices to show that o P;,_19;0 -1 C
u,, for all elements 0 € TAutg(P,) and ¢ = 1,...,n. This follows from (17) and the fact that
o(Pi—1) = Pi_1:

0'131'_1810'71 = U(Pi_l)af)'m*l Q Pi_l(K*aZ + Z Pj_laj) Q ZPj_laj Q Uy
J=i+1 Jj=t



2. The map w is a group homomorphism. By (16), sh,, C ker(w). Let o € ker(w). It remains to

show that o € sh,,. By (17), 9} = 9; foralli=1,...,n. Hence A\ =--- =\, = 1 and aggi;gb-’) =0
for all i < j. The second set of the conditions means that the elements o~!(b;) € P;_; are scalars.
Summarizing, 0~ (z;) = z; + b; where all b; € K. For all i =2,...,n,

2i10; = 0~ N(2i10)0 = 0~ (2:)0; = 2105 + bi_10;.

Hence, by = --- = b,-1 = 0. Therefore, o € sh,,, as required.

3. Statement 3 follows from statement 2 and (20). O

By Proposition 3.3.(3), we identify the group TAutg (P,), = TAutk (P,)/sh, with its image
in the group G, i.e., TAutg(P,), C G,. We identify the subgroup Sh,,_; of Autg(P,_1) with
the following subgroup of Autg (FP,),

Shp_1 = {0 € Shy, | 0(2n) = 20} (22)

Sh,, = shy x -+ x sh,, = e x ... x KO = 201 KO

We say that a group G is the exact product of its two (or several) subgroups G and G5 and
write G = Gy X G if every element g € G is a unique product g = g1g» where g; € G and
g2 € Go. Using the bijection G — G, g — ¢~ ! and the fact that (gh)™! = h=1g~!, we see that
G = G Xep Go iff G = G2 X¢p G1. The next theorem describes the group G,,.

Proposition 3.4 1. UAutg(P,) = Tn Xex Shy,.
2. TAutg (P,) = T" X (T Xex Shy).
3. TAutx (Po)n = T" % (Tr, Xep Shy_1) = T" x UAut g (Pp)n.
4. UAutg (Pp)n = T Xex Shp—1.

Proof. 1. It is obvious that Sh, N7, = {e}. To finish the proof of statement 1 it suffices to
show that any automorphism o = [a1,a9,...,a,;1,...,1] € UAutg(P,) is a product 7s for some
elements 7 € T, and s € Sh,,. Let a; = b; + u; where p; is the constant term of the polynomial
a;. Then 7 =1[0,ba,...,bn;1,...,1] € Ty s = [1,- -+ fon; 1, ..., 1] € Sh,, and 0 = 7s.

2. Statement 2 follows from statement 1 and (13).

3. Notice that Sh,, = Sh,,_1 x sh,. Statement 3 follows from statement 1 and (20).

4. Statement 4 follows from statement 1 and (21). O

The following lemma gives a characterization of the shift group Sh,, via its action on the partial
derivatives.

n

Lemma 3.5 Fixpug, (p,)(01,--.,0,) = Shy and Fixyaue,(p,), (01, .-, 0n) = Shy_1.

Proof. For an automorphism o € Autg(P,), let &' := (94,...,0,)T where 8! := 00;0~! for
i=1,...,n, 0 := (d,...,0,)" (where ‘T’ stands for the transposition) and A = (A;;) be the
n x n matrix where A;; := a(%ﬁvizj)). The equalities (16) can be written in the matrix form as
0" = AQ. Then o € Fixpug,(p,)(01,-..,0,) iff Ais the identity matrix iff o € Sh,,. The second
equality follows from the first. O

The next theorem is a key result which is used in several proofs later.

Theorem 3.6 Let 9},...,0, € Derg(P,) be commuting derivations such that 0, = u;0; +
Z?:Hl ai;0; fori=1,...,n where u; € K* and a;; € Pj_1. Then

1. there exists an automorphism o € TAuty (P,) such that 0, = 60,01 fori=1,...,n. If o’
is another such an automorphism then o’ = os for some o € Sh,,, and vice versa.

10



2. There is the unique automorphism o € T™ x T, such that 8. = 0d0;0~t fori=1,...,n. The
automorphism o is defined as follows o(x;) = x} fori=1,...,n where the elements x} are
defined recursively as follows:

xll = ,ul_lajla ‘T; = ¢i—1¢i—2 e ¢1(/J“i_1'1:’i)7 1= 2a s Ty (23)
kx/‘k ko
¢ =Y (-1) SO =1 = (24)
k>0

Proof. 1. The first part of statement 1 (concerning the existence of o) follows from statement
2. If 8! = 00;07 ! = 0’9;0’"1 for i = 1,...,n then s := 0~ 1o’ € Sh,, by Lemma 3.5. Hence,
o' = os, and vice versa (trivial).

2. We deduce statement 2 from two claims below. The uniqueness of ¢ follows from the second
part of statement 1 (which has already been proved above) and the fact that T™ x 7, N Sh,, = {e}.

Claim 1: 01,...,0., are commuting, locally nilpotent derivations of the polynomial algebra P,
such that 0;(x’;) = 0;; (the Kronecker delta) and N;_ kerp, (9;) = K.

It follows from Claim 1 and (Theorem 2.2, [1]) that the K-algebra homomorphism

oc:Py, = Py, zi—al, i=1,...,n,

is an automorphism. Then (which is obvious) 9, = 09;0~! for i = 1,...,n. We finish the proof of
statement 2, by Claim 2.

Claim 2: o € T" x T,.

So, it remains to prove Claims 1 and 2. By the very definition of the derivations 9, the
following statements are obvious:

(i) 91,...,0) € up;

(i) 9(P;) C P for all 4,5 = 1,...,n. Moreover, 9;(P;) =0 for ¢ > j;

(iii) O(p; twy) = 1 for i =1,...,n;

(iv) 94,...,0! are locally nilpotent derivations of the polynomial algebra P,;

(v) Derg (P,) = @, P,,0}; and

(vi) NI kerp, (0)) = K, by (v).

In view of (iv) and (vi), to finish the proof of Claim 1, we have to show that 9;(z;) = d;;. To
prove Claim 2, it suffices to show that x; = uj_la?j + a; where a; € m;_; := ch;ll 2 Pj—1 for
j=1,...,n. To prove both statements we use induction on j. The initial case j = 1 follows from
(ii) and (iii) and the fact that 2} = u'2;. Suppose that j > 2 and the result holds for all j/ < j.
By induction, 2/, = u;trs +as € K*zs +my_; Cmy for s =1,...,5 — 1. Then, using repeatedly

(ii) and (24), we see that z; = ,uj_la:j +a; for some a; € m;_;. Then 0} () =--- = 9, (z}) =0,
by (ii). By (Theorem 2.2, [1]), 91(z}) = --- = 0;_4 () = 0. Foreach i =1,...,j— 1, 9;¢; = ¢;0;
since 8} (zf)=0foralli=1,...,5— 1 (the last set of equalities follows from the set of equalities

8;(331) =0foralli=1,...,j—1, and the fact that 2/, = u;'xs+a, for s = 1,...,j—1). Therefore
(by (iii)),
O (xf) = D1+ dr(p; ' ws) = djo1 -+ 105 (u; ag) = djo1- -1 (1) = 1.

The proof of the inductive step is complete. [
The next theorem states that the triangular polynomial automorphisms are precisely the poly-
nomial automorphisms that respect the Lie algebra ,.

Theorem 3.7 Let o0 € Auti(P,). The following statements are equivalent.
1. o € TAutK(Pn).
2. ou,o~ ! =u,

3. Foralli=1,...,n, 00,0 = p;0; + Z?:H_l a;;0; where p; € K* and a;; € Pj_q.
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Proof. 1. (1 = 2) Proposition 3.3.(1).

(2 = 3) Suppose that ou,0~! =u,. Then 0~ 'u,0 = u,,. The map w, : U, —> Uy, 6 > cdo ™!,
is a Lie algebra automorphism with w,-1 as its inverse. Statement 3 follows from (10) and the
definition of the ordering < on .

(3 = 1) By Theorem 3.6, there is an automorphism 7 € TAut (P,) such that 09;0 =1 = 79,771
forall i = 1,...,n. Hence 7710 € FixXaut, (p,)(01,--,0,) = Sh, C TAutg(P,) (Lemma 3.5).
Then o € TAutg (P,). O

The group G, is an exact product of its three subgroups. The group U,, contains the
subgroup

1

Fn :=Fixg, (01,...,0n) :={0c € Gp|0(D1) = 01,...,0(0n) = On}. (25)

This is the most important subgroup of G,, as Theorem 3.8.(2) shows. The next theorem represents
the group G,, as an exact product of its three subgroups.

Theorem 3.8 1. G,, = TAutg (Pp)nFn = FoaTAutg (Pp)n and TAutg (Py)n N Fp = Shy—1.
2. Gp =T" X (Th, Xew Fn) =T X (Fpp Xex Tn)-
3. U, =Tn Xex Fn-

Proof. 2. Let g € G,. The elements 0y,...,d, of the Lie algebra u, commute then so do
the elements 0] = ¢(01),...,0), := g(0n) of u,. By (11), the elements 91,...,0, satisfy the
assumptions of Theorem 3.6, hence there is the unigque automorphism o € T" x 7, such that
0! = 00;07! for i = 1,...,n. Recall that we identified the group T" x 7, with its image in
the group G,, (Proposition 3.3.(3)), i.e., the automorphism ¢ is identified with the automorphism
Wo Uy — Uy, u > ouo . Then w, 1g(d;) = 0; for all i = 1,...,n. Hence, w,-1g € F,, and
statement 2 follows.

1. Proposition 3.3.(3), the inclusion T™ x T, C TAutg(P,), (Proposition 3.4.(3)) and state-

ment 2 imply the first two equalities in statement 1. Now, using Lemma 3.5,

TAutK(Pn)n nNF, = FiXTAutK(Pn)n (61, ceeyOp) = TAutK(Pn)n N FiXAutK(pn)(al, ceeyOn)
—  TAutg(Py)n N Shy, = Shy_1.

3. Since Ty, Xey Fnn C U, and U, NT™ = {e}, statement 3 follows from statement 2:

Uy =Un NGy =Up, N (T X (Try Xew Fn)) = Un NT™) X (T Xex Fr) = Tn Xex Fn. O

4 The group of automorphisms of the Lie algebra u,

The aim of this section is to find the groups F,, (Theorem 4.12.(1)) and G,, (Theorem 4.13).

The u,-module P,. For each n > 2, u, is a Lie subalgebra of the Lie algebra u,;; =
Up, @ PpOpt1, PrOny1 is an ideal of the Lie algebra u, 1 and [P0y 41, PnOn41] = 0. In particular,
P,,0n+1 is a left u,-module where the action of the Lie algebra u,, on P,,0,,+1 is given by the rule
(the adjoint action): uv := [u,v] for all u € u,, and v € P, 0,+1. The polynomial algebra P, is a
left u,,-module.

Lemma 4.1 (Lemma 3.10, [2])
1. The K-linear map P, — P,0n41, P~ POn+1, 1S a u,-module isomorphism.

2. The u,-module P, is an indecomposable, uniserial u,-module, u.dim(P,) = w™ and ann,,, (P,) =

0.
The next proposition describes the algebra of all the u,,-homomorphisms (and its group of units)

of the u,-module P,. The K-derivation ﬁ of the polynomial algebra K|z,] is also denoted by
On.
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Proposition 4.2 (Proposition 3.16, [2])

1. The map Endy, (P,) = Endgip,)(K[z,]) = K[[75]], ¢ = @lk(z.), is a K-algebra isomor-

dw,
. i41
phism with the inverse map ¢’ + ¢ where p(zPzl) = X/g,ngo’(%) for all B € N"~! and

1€ N.
2. The map Auty, (P,) — Autgs,)(K[z,]) = K[[ﬁ}]*, © = O|K[z,], 18 @ group isomorphism

with the inverse map as in the statement 1 (where K[[%]]* is the group of units of the
algebra K[[79-]]).

The partial derivatives d1, . .., 9, are commuting locally nilpotent derivations of the polynomial
algebra P,,. So, we can consider the skew power series algebra P,[[01,. .., On; 8%1, A %]] which
is also written as P,[[01, ..., 0y]], for short. Every element s of this algebra is a unique (formal)
series ), cyn Pa0% wWhere p, € P,. The addition of two power series is defined in the obvious way
Y aenn Pa0% + 2 penn a0% = Y qenn (Pa + 4a)0%, and the multiplication satisfies the relations:
Oip =p0; + 0;(p) for alli =1,...,n and p € P,. As the partial derivatives act locally nilpotently
on the polynomial algebra P,, the product of two power series can be written in the canonical form
using the relations above, i.e., (3, enn Pa0%) (D senn qp0°) = > enn 7407 for some polynomials
7y € P,. For every series s = ) cyn Pa0% € Pp[[01,...,0,]] (Where p, € P,), the action s *p =
> acnn Pa0%*p is well-defined (the infinite sum is in fact a finite one). The algebra P,[[01, .. ., 0,]]
is the completion of the Weyl algebra A, = P,[01,...,0,] = ®aenePr0®. The polynomial
algebra P, is a left P,[[01,...,0,]]-module. It is easy to show that the algebra homomorphism
P,[[01,...,0,]] = Endg (P,) is a monomorphism, and we identify the algebra P, [[01, . .., 0,]] with
its image in Endg (P,). The polynomial algebra P, = U;>0F, <; is a filtered algebra by the total
degree of the variables where P, <; := > {Kz®||a| :=a1+ -+ an < i} (Pn<iPn<i C Pr<itj
for all 4,5 > 0). The vector space

Enddeg(Pn) = {f € EndK(Pn) ‘ f(Pn,Si) c Pn,Si}

is a subalgebra of Endg(P,). Let Autgs, . o,(Pn) be the group of invertible K[d,...,0,]-
endomorphisms of the K[d,...,d,]-module P, and K[[01,...,0y,]]* be the group of units of the
algebra K[[01,...,0y,]]-

Proposition 4.3 1. Endg(P,) = P,[[01,--.,0n]].

2. Endaeg(Pn) = Ppu[[01, - - -, Oplldeg = {2 nenn Pa0® | deg(pa) < |af}.
3. EndK[al,..,,an](Pn) = K[[@l, ey 8n]]
4. AUtK[al,...,an](Pn) = K[[&l, ceey 3n]]*

Proof. 1. This is well-known and easy to prove.

2. Let R be the RHS of the equality in statement 2. The inclusion Endgeg(P,) 2 R is obvious.
We have to show that the reverse inclusion holds. Let s = > p,0% € Endgeg (Pr). We have to
prove that deg(p,) < |a for all . We use induction on d = |«|. The initial case d = 0 is obvious
as pg = sx1 € K. Let d > 0 and suppose that the statement holds for all d < d. Fix o € N"
such that |a| = d. Then

P, <q2s*xz® =alp, + Z ppd” * x%,
|B]<d
and so p, € P, <q (since Z|B|<dpﬂ8f8 * % € Py, <4), as required.

3. An element s = Y o Pa0® € Endg (P,) belongs to Endga, ,....0,1(Pn) iff [0;,5] = 0 for
all i =1,...,n iff every p, € NP kerp (0;) = K for all i =1,...,n (since [0;,s] = > %1;0; %) iff
se K[,...,0,]).

4. Statement 4 follows from statement 3. [J
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By Theorem 2.2, [1], the K-algebra endomorphisms ¢; := Zk>0(—1)k§af : P, — P, (where
i=1,...,n) commute and their composition -

¢ = ﬁqbi 1Py = Py Y Aaz® e Ao, (26)

i=1 aeN"™

is the projection onto the field K in the decomposition P, = @4ene Kx®. The next proposition is
an easy corollary of this fact.

Proposition 4.4 Let s = Y yn Aa0% € K[[01,...,0,]] = Endgs,,....5,](Pn) where Ao € K.
Then A\ = q{)s(%) for all a € N™ where ol :=[[;_, a;l.

Proof. ¢s(£7) = ¢(Aa ++-+) = A where the three dots denote an element of the vector space
@aeNn\{o}Kxo‘. O

Lemma 4.5 Let o € F,,.

1. Then olp,_,0, : Pn-10n — Pn_10, belongs to I = 1+ Z?:_ll 0;K[[01,...,0n-1]] where
0; :=ad(9;) fori=1,...,n— 1.

2. For all o € N""1\{0}, 0(2%0,) = paOn for some polynomial p, € P,_1 such that po, =
x® + ZﬂeN,z_1)5<a Agz? where 8= (B;) < a = (a;) iff Bi < i foralli=1,...,n—1 and
Bj < o for some j.

Proof. 1. Recall that all ideals of the Lie algebra u,, are characteristic ideals, and the vector
space P,_10, is an ideal of the Lie algebra u,. Therefore, the restriction map 7 := o|p,_,s,
is a well-defined map. Since o € F,,, the map 7 commute with the inner derivations J; where
t=1,...,n— 1. The u,_1-modules P,_; and P,_10, are isomorphic (Corollary 4.1.(1)), hence
T E AutK[(gl,_w&"fl](Pn_lan) ~ AUtK[al,...,On,l](Pn—l) ~ K[[&l, RN 8n—1H*- Then,

T € AutK[(;h“_,(;nfl](Pnflan) ~ K[[(Sh e ,(5”,1“*.

Since 7(0y,) = 0(0y) = Opn, we must have 7 € I.
2. Statement 2 follows from statement 1. [
The subgroup F,, of F,. Let u; := K9y, the abelian 1-dimensional Lie algebra. For n > 2,
the set
F, :=Fixg, (up—1) ={oc € Fp|o(u) =u forall v €u,_1} (27)

is a subgroup of F,. Notice that Fo = F5. Recall that every ideal of the Lie algebra u, is a
characteristic ideal (Corollary 2.4), P,_10, is an ideal of the Lie algebra u,, = u,,_1 & P,,_19,, such
that u,/P,_10, ~ u,_1. In view of this Lie algebra isomorphism, for each natural number n > 3,
there is the group homomorphism

Xn Cfn 4)./.'.”_17 g — (u+Pn_18nr—>a(u)+Pn_18n) (28)

It is obvious that F,, C ker(x,). The ideal P,_10, of the Lie algebra u, is a (left) u,-module
and a u,_1-module since u,_; C u,. Let Aut,, _,(P,_10,) be the group of automorphisms of the
u,_1-module P, _10,. The set 1+ 9,,_1 K[[0r—1]] is a subgroup of the group K[[0,—_1]]* of units
of the power series algebra K[[0p—_1]].

The following proposition is an explicit description of the group F,,.

Proposition 4.6 For n > 2, the map ny, : 1+ 0p—1K[[On-1]] = Fn, s = SN0 _1 > na(s), is

a group isomorphism where, for p € Pp_1, nn,(s) : pOn, — (O )\iaf#)an. So, nn(s) acts on the
n—1

elements of the algebra w, as > \ad(d,_1)'. In particular, the group F,, = 1+ 6, 1 K[[0,_1]]

is abelian where §,_1 = ad(0n—1) (equally, we can write F,, = 1+ 0p_1K[[0n-1]]). Moreover,

N = (En—17n_1pn) " where the maps ppn, Tn_1 and &,_1 are defined in the proof (see (29), (31)

and (32) respectively).
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Proof. Since F,, = Fixz, (u,—1) and P,_10, is an abelian characteristic ideal of the Lie algebra
Uy, the restriction map

pn By — AUtun,l(Pn—lan)ny (e U‘Pn,lé’nv (29)

is a group isomorphism where Auty, ,(Pn—10n)n = {¢ € Auty,_,(Pn-10,)|©(0s) = On}. The
map
Pnflan — Pnflv pan =D, (30)

is a u,_;-module isomorphism, and so Auty, _, (Pn—10,) ~ Auty, _,(P,—1) and
-1 : Auty, _ (Ph—10p)n =~ Auty, _, (Pn-1)1 := {0 € Auty,,_,(Pn-1)|0o(1) =1}. (31)
By Proposition 4.2.(1,2), the restriction map

Eno1:Auty,  (Poo1)1 — Autgpe, ((K[zn_1])1 =1+ 0p 1 K[[On-1]], 0= @lKkz,_1, (32)

is a group isomorphism where Autgs, ,1(K[rn-1])1 := {0 € Autgpp, |(K[z,-1])|o(1) = 1}.
Then the automorphism 7,, is equal to (&, 17, _1p,) " *. O

Remark. Tt is useful to identify the groups F,, = 1 4 6,—1 K[[0n—1]] and 1 + 0,,—1 K[[On—1]] via
the isomorphism 7,, i.e.,

Fp =14 0p_1K[[0n-1]] =1+ 0n—1K[[On-1]]. (33)

The first equality is used when the action of automorphisms of the group F,, on elements of the Lie
algebra u,, is considered. The second equality is used when we want to stress how the polynomial
coefficient of 9,, is changed under this action on the ideal P,_13, of the Lie algebra u,.

The subgroup E,, of F,. For n > 3, let

E, = FiXger(y,)(Pn-10n) = {0 € ker(xn) |o(u) = u forall ue P, 10,} (34)
= {oeF,|o(w)=u forall ue€ P,_10,;0(v) —v € P10, forallv € u,_1}. (35)

Clearly, F,,NE,, = {e} since u,, = u,,_1 ® P,,_19,. Consider the vector space (of certain 1-cocycles)
Zvlz—l = {C S HomK(un_l, Pn_lé'n) |C(81) == C(an_l) =0 and

c([u,v]) = [e(u), v] + [u, c(v)] (36)
for all u,v € u,_1}. In particular, Z! ; is an additive (abelian) group.

Lemma 4.7 Forn >3, the map A, : E, = Z! 00 —1:uw o(u) —u (where u € u,_1),
u+c(u) ifu€u,_q,

u ifu € Py_10,.
In particular, E,, is an abelian group (and a vector space over the field K ).

is a group isomorphism with the inverse map ¢ — o. where o.(u) =

Proof. Let us show that the map A, is well-defined. Let ¢ € E,. Then ¢ = 0 — 1 €
Hompg (y—1, P—10y) (since o € ker(x,)), and ¢(d1) = --- = ¢(0,) = 0 (since o € F,). The
condition (36) follows from the facts that o is a Lie algebra homomorphism, im(¢) C P, _10,, and
[Pr—10n, Pr—10,]) = 0. In more details, for all elements u, v € u,_1,

0 = o(fu,v]) = [o(u),o(v)] = [u,v] + c([u, v]) = [u, v] = [e(u), v] = [u, c(v)] = [e(u), c(v)]
= c([u,v]) = [e(u), v] = [u, c(v)].
The map A, is a group homomorphism: for all elements 1,05 € E,,,
Ap(o103) =009 —1=01—1401(ca—1)=01— 1402 —1=An(01) + An(02),
we used the fact that im(og — 1) C P,_19,, and o1(u) = u for all elements u € P,,_10, (since

o1 € E,;). Since ker(A,) = {id}, the map A,, is a monomorphism.
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To finish the proof of the lemma it suffices to show that the map Z! ; — E,, ¢ = o, is
well-defined (indeed, this claim guarantees the surjectivity of the map A,, i.e., A, is a group
isomorphism; then it is obvious that the map ¢+ o, is the inverse of A,,). By the very definition,
the K-linear map o, : u,, — u, is a bijection. To finish the proof of the claim it suffices to show that
o is a Lie algebra homomorphism (since then o, € ker(x,) and 0. € FiXyer(y,)(Prn-10n) = Ep).
Since u, = up_1 ® Pp_10, and [P,_10,, P,—10,] = 0, it suffices to verify that, for all elements
U, € Up_1, 0c([u,v]) = [0c(u), 0c(v)]. This follows from (36) and [c¢(u), c(v)] = 0:

oe([u,v]) = [oe(u), oc(v)] = [u, ] + c([u, v]) = u, o] = [e(u), v] = [u, ¢(v)] = [e(u), ¢(v)] = 0.0

The subgroup ker(y,) of F,. The next corollary describes the groups ker(x,) when n > 3.
Corollary 4.8 Letn > 3. Then

1. ker(x,) =F, x E,.

2. Each element o € ker(x,) is the unique product ef where e € E,,, e(u) = u + c(u) and
c(u) :=o(u) —u for allu € u,_1, and f :=e lo € F,.

Proof. 1t is obvious that F, NE, = {e} and 7E,7~! C E, for all 7 € F,. Therefore,
F, x E, C ker(xn). Now, to finish the proof of both statements it suffices to show that each
element o € ker(x,) is the product ef where e and f are as in statement 2. It is easy to check
that c € Z}_, (where c(u) = o(u) — u for u € u,,_1): for all elements u,v € u,_1,

([u0]) = o(fu,0]) = [u,v] = [o(w), 0 (0)] = [u,v] = [u+c(u), v+ ¢(v)] = [u, 0]
= [e(w), o] + [u, c(v)].

By Lemma 4.7, A;'(c) € E,. Notice that A;'(c) = e. Now, e~!o € F, since, for all elements
U € Up—1,
e to(u) =e Mu+c(u) =eu) +clu) =u—cu)+cu) =u O

We will see that ker(x,) =F,, x E, (Theorem 4.12.(3)).

Let n > 3. Foreachi=1,...,n—2, u; +D,,_; is a Lie subalgebra of the Lie algebra u,, where
u := K0y and D,,_1 = @?:_fK&-. Notice that the Lie algebra u, is the (adjoint) w; + Dj—1-
module, and the vector spaces P;0;1+1, P;0, and P,_10, are u; + D,,_;-submodules of u,,. The
u; + D,,_1-modules P;0;11 and P;0,, are annihilated by the elements 0;11,...,0,—1. Our goal is
to give an explicit description of the group Z! ; (Corollary 4.10). The group Z!_; turns out to
be the direct product of certain subgroups described in Proposition 4.9. Let

Homy,+p, ,(Pi0it1, Pn—10n)o = {¢ € Homy,yp, ,(Pi0it1, Pn—10n)|¢(0i41) = 0},
Homy,yp, , (Pi0i+1, Pi0n)o = {¢ € Homy,1p, ,(Pidit1, PiOn) | p(dit1) = 0}.

Proposition 4.9 Let n > 3 and uy = K0,. Then

1. For all i = 1,. Lo, = 2, Homui+pn71(Pi81+1,Pn_lﬁn) = HOmui+D7L71(Piai+1,F)ian) ~
End,, (P;) ~ K[[t]]. Moreover, the map

Oy ¢ K[[t“ — Homui+pn71(PZ‘a¢+1, Pn,lﬁn), Z)\jtj = ©,
j=0

(where \; € K) is an isomorphism of vector spaces where, for all elements 8 € N'=! and

keN,

p(27f0i41) == [Xpa, Y ANi(ad0) ((k+ 1) 72l 10,)] = > Aj(ad 8,) (a2} 0y).

j=0 j>0
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2. For all i = 1, ey, — 2, HOHlui+'Dn71 (Pi8i+1, Pn—16n)0 = Homui—i-Dn,] (Pi8i+1,Pi8n)0 ~
tK([[t]]. Moreover, the map

(679 tKHtH — Homuﬁpn_l(PiaiH, Pn_lan)(), Z )\jtj =,

Jj=1

(where A\; € K) is an isomorphism of vector spaces where, for all elements B € N=1 and
keN,

@(xﬁxfaiﬂ) = [X[g,,‘, Z /\](ad 8Z)J((k + 1)71$§+18n)] = Z )\j(ad &)J(:cﬁxf@n)

jz1 j>1
3. For everyi=1,...,n — 2, the K-linear map
B s Homy,4p, y (Pidis1, Pa10n)o = Zn_y, b = cy,
Y(u) ifj=i+1,
0 if j #i+ 1.

Proof. 1. Let 6; := ad(9;) fori =1,...,n— 1 and ¥ € H := Homy,yp,_,(P;0iy1,Pn_10y).
For all ] =14+ 1, e — ].7 [8],1/1(]318”1)] = w([aj,Pz&H]) = w(O) = 0, hence

is an injection where, foru € P;_10;, j=1,...,n—1, ¢y(u) := {

n—1 n—1
im(¢) € (] kerp,_,0,(5;) = ( [ kerp,_,(9;))0n = PiOp.
j=i+1 j=i+1

Therefore, H = Homy, +p, _, (P;0;+1, Pi0y). The maps
Pi8i+1 — Pzé'n — R, p8i+1 — p@n — D

(where p € P;) are u; + D,,_1-module isomorphisms. The u; + D,,_1-modules P;0;+1 and P;0,, are
annihilated by the elements 0;41,...,0,-1. So,

H= Homui-i-Dn,fl (Piai—i-h Pvaﬁ) = Endui+Dn—1 (R) = Endui (PZ) = K[[t]L

by Proposition 4.2.(1). The map «, : KJ[[t]] — H is the inverse of the above isomorphism
H ~ K[[t]] (see Proposition 4.2.(1)).

2. Statement 2 follows from statement 1.

3. Let ¢ = ¢y. By the very definition of ¢, ¢(01) = - -+ = ¢(0,—1) = 0. We have to show that
c([u,v]) = [e(w), v] + [u, c(v)] for all elements v € Ps_10, and v € P,_10; where s,t =1,...,n—1.
Without loss of generality we may assume that s < t.

If s £i4+1and t #i+1 then [u,v] € P;0;11, and the equality above trivially holds (0 = 0+0).

If s<i+1andt=i+1 then ¢(u) =0, and the equality that we have to check reduces to the
equality ¥([u, v]) = [u,1(v)] which is obviously true as the map ¥ is a u; + D, _1-homomorphism.

If s = ¢ =14+ 1 then the equality that we have to check reduces to the equality ¥ ([u,v]) =
[¢(u), v]+[u, ¥(v)] which is obviously true as [u, v] € [P;0;jt+1, Pi0i+1] = 0, [¢(w),v] € [P;On, Pi0it1] =
0, and [u, ¥ (v)] € [P;0i41, P;0y] = 0 (since im (1)) C P;d,, see the proof of statement 1). O

In combination with Proposition 4.9, the following corollary gives an explicit description of the
vector space Z}_, and, as a result, using Lemma 4.7 we have an explicit description of the group
E, and its generators.

Corollary 4.10 Let n > 3. Then the K-linear map

n—2 n—2
B =D Br.i : @ Homy, 41, (Pidis1, Pa10n)o = Zpy 1, (1,0 n2) b €y + -+ s
i=1 i=1

is a bijection where cy, = Bni(Vi). In particular, Z}_| ~ (tK[[t]])"2, the direct sum of n — 2
copies of the vector space tK|[t]].
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Proof. In view of the explicit nature of the maps (3, ;, the map 3, is an injection. It remains
to show that the map f3,, is a surjection. Let ¢ € Z}! ;. Then, by (36),

Y1 = ¢|p,a, € Homp, | (P102, P,—10,)0 = Homy, 1p, , (P102, P,—10y)0,
and so ¢y, = By.1(¢1) € Z1_,, by Proposition 4.9.(3). By (36),
CIQ =C—Cy, € Homu2+pn_1 (un_1, Pn_lan)o

since ch(uz + Dp—1) = 0. Then ¢y := c|p0, € Homy,1p, (P23, Pr_10n)o, and so ¢y, =
Bn2(12) € ZL_,, by Proposition 4.9.(3). Then ¢} := ¢ —cy, — ¢y, € Homyyip, , (Un—1, Pr_10,)o0,
by (36) and the fact that ¢5(us + D,,—1) = 0. Continue this process (or use induction) we obtain
the decomposition ¢ = ¢y, + -+ - + ¢y, _, Where ¢y, € im(B,;) for all i = 1,...,n — 2. This mean
that the map (3, is a surjective map, as required. [J

The structure of the group E,. For each i = 2,...,n — 1, let E,; := im(A,;'3,.-1)
(notice the shift by 1 of the indices when comparing them with the indices in Corollary 4.10).
Then En,i = {6;(81)‘51 S 81_1[([[81_1]]} >~ (81_1KH61_1H7+) (via 6;(51) — Si) where, for all
j=1,...,nand o € N 71,

*9; + s;(x*)0, if j =1,
s (@00;) =4 ° 37
e;(s:)(z“9) {xaaj i (37)
n—1
E, = H B (38)
1=2

So, each element ¢’ € E,, is the unique product ¢’ = e ---e],_; with e} = €}(s;) € E,; and each
automorphism €} is uniquely determined by a series s; = >, A\i;0]_; with \;; € K. By (37), for
all elements %0, € u,, where o € NI~

oy~ [ TSGE00 [ e 25500
x*0; if j =1,n, x“0; if j =1,n.
Equivalently, for all elements u = Z?:l pi0; € u, where p; € P;_j foralli=1,...,n,
n—1
e (u) =u+ Z $i(Pi)On. (40)
i=2

Lemma 4.11 Forn >4, im(x,) NE,_1 = {e}.

Proof. Let 0 € E,,_;. Then for all polynomials p; € P;, i = 1,...,n — 2, by (40),

n—2 n—2 n—2
U(Z pi0i) = Zpiai + (Z $i(pi))On—1
=1 i=1 =2

where s; = Zj>1 Aij(ad 0;_1)? for some scalars Aij € K. Suppose that the automorphism o
belongs to im(xy,), i.e., ¢ = x,(0’) for some o’ € F,,. By Lemma 4.5, 0/(2,,—10,) = Tp_10n + A0y,
for some X\ € K. Then applying the automorphism ¢’ to the equality [Z?;f Pi0iy Tp—10,] = 0 in
the algebra u,, yields the equality (ZZZQZ $:(pi))0, = 0 for all polynomials p; € P;_1,i=2,...,n—
2. We used the fact that 9, is a central element of the Lie algebra u, and [P,_10,, P,—10,] = 0.
Hence, all s; =0, i.e., c = e. O

By Lemma 4.5.(1), there is the short exact sequence of group homomorphisms

1 — ker(res,) — Fpn ' 1+ 6,1 K([[0p_1]] = 1, (41)
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where res,(0) = 0|z, 0, ¢ Kl[tn-1]0n — K[r,_1]0, with res,(F,) = 1+ 8, 1 K[[0n_1]]
(Proposition 4.6), and the natural inclusion F,, = 1+ 6,1 K[[0,—1]] C F, is a splitting for the
epimorphism res,,. Therefore,

Fn =, x ker(resy,). (42)

The group F,, contains the groups Sh,,_s, F,, and E,,. Let us show that the elements of the groups
Sh,,_s, F,, and E,, pairwise commute. Let u = Z:-L:l pi0; = Up_1 + U, where p; € P;_1 for all
i=1,...,n, Up_1 = E?:_ll Pi0i, Uy = ppOn, € €EEy, f =145, N0, 1 € F, where \; € K
and s € Sh,,_;. We assume that (40) holds for the element ¢’. Then

Cfw) = € (unor + Ftn)) = o1+ z 51(p2)n + (1),
n—1 n—1

The last equality holds since f (Z?;; si(pi)On) = Z?;Ql $i(pi)Op. This follows from the inclusions
and s;(p;) € Pi_q for alli =2,...,n—1 (Op_1(si(p;)) =0 for all ¢ = 2,...,n — 1). Therefore,
e'f = fe'. Every element s € Sh,,_» can be uniquely written as s = 2o M0 where A € K.
Then it is obvious that sf = fs. Finally, se = es since, for all elements u € u,,

se(u) = s(u+ i $i(pi)On) = s(u) + i $8i(pi)On = s(u) + 2 $i8(pi)On = es(u),
i=2 =2 =2

as ss; = ;s for all elements i =1,...,n — 1, and s(9;) = 0; for all elements j =1,...,n.

By Corollary 4.8.(1), ker(x,) = F,, x E,,. For n =2, Shy := {e} and Ey := {e}. The subgroup
of the group F,, that these three groups generate is an abelian group. It is easy to see that
Sh,—o N (F, x E,,) = {e}. Hence, Sh,,_o x F,, x E, C F,. The next theorem shows that, in fact,
the equality holds.

Theorem 4.12 1. F, =Sh,_s x ker(x,) = Sh,,_o x F,, x E,,.
2. im(xn) = Shp_2.

3. The short exact sequence of group homomorphisms 1 — ker(x,) — Fn X Shy,_p — 1
is a split short exact sequence and the natural inclusion Sh,_o C F,, is a splitting of the
epimorphism xn, ker(x,) = F, X E,.

4. ker(res,) = Sh,—o X E,, and F,, = F,, x ker(res,,).

Proof. 1-3. We use induction on n > 2 to prove all three statements simultaneously. The
initial step n = 2 is trivial as Fy = Fy, F; = {e}, Shg := {e} and E; = {e}. So, let n > 2 and we
assume that all three statements hold for all n’ < n. By induction, F,,_1 = Sh,,_3 xF,,_1 xE,_1,
and as a result

Xn * -/_'.n - -/.'.n—l = Shn—S X IE‘ln—l X ]En—1~

To show that statements 1-3 hold it suffices only to prove statement 2, that is im(x,) = Shy_o
(since then statement 3 follows as ker(x,) = F, x E,; statement 3 and Corollary 4.8.(1) imply
statement 1). The subgroup Sh,,_3 of F,, is mapped isomorphically/identically onto its image
Xn(Shy,—3) = Sh,,_3. Then im(x,) = Sh,,_3 x I where I :=im(y,) N (F,—1 x E,,_1). Notice that
Sh,,_o = Sh,,_3 x sh,,_o, sh, o = e£%-2 CF, | =14 0,,_oK[[0,,_2]] (recall the identification
(33)). To finish the proof it remains to show that I = sh,_s.

Let ¢ € F, be such that ¢/ := x,(0) € F_1 X E,,_1, ¢/ = fe’ for some automorphisms
f€F,q and ¢ € E,_;. We have to show that ¢’ € sh,_5. Since F,, C ker(x,), in view of
(42), without loss of generality we may assume that o € ker(res,), that is o(z,_10,) = x%,_,0,
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for all ¢ > 0. Recall that u,, = u,,_9 & P,_20,-1 P P10, = u,,_1 ® P,_10,. For all elements

u e Pn—Qan—h
o(u) = fe'(u) + c(u) = f(u) + c(u)

for some map ¢ € Homg (Py_20n-1, Pn—10,) (¢'(u) = u for all elements u € P,_20,-1). The
automorphism f =1+ ,0, N0, 5 € Fmy = 1+ 0,_2K|[[0,—2]] (where \; € K) acts on the
elements z%0; € u,,_1 as f(z*9;) = f(2*)0; where

= (14> X, ) (2"

i>1
When we apply the automorphism o to the following identities in the Lie algebra u,,,
(201, (G + 1) 0300 = 25,5, 10, 0,j EN,
it yields the identities
(2ot 10n) = [0(@h_9001),0((G+ 1) 2, 10,)]
= [f(@}_2)0n-1 + c(@)_20n—1), (G + 1) 2,180 = f(a),_)a), 100

since [e¢(zh 40n_1), (G + 1)"'22 T 8,] C [Py_10n, Pa_10,] = 0. Similarly, when we apply the
automorphism o to the followmg identities in the Lie algebra u,,

[m;dan,l, xﬁ;ﬂxn,lan] = xfﬁé@n, 1,5 € N,
we deduce the identities
f(mi172)f(xif2)8n = f(xij;jQ)am 1,7 €N

In more detail,

f(z :;+J2)a = U<xi+j On) = U([$;—2anflale—2xnflan]) = [U(xiz—zanflLU(le—anflan)]
= [f(@,—2001) + (@), 200 1), f(2), _o)xn—10,]
= [f@h_2)0n1, F(@]_5)xn10n] = [(@h_o)f(x],_5)00n
since [e(2!_90n_1), f(2)_5)Tn_10,] € [Pu_10n, Pu_10,] = 0. Therefore f@) = flat ) flad )
for all 4,j € N. This means that the map f =1+ .., \i0,_5: K[xn_g] — K[x,—2] is an au-
tomorphism of the polynomial algebra K[z, _»]. Since f(a:n,g) = Zp_o2 + A1, we must have

f =eM%-2 csh, ,. Replacing the automorphism ¢ by the automorphism f~'o, we may assume
that f = e, and so ¢/ = ¢ € E,,_;. By Lemma 4.11, ¢/ € im(x,) NE,_1 = {e}. Therefore,
I= Shn_2.

4. Notice that Sh,_o x E, C ker(res,). By (42), 7, = F,, x ker(res,). By statement 1,
Fn =F, x Sh,,_9 x E,,. Therefore, ker(res,,) = Sh,,_» x E,, and F,, = F,, x ker(res,,). O

It follows from the inclusion sh,,_; = X% -1 CF,, =1+ 9,1 K[[0,_1]] (see (33)) that

F, = sh,_; x F, (43)

where !, = 14+ 02_ | K[[0n_1]] = 1+ 62_, K[[6,,—1]] (see (33)). So,

ifi=1,...,n—1, _
F, = {f € 1402 K[[0n-1]] | f(pi;) = {fc(‘; . o T D wherepr € Progi= 1,

(44)
Moreover, F,, = [,5, ¢X%-1 ~ KN and I/, =[Ii>2 efon—1 ~ KN,
The next theorem describes the group G,, as an exact product of its explicit subgroups.

Theorem 4.13 Let 1 := (1 +t2K][[t]],") and J := (tK[[t]],+). Then for all n > 2,
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1. G =T" X (Tp, Xex (Shp—o X Fy, x Ey)) = TAutg (P)n Xex (F), x Ey),
2. Gy~ TAut g (Pp)p Xez (I x J772).

Proof. 1. The first equality follows from Theorem 3.8.(2) and Theorem 4.12.(1). The second
equality follows from the first one, the equality F,, = sh,_1 xF}, (see (43)) and Proposition 3.4.(3).

2. Statement 2 follows from statement 1 and the facts that F), ~ I and E,, ~ J"~2 (Corollary
4.10). O

In Section 5, Theorem 4.13 will be strengthen (Theorem 5.3). Roughly speaking, the exact
product will be replaced by a semi-direct product.

5 The group of automorphism of the Lie algebra u, is an
iterated semi-direct product

The aim of this section is to show that the group G,, is an iterated semi-direct product T"™

(UAutg (P,)n x (F,, x E;,)) (Theorem 5.3), that none of its subgroups TAutg (Py,)n, F, x E,,

F, xE,, F,,F,, E, and E, ; is a normal subgroup (Corollary 5.5), and to give characterizations

of the groups F,,, F/. and E,, of G,, in invariant terms (Proposition 5.6). The proof of the results
are based on the following two lemmas.

Lemma 5.1 Let ty € T" where A = (M,...,\,) € K*"; ei(s;) € E,,; wherei =2,...,n—1,
8; = Ejzl NijOl_ and Nij € K; and f =1+ Zkzl urdk_ € F,, where 8,1 = ad(0,,_1). Then

1 taeh(s)ty !t = ei(Nidy tasity ') € By where tasity ' = dis1 Aij/\;jlag'_l,

2 S = 14 s A 16y € B

3. If, in addition, f € F!, (i.e., py = 0) then tyfty' =1+ D k>2 e F ok e T

Proof. 1. Let o = tyel(s;)ty " and o’ := e} (\)\; Hasity '), Then o(2%9;) = 2°0; = o' (x°9;)
for all j # i and a € N~1. For all elements o € N?—1,

-1 ’ S
o: x%0; N AN 0, ei»g") 51 (20;) + A N8 (%) 0
B 200+ AT Nitasity (A () - A 0 = 290; + AA; ity (@)D, = o (248;).

Therefore, o = o’.

2 and 3. Straightforward. O

Let G be a group and a,b € G. Then [a,b] := aba='b~! is the (group) commutator of elements
a and b of the group G.

Lemma 5.2 Let 7 = %% € UAutg(Py), where as € P, and 1 < s < n; ei(s;) € E,; where
2<i<n-—-1,s = 2321 Nij0l_ and Nij € K; and f =1+ Zizl widt _, € F,, where p; € K and
On—1 =ad(0p—1). Then

esi(ai)On if g —

1. [ei(si), 7] = {e if s # .

e if1<s<n, i
s dl= {e—f'(an)an if s =n, where f'(an) := 32551 #i0n_1(an).
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0j — Gud, ifj<s,

Proof. Recall that 7 : ¢, — x5 + a5, z; = x; for i # s, 9; — { In the

arguments below, the decomposition w,, = @&, P;_10; is often used.
1. Since €'(—s;) = €/(s;) 7!, the equality in statement 1 is equivalent to the equality

—si(as) fs—i
st = ¢ O e
e if s # 1.

Notice that [¢/(s;) 71, 7] = €/(s;) - 7€/ (s;)77 L. Let e} = el(s;) and o = 7ef7~L. We consider three
cases separately: s < i, s =1, and s > i.

Case 1: s < i. We have to show that 0 = /. The automorphisms 7! and e, respect the
vector spaces V_ := @1<;«;Pj—10; and Vi 1= ®;<j<n,Pj_10; (i.e., the vector spaces are invariant
under the action of the automorphisms). Moreover, the automorphism e} acts as the identity map
on both of them, hence so does the automorphism o. In particular, o|v_gv, = €jlv_gv, . For all
elements o € Ni—1,

o: x%0; Tb;; 7 Hz™)0; »e—; 7 Hx%0;) + 57 H(x) 0,
o 290 + s H(2®)0, = 2%0; + si(2*)0, = €l(x70;)

since 7s;(x) = s;7(x®) as s < i. Therefore, o = €.

Case 2: s = i. We have to show that ¢ := [¢[!(s;), 7] = e~*:(@:)9n,
The automorphisms 7, €; and £ := e—%1(@:)% yregpect the vector space V.., hence so do the

automorphisms o and ¢. Moreover, the automorphisms e} and £ act on V as the identity map.
In particular, c|y, =&|v,. Let 1 < j <iand a € NN=1. Then

o 71 o da; e 1, aaai
c:z%9; — w (aj+a—xjai)qT YHaz20;) + si(x oz,

= T_l(xaaj) + xaajsi(ai)an }l> xaaj + xaajsi(ai)an = (Ea(aj + @sl(al)&l)

)On

= 2%(9; + 9;si(a;)0n) = £(x0;),

since 7(x*9;s;(a;)) = x*9;si(a;) as x*9;s;(a;) € P;_1. Finally, for all elements o € N*~1,

c: 2%, = %9, Y x%0; + s;(x*)0, o 20, + 75;(z%)0n
et
= 2%0; + 5,(x*)0, = e (x%0;) > x%0; = £(xD;).
Therefore, ¢ = €.
Case 3: s > i. We have to show that ¢ = e/. The automorphisms 71 and € respect the

subspace V = @,x;P;j_10; of u,. Moreover, ej|yy = idy. Therefore, oy = idy = €}|y. For all
elements o € N*~1,

-

o x%9; * Tﬁl(mo‘)&- + 7'71(550‘)8aS a0 5 et

g, —1 an. e’
(,masfx 0; +x 8%05»47' (%0;) + si ()0,

o 290 + 5i(2%)0, = el(x%0;)

since 70,771 = 7(8;) = 0; — gif 05 and 7F1(z%) = 2% (since s > i and a € Ni~1). Therefore,
o =el. '

2. Case 1: 1 < s < n. In this case, 70,17 ! = 0,,_1, and s0 76,1 = 6,—17. This implies
that the maps 7 and f =1+ Y., ;65 commute.

Case 2: s = n. Let ¢ := [1,f]. In this case, both automorphisms 7 and f respect the
vector space P, 10,. Moreover, the automorphism 7 acts as the identity map on it, hence so
does the automorphism c¢. Clearly, the automorphism e~f "(@n)dn acts as the identity map on
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P,_19,,. Therefore, ¢|p, ,5, = e @) |p 5 Consider the action of the automorphism ¢ on
the elements 2%9; where « € N~ and 1 <i < n,

1 _
cowtdn B at0 T 04 G0 B e w0 + 1150, = w00 + a0 (G20,
T da, af' n —f
o a0 + f/(a%i)a”) =2%(0; + %an) = e (@) (g,
Then ¢ = ¢~ f'(@)0n [
Statements 1 and 2 of Lemma 5.2 can be rewritten as follows (where 2 <i <n —1)
Si(as)aneasas lf s=1
ei(s;)e® el (s) "L = © ’ 45
(st el(s) ™ =4 e (15)
as0s .
a9y p—1 _ )€ if 1 <s<n,
fe f - {e(an"l‘f/(an))an — ef(anan) e ef(an)an lf s =n. (46)

Recall that the map P,_10,, — Pn._1, pO, — p, is a u,-module isomorphism. Under this iso-
morphism the action of the element 9,1 on the ideal P, 10, of the Lie algebra u,, which is
On—1 = ad(9,—1), becomes the partial derivative d,,—1 on the polynomial algebra P,_;1. So, the
expression f(a,) in (46) makes sense, it simply means (1 + f/)(a,).

The next theorem is one of the main results of the paper.

Theorem 5.3 Let [ := (1+ t?K[[t]],-) and J := (tK[[t]],+). Then for all n > 2,
1. G, =T" x (UAutg(P,), x (F), x E,)).
2. Gp = T" x (UAutg(Pp)y x (I x J772).
3. UAutg (P,)n is a normal subgroup of the group G,,.
4. Up = UAutg (Pp), x (Fr, x Ey,).

Proof. 3. Statement 3 follows from statement 1.
1. By Proposition 3.4.(4), UAutg (P,)n = Tn Xex Shp—1 = Tn Xex (Shp—o X shy,_1). By (43),
F,, = sh,_1 x F,,. Then, by Theorem 4.13.(1),

Gn = T"x (T, Xex (Shp_o xsh, 1 xF, xE,)) =T" x (UAutg(Pp)n Xex (F), X Ey))
— T & (UAutg (Po)n % (F. x E,)), by (45) and (46).

2. Statement 2 follows from statement 1 (see Theorem 4.13.(2)).
4. Statement 4 follows from the obvious inclusion UAutg (P,), x (F), x E,) C U, statement
1 and Proposition 3.1.(2). O

Corollary 5.4 1. The group T, :={[0,...,0,a,]| a, € m,_1} = ™19 is a normal subgroup
of the groups G, and UAutg (Py,)y.

2. UAutg (Pp)n = UAwtg (Ph—1) X T, C G, (this is the equality of subgroups of Gy,).
3. Gp/T) =T" x (UAutg (P,—1) xF), x E,).

Proof. 2. Statement 2 is obvious.

1. Statement 1 follows from statement 2, the equalities (45) and (46), and Theorem 5.3.(1).

3. Statement 3 follows from Theorem 5.3.(1) and statement 2. OJ

We say that subgroups E and F' of a group G commute if ef = fe for all elements e € F and
f € F. By (45), the subgroups 7,/ and E,, commute.

Corollary 5.5 1. The group TAutg (Py), is not a normal subgroup of the group G,.
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2. None of the groups F}, x E,,, F, xE,, F,,, F,,; E, and E,,; where2<i<n—1 andn >3
is a normal subgroup of the group G,,.

Proof. The corollary follows from Theorem 5.3.(1), Lemma 5.1 and Lemma 5.2. [

A formula for multiplication of two elements of the group G,,. Since the group G, is the
iterated semi-direct product of four groups and one of them is UAutx (P, ), which is also a semi-
direct product of n of its subgroups, the multiplication in the group G,, looks messy. Surprisingly,
it looks less messy than one might expect when we change the order in the presentation of an
element of the group G,, as a product of four automorphisms. By Theorem 5.3.(1), every element
o of G,, can be written as the product

o=rte [’ (47)
where 7 = [ay,...,a,] = e ...em% ¢ UAuty(P,), and a; € P;_y for i = 1,...,n — 1 and
an € Mp_1; t = tr,,.n,) € T € = ey(s2)---e;,_1(sp—1) € E, where s; = 221 vi;0]_, €
01 K([[0i1]] fori=2,...,n—1and v; € K; and f' = [[;up %1 =14+ 3 o, pldl_, € F, =
1+ 02_,K[[0n—1]]- To make notations simpler and computations more transparent we write [a;]
for e®% sometimes.

¢ f'lar, ..., an](€ /)~ = eF @)+ EI s:@dulg g 1] = (G @)FEIS si@)Onfq,
(48)
In more detail, the second equality is obvious. Using (45) and (46) we obtain the first one:
ef'lay,...,;a.)ef)™ = € flanlar,. .., an_1](€f) = Flan)f " €ar, ... an_1]e ™t

ef/(an)an . e’[an,l]e’_l . e/[ai]e/—l . e/[aﬂe/—l caq
ef/(an)an . esnfl(anfl)an [anfl] - esi(ai)an [az] . 632(a2)6n [az] -ay

e(f'(an)JrZ?!gl si(ai))On [a17 e ,an—l].

Let 01 = mit1€} f{ be another element of the group G,, where 7 = [b1,...,b,]. Then using (48)
we obtain the formula for multiplication in the group G,:

ooy = rel (FIH) e+ 10Dy, (1) -t 'Wtfl(el)ell 'wtfl(f/)f{ (49)

where w, -1 (9) =t gty.

Characterizations of the subgroups F,,, F/ and E,. By (Corollary 3.12, [2]), the ideal
T2y =Kzp 10, + ZaeN”,g Kx%0, is the least ideal of the Lie algebra u,, which is a faithful
U, —1-module (with respect to the adjoint action). Hence, its predecessor I n-2 = Y cyn—2 Kz%0,
is the largest ideal of the Lie algebra u,, which is not a faithful u,,_;-module. By (Corollary 5.4,
[2]), the ideal P,_10, is the least ideal I of the Lie algebra u, such that the Lie factor algebra
u,, /I is isomorphic to the Lie algebra u,,_;. The next proposition gives characterizations of the
groups F,,, F/ and E,.

Proposition 5.6 Let n > 2. Then
1. T, = Fixg, (Wp—1 + Lyn—241) where Iyn—241 = Krp 105 + Y cnn—2 K20y,
2. F, = Fixg, (Wn—1 + Lyn—2) where Iyn—2 =3 cyn2 Kx“0,.
3. E, = Fixg, (Dy, + P,—10,) where D, =" K0;.

Proof. 1. Let R be the RHS of the equality in statement 1. The inclusion F), C R is obvious.
Since O1,...,0, € uUp—1 + L n-2,1, we have the inclusion R C Fixg, (01,...,0,) = Fn. By
Theorem 4.12.(1),

Fn=Sh, o xF, xE, =Sh, 2 x (sh,_1 xF,)) xE, =Sh,,_1 xF, x E,.
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Now, R = F,, x (RN (Sh,—1 x E,)). By looking at the action of the elements of the group
Sh,,_1 X E,, on the elements 102, £20s, ..., x,_10, of the Lie algebra u,,_1 4+ I,n-2,1, we conclude
that RN (Sh,—1 x E,,) = RNE,. Every element of the group E,, is uniquely determined by its
action on u,_;. Therefore, RNE, = {e}, ie., R=TF),.

2. Let R be the RHS of the equality in statement 2. Since up_; + I,n-—2 C U1 + Iyn—241,
F!, = Fixg, (up—1 + Iyn-241) C Fixg, (up—1 + I,n-2) = R, by statement 1. Clearly, sh,_; C R.
Therefore, F,, = sh,—; x F,, C R. Since &1,...,0, € up_1 + I, n—2, we have the inclusion
R C Fixg,, (01,...,0,) = Fpn. By Theorem 4.12.(1), F,, = Sh,,_o xF,, X E,,. Now, R=F, x (RN
(Sh,,—2 X E,,)). By looking at the action of the elements of the group Sh,,_o x E,, on the elements
2102,%203, . ..,Tn_20,_1 of the Lie algebra u,_1 + I, n—2, we conclude that RN (Sh,_2 x E,,) =
RNE,. Every element of the group E,, is uniquely determined by its action on u,_;. Therefore,
RNE, ={e}, ie, R=F,.

3. Let R be the RHS of the equality in statement 3. Then E,, C R. Clearly, R C Fixg, (01,...,0,) =
Fn=5Sh, o xF, xE,. Now, R=E, x (RN (Sh,_2 xF,)) =E, since RN (Sh,_2 x F,,) = {e},
by looking at the action of the group Sh,_o x F,, on the ideal P,_10,. O

6 The canonical decomposition for an automorphism of the
Lie algebra u,

By Theorem 4.13.(1), every automorphism o € G, = T" X (T, Xex (Shy—o X F,y x Ey,)) is the
unique product o = trsfe’ wheret € T", 7 € 7,, s € Sh,,_», f € F,, and ¢’ € E,,. This product is
called the canonical decomposition for the automorphism o € G,,. It is a trivial observation that
every automorphism of a Lie algebra is uniquely determined by its action on any generating set
for the Lie algebra. Our goal is to find explicit formulas for the automorphisms ¢, 7, s, f and
¢’ via the elements {o(s)|s € S,,} where S,, is a certain set of generators for the Lie algebra u,
(Theorem 6.1).

Theorem 6.1 Letn > 2.

1. The set S, = {81, 210s,...,2)_,0;,...,2) _,8,|j € N} is a set of generators for the Lie
algebra ., .

2. Let 0 € Gy, and o = trsfe’ be its canonical decomposition. Below, explicit formulas are
given for the automorphisms t, 7, s, f and €' via the elements {c(s)|s € S, }.

(a) t = t(n,,..x,) where o(0;) = A;lai + -+ fori=1,...,n where the three dots mean
smaller terms with respect to the ordering (i.e., an element of ®;~;P;j_10;);
(b) 7: P, = Py, x; = x,, where 2} = x1 and x}, := ¢i_1¢pi—a-- - d1(x1) fori =2,...,n;
'k
¢ = Zkzo(—l)kxg! Ok and 8 :=t"10(0;) fori=1,...,n—1;

() f=14F oy fib_, where 6, 1 = ad(@u 1), fi € K and f;dy = D1 (t7) o(22520,)
where ®,,_1 := Zkzo(—l)kx%l5ﬁ_1 and 0,—1 = ad(Op—_1)-

(d) s(x;) =x;+p; fori=1,...,n—2 where (¢7f) Lo(2;0;11) = wiOis1 +1;0i11+ - (the
three dots denote an element of ®;j~;P;j_10;);

(e) by (37) and (38), ¢’ = €5 - - - €;,_; is the unique product where €] € Ep ; fori=2,...,n—
1, and, forall j=1,....,n and o € N 71,
z%0; + 5i(x%) 00 if j =i,

) {z“aj it

where s; = X0y vigdl 1, viy € K, vy = @a((tmsf) 7o = (SR, @iy =
z"
Yeso (D) =E0F ) and 61 = ad(9;-1).
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Proof. 1. We use induction on n > 2. The initial case n = 2 is obvious as the set S is a K-basis
for the Lie algebra us. Suppose that n > 2 and the result holds for all n’ < n. By induction,
Sp—1 is a set of generators for the Lie algebra u,_;. Notice that u, = u,_; ® F,_10, and, for
all elements a € N*~2 and j € N, 2%27_ 8, = [2°8,_1,(j + 1)~ 2’ d,]. To finish the proof of
statement 1 notice that S,, = S,y U {2’ _,8,|j € N} and the set of elements {z*z’ ,9,} is a
K-basis for the vector space P,,_19,,.

2. Statement (a) is obvious (Proposition 3.1). For all elements i = 1,...,n, sfe(d;) = 0;
(since sfe € F,, Theorem 4.12.(1)). Then 7(8;) = 7sfe(d;) = t 10(9;) and statement (b)
follows from Theorem 3.6.(2). The automorphisms s and e’ act as the identity map on the
vector space V := K[z, 1]0,. Therefore, flyy = fse'ly = sfe'ly = (tr)"loly : V — V and
F=1+> .5, fi6l_, for some scalars f; € K. By Proposition 4.4, f;0, = @n_l(tr)’la(x"i—!*lﬁn).
This finishes the proof of statement (c).

For all elements i =1,...,n — 2,

(t7f) o (2i0ig1) = se(z0i1) = s(2i0it1 + -+ ) = pibip1 + Tibig1 + -+,
and statement (d) follows.

By (37) and (38), ¢ = eh---¢),_; is the unique product where e, € E,,; for i = 2,...,n — 1,

n—1

and, for all j =1,...,n and o € N/ 71,

vy = {70 i
x*0; if j #14,

where s; = 37~ v;;0]_; and v;; € K. For each i =0,...,n — 1,

(e = Dlgjwivjo; = (t75f) 7 0 = D kfas 11 : K[#i-1]0; = K[2;-1)0n, pd; — 5i(p)0y

where p € K[z;_1]. By Proposition 4.4, v;;0,, = ®;_1((trsf) to — 1)(963'].]181-). O

7 The adjoint group of automorphisms of the Lie algebra
Uy

The aim of this section is to show that the adjoint group A(u,) of automorphisms of the Lie
algebra u,, is equal to the group UAutg (P,), (Theorem 7.1).

Let G be a Lie algebra over the field K and LN(G) be the set of locally nilpotent elements of
the Lie algebra G. Recall that an element g € G is called a locally nilpotent element if the inner
derivation ad(g) of the Lie algebra G is a locally nilpotent derivation. The set LN(G) is an Aut g (G)-

invariant set. Each locally nilpotent element ¢ yields the automorphism e?d(9) .= Yoo adglg)l of

the Lie algebra G which is called an inner automorphism of the Lie algebra G. The subgroup
of Autx(G), A(G) := (e |a € LN(G)), is called the adjoint group (of automorphisms) of
the Lie algebra G. The adjoint group A(G) is a normal subgroup of the group Autg(G) since
oe?d(9)g=1 = ¢2d(7(9) for all automorphisms o € Autg(G).

The aim of this section is to prove the next theorem.

Theorem 7.1 1. A(G) = UAutg(P,)y.

2. The map UAutg (P,), — A(G), e® +— €29 s the identity map where a € !, (recall that
UAutg (Py)n C Gp), i-e., for all elements u € u,, eue™® = (0 (y).

The proof of Theorem 7.1, which is given at the end of the section, is based on the following
proposition that is interesting on its own.

The Lie algebra Derg(P,) is a left P,-module, and so P,u, C Derg(P,). The polynomial
algebra P, is a left Der g (P, )-module and a left u,-module. The action of an element 6 € Der g (P,,)
on the polynomial algebra P, is denoted either by ¢ * p or §(p). Every element u € u, is a locally
nilpotent derivation of the polynomial algebra P, (Proposition 2.1.(4)). Then e* € Autg (P,).
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Proposition 7.2 Let u,v € u,, and p € P,,. Then
1. e*(v*p) = W (v) x e (p) (where e* € Autg(P,)).
2. 24 (y) = etve™* (where 2™ € G, ).
3. 2 (py) = e (p)erd(v).

Proof. 1.

e“(vxp) = (Z %Z)U(p) = l, ‘ <Z> ad(u)? (v)u' (p)

2. Recall that e " € UAutg (P, )n. In statement 1, replacing the polynomial p by the polynomial
e~"(p), we have the equality e“ve " % p = ¢*4(")(v) x p, for all polynomials p € P,. Therefore,
etve = 24 ().

3. For all natural numbers s > 0, ad(u)®(pv) = 0, u*(p) = 0 and ad(u)’(v) = 0. So, the
infinite sums below are finite sums:

) = (X 20 = 3 55 (4 wltrdta )
i>0 i>0  j=0
W ad(u)F
>3 Ly

i>0 j+k=i

(v) = e"(p)e™(v). D

Proof of Theorem 7.1. 1. By Proposition 3.2, the map u, — UAutg(P,), u — €%, is a
bijection. In particular, UAutg(P,) = {e"|u € u,}. By Proposition 3.3.(2), the map (where
v E Uy)

exp : UAutg (P,) — Gy, €' (v eve™),

is a group homomorphism such that ker(exp) = sh,, and im(exp) ~ UAutg (P,,)/sh, = UAut (P )n-
By Proposition 7.2.(2), e“ve™* = ¢4 (v) for all elements u,v € u,. It follows from this fact
that, for all elements uq,...,us € u,,

e2d(u) L gad(us) (1)) — Ui gUsg(et ... gls) L,

By Proposition 3.2.(2), e ---e% = e for some element u € u,. Then, e2d(®1) ... ead(w)(y) =
etve ", ie., eddm) ... ead(ws) ¢ UAuty(Pp)n.
2. Statement 2 follows from Proposition 7.2.(2). O
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