

This is a repository copy of *Antarctic palaeo-ice streams*.

White Rose Research Online URL for this paper: http://eprints.whiterose.ac.uk/79407/

Version: Accepted Version

Article:

Livingstone, S.J., Cofaigh, C.O., Stokes, CR et al. (3 more authors) (2012) Antarctic palaeo-ice streams. Earth Science Reviews, 111 (1-2). 90 - 128. ISSN 0012-8252

https://doi.org/10.1016/j.earscirev.2011.10.003

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy solely for the purpose of non-commercial research or private study within the limits of fair dealing. The publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White Rose Research Online record for this item. Where records identify the publisher as the copyright holder, users can verify any specific terms of use on the publisher's website.

Takedown

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

Antarctic palaeo-ice streams

2 3	Stephen J. Livingstone* ¹ , Colm Ó Cofaigh ¹ , Chris R. Stokes ¹ , Claus-Dieter Hillenbrand ² , Andreas Vieli ¹ , Stewart S.R. Jamieson ¹
4	¹ Department of Geography, Durham University, South Road, Durham, U.K.
5	² British Antarctic Survey, Cambridge, U.K.
6	* Email correspondance: <u>s.j.livingstone@durham.ac.uk</u>
7	
8	ABSTRACT
9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26	We review the geomorphological, sedimentological and chronological evidence for palaeoice streams on the continental shelf of Antarctica and use this information to investigate basal conditions and processes, and to identify factors controlling grounding-line retreat. A comprehensive circum-Antarctic inventory of known palaeo-ice streams, their basal characteristics and minimum ages for their retreat following the Last Glacial Maximum (LGM) is also provided. Antarctic palaeo-ice streams are identified by a set of diagnostic landforms that, nonetheless, display considerable spatial variability due to the influence of substrate, flow velocity and subglacial processes. During the LGM, palaeo-ice streams extended, via bathymetric troughs, to the shelf edge of the Antarctic Peninsula and West Antarctica, and typically, to the mid-outer shelf of East Antarctica. The retreat history of the Antarctic Ice Sheet since the LGM is characterised by considerable asynchroneity, with individual ice streams exhibiting different retreat histories. This variability allows Antarctic palaeo-ice streams to be classified into discrete retreat styles and the controls on grounding-line retreat to be investigated. Such analysis highlights the important impact of internal factors on ice stream dynamics, such as bed characteristics and slope, and drainage basin size. Whilst grounding-line retreat may be triggered, and to some extent paced, by external (atmospheric and oceanic) forcing, the individual characteristics of each ice stream will modulate the precise timing and rate of retreat through time.
28	Antarctica; ice stream; grounding-line retreat; glacial geomorphology; deglacial history
30	1. INTRODUCTION
31 32 33 34 35 36	Ice streams are corridors of fast-flowing ice within an ice-sheet and are typically hundreds of kilometres long and tens of kilometres wide (Bennett, 2003). Their high velocities enable them to drain a disproportionate volume of ice and they exert an important influence on the geometry, mass balance and stability of ice sheets (e.g. Bamber et al. 2000; Stokes & Clark, 2001). Recent observations of ice streams in Antarctica and Greenland have highlighted their considerable spatial and temporal variability at short (sub-decadal) time-scales and include

37 acceleration and thinning, deceleration, lateral migration and stagnation (Stephenson & Bindschadler, 1988; Retzlaff & Bentley, 1993; Anandakrishnan & Alley, 1997; Conway et al. 38 2002; Joughin et al. 2003; Shepherd et al. 2004; Truffer & Fahnestock, 2007; Rignot, 2008; 39 Wingham et al. 2009). The mechanisms controlling the fast and variable flow of ice streams 40 and the advance and retreat of their grounding lines are, however, complex (Vaughan and 41 42 Arthern, 2007) and a number of potential forcings and factors have been proposed. These include: (i) oceanic temperature (Payne et al. 2004; Shepherd et al. 2004; Holland et al. 2008; 43 Jenkins et al. 2010); (ii) sea-level changes (e.g. Hollin, 1962); (iii) air temperatures (Sohn et 44 al. 1998; Zwally et al. 2002; Parizek & Alley, 2004; Howat et al. 2007; Joughin et al. 2008); 45 (iv) ocean tides (Gudmundsson, 2007; Griffiths & Peltier, 2008, 2009); (v) subglacial 46 bathymetry (Schoof, 2007); (vi) the formation of grounding zone wedges (Alley et al. 2007); 47 (vii) the availability of topographic pinning points (Echelmeyer et al. 1991); (viii) the routing 48 of water at the base of the ice sheet (Anandakrishnan and Alley, 1997; Fricker et al. 2007; 49 Stearns et al. 2008; Fricker & Scambos, 2009); (ix) the ice stream's thermodynamics 50 (Christoffersen and Tulaczyk, 2003a; b); and (x) the size of the drainage basin (Ó Cofaigh et 51 al. 2008). Resolving the influence of each of these controls on any given ice stream 52 53 represents a major scientific challenge and it is for this reason that there are inherent uncertainties in predictions of future ice sheet mass balance (IPCC, 2007; Vaughan and 54 Arthern, 2007). 55

An important context for assessing recent and future changes in ice streams and the controls 56 on their behaviour is provided by reconstructions of past ice stream activity. It has been 57 recognised that ice streams leave behind a diagnostic geomorphic signature in the geologic 58 record (cf. Dyke & Morris, 1988; Stokes & Clark, 1999) and this has resulted in a large 59 number of palaeo-ice streams being identified, mostly dating from the last glacial cycle and 60 from both marine (e.g. Shipp et al. 1999; Canals et al. 2000; Evans et al. 2005, 2006; Ó 61 Cofaigh et al. 2002, 2005a; Ottesen et al. 2005; Mosola & Anderson, 2006; Dowdeswell et al. 62 2008a; Graham et al. 2009) and terrestrial settings (e.g. Clark & Stokes, 2001; Stokes & 63 Clark, 2003, Winsborrow et al. 2004; De Angelis & Kleman, 2005, 2007; Ó Cofaigh et al. 64 2010a). The ability to directly observe the beds of palaeo-ice streams has also allowed 65 scientists to glean important spatial and temporal information on the processes that occurred 66 at the ice-bed interface and on the evolution of palaeo-ice streams throughout their glacial 67 history. 68

Over the last two decades, there has been a burgeoning interest in marine palaeo-ice streams, particularly off the coast of West Antarctica and around the Antarctic Peninsula. This has focused primarily on identifying individual ice stream tracks in the geologic record and deciphering their geomorphic and sedimentary signatures to reconstruct their ice-flow history and the timing and rate of deglaciation (e.g. Wellner et al. 2001; Canals et al., 2000; Lowe & Anderson, 2002; Ó Cofaigh et al. 2002; Graham et al. 2009). In this paper, we aim to collate this information and provide a new and complete inventory of published accounts of Antarctic palaeo-ice streams. In synthesising the literature, we present an up-to-date chronology of the retreat histories of various ice streams and use the geomorphic evidence to elucidate the various 'styles' of ice-stream retreat (e.g. Dowdeswell et al. 2008; Ó Cofaigh et

69

70

71

72

73

74

75

76

77

78

al. 2008). The processes that trigger and control the retreat of marine palaeo-ice streams remains a key research question in glaciology and one that has important implications for constraining future modelling predictions of contemporary ice-stream retreat and contributions to sea-level. By summarising the key characteristics of each Antarctic palaeo-ice stream, including their bathymetry and drainage basin area, geology and geomorphology, relationships between the inferred/dated retreat styles and the factors that control ice stream retreat are investigated. A further aim, therefore, is to provide a long term context for many present-day ice streams, which previously extended onto the outer continental shelf (e.g. Conway et al. 1999) and, crucially, provide spatial and temporal information on ice stream history for initialising and/or testing ice sheet modelling experiments (cf. Stokes & Tarasov, 2010).

2. PALAEO ICE-STREAM INVENTORY

Ice streams can be simply classified according to their terminus environment. Terrestrial ice streams terminate on land and typically result in a large lobate ice margin whereas marine-terminating ice streams flow into ice shelves or terminate in open water, where calving results in the rapid removal of ice and the maintenance of rapid velocities (cf. Stokes and Clark, 2001). With this classification in mind, all palaeo-ice streams in Antarctica (and, indeed, their contemporary cousins) were marine-terminating and, at the LGM, extended across the continental shelf with most of their main trunks below present sea level. Therefore, Antarctic palaeo-ice streams could be viewed as a sub-population of ice streams with specific characteristics.

Evidence for such marine palaeo-ice streams is based on the geomorphology of glacial landforms preserved in bathymetric troughs on the modern Antarctic shelf, which are identified from multibeam swath bathymetry and side-scan sonar data. This seafloor geomorphological data has been complemented by high resolution seismic studies of acoustic stratigraphy as well as sediment cores from which subglacial and glacimarine lithofacies have been both identified and dated. These techniques have enabled diagnostic geomorphological, sedimentological and geotechnical criteria of ice streaming to be identified (see Stokes & Clark, 1999, 2001). They include the presence of mega-scale glacial lineations (MSGL), abrupt lateral margins, evidence of extensively deformed till, focused sediment delivery to the ice stream terminus and characteristic shape and dimensions. Antarctic marine palaeo-ice streams are also located in cross-shelf bathymetric troughs (Wellner et al. 2006), often associated with grounding zone wedges (GZW) within the troughs (e.g. Mosola & Anderson, 2006) and occasionally associated with voluminous sediment accumulations, i.e. trough mouth fans (TMF), on the adjacent continental slope (e.g. Ó Cofaigh et al. 2003; Dowdeswell et al. 2008b).

The first glacimarine investigations in Antarctica utilised echosounder data, till petrographic studies and seismic data to reconstruct the expansion of grounded ice across the continental shelf during the last glaciation (e.g. Kellogg et al. 1979; Anderson et al. 1980; Orheim & Elverhøi, 1981; Domack, 1982; Haase, 1986; Kennedy & Anderson, 1989). The advent of

hull-mounted and deep-tow side-scan sonar and especially multibeam swath bathymetry was 120 a critical development for reconstructing palaeo-ice sheets because, for the first time, marine 121 glacial geomorphic features could be easily observed and palaeo-ice streams identified 122 (Pudsey et al. 1994; Larter & Vanneste, 1995; O'Brien et al. 1999; Shipp et al. 1999; Canals 123 et al. 2000, 2002, 2003; Anderson & Shipp, 2001; Wellner et al. 2001; Ó Cofaigh et al. 2002, 124 2003, 2005a,b; Lowe & Anderson, 2003; Dowdeswell et al. 2004a,b; Evans et al. 2004, 2005; 125 Heroy & Anderson, 2005). More recently, these datasets have culminated in the release of 126 regional, high resolution (~1 km) bathymetric grids aggregated from existing depth soundings 127 along the continental shelf (Nitsche et al. 2007; Bolmer, 2008; Graham et al. 2009, in press; 128 Beaman et al. 2010). They provide an important morphological context and can be utilised as 129 boundary conditions in numerical modelling experiments. Additionally, in order to improve 130 and augment existing databases, a novel method of using mammal dive-depth data has 131 recently been demonstrated (Padman et al., 2010). 132

In Table 1, we present the first comprehensive inventory of Antarctic palaeo-ice streams and 133 the main lines of evidence that have been used in their identification. Figure 1 shows the 134 location of each of these ice streams. This inventory includes palaeo-ice streams whose 135 existence has been proposed in the literature on the basis of several lines of evidence, and 136 which are fairly robust, but also more speculative palaeo-ice streams where there are 137 distinctive cross-shelf bathymetric troughs. The majority of palaeo-ice streams are located in 138 West Antarctica and the Antarctic Peninsula region, where most research on this topic has 139 been conducted; and the associated geological evidence suggests that the ice sheet extended 140 at least close to the continental shelf edge at the LGM (cf. Heroy & Anderson, 2005; Sugden 141 et al. 2006) (Fig. 1). The western Ross Sea may be considered as an exception to this, 142 because here the geological evidence indicates that the grounding lines of the former 143 Drygalski and JOIDES-Central Basin ice streams only reached the outer shelf (Licht, 1999; 144 Shipp et al. 1999; Anderson et al. 2002). It has to be kept in mind, however, that ice feeding 145 into these two palaeo-ice streams was mainly derived from the East Antarctic Ice Sheet (e.g., 146 Farmer et al. 2006). A paucity of marine geological data, from the southern Weddell Sea shelf 147 specifically, means the ice extent at the LGM in that region is poorly-defined (e.g. Bentley & 148 Anderson 1998). Diamictons recovered from cores and interpreted as tills (Fütterer & Melles, 149 1990; Anderson & Andrews 1999), in conjunction with terrestrial data constraining palaeo-150 ice-sheet elevation (Bentley et al. 2010), suggest that grounded ice extended locally onto the 151 outer Weddell Sea shelf during the last glacial cycle. However, it is unclear whether the 152 WAIS grounded in Ronne Trough at the LGM (Anderson et al. 2002), and there are 153 conflicting conclusions about grounding of ice in Crary Trough (Fütterer & Melles, 1990; 154 Anderson et al. 2002; Bentley et al. 2010). 155

The picture in East Antarctica is less clear, although from current evidence it is thought that ice expanded only as far as the mid to outer shelf (see Anderson et al. 2002 for a detailed overview). This is best demonstrated in Prydz Channel, where sea-floor topography in conjunction with sediment core stratigraphy constrain the maximum extent of the grounding line of the Lambert Glacier during the last glaciation to ca. 130 km landward of the shelf edge (Table 1) (Domack et al. 1998; O'Brien et al. 1999, 2007).

162

163

164165

166

167

168

169

170

171

172

3. BASAL CHARACTERISTICS OF ANTARCTIC PALAEO ICE STREAMS

The basal conditions beneath ice streams are critical in controlling both the location and the flow variability of ice streams. By studying the former flow paths of ice streams, we can directly observe the ice stream bed at a variety of scales and can therefore acquire important information on basal conditions of the ice sheet, such as basal topography, bed roughness, geological substrate and sediment erosion, transport and deposition. In this section, we review the basal characteristics of Antarctic palaeo-ice streams in order to investigate possible substrate controls on ice stream flow and grounding line retreat. The following section then assesses the timing and rate of palaeo-ice stream retreat, using a new compilation of deglacial dates from around the Antarctic continental shelf.

173

174

175

176

177

178179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

3.1 Bathymetry and Drainage Basin

3.1.1 Theoretical and modelling studies

In the 1970s, the paradigm of marine ice sheet instability emerged with a number of theoretical studies. These studies identified the 'buttressing' effect of ice shelves as a critical control on the stability of ice-stream grounding lines. It was argued that removal of ice shelves from around the largely marine-based West Antarctic Ice Sheet (WAIS) could trigger catastrophic grounding-line retreat (Mercer, 1978; Thomas, 1979). Further retreat might, theoretically, be irreversible because the bed of the WAIS deepens inland (Weertman, 1974; Thomas & Bentley, 1978; Thomas, 1979). There are two elements to this theory and it is therefore useful to distinguish between the roles of: (i) ice-shelf butressing as a (de)stabilizing mechanism; and (ii) marine ice-sheet instability sensu stricto. Supporting evidence for both the 'marine ice-sheet instability hypothesis' and the critical importance of ice-shelf buttressing has been reported from the Amundsen Sea sector of the West Antarctic Ice Sheet (Shepherd et al. 2004), smaller glaciers on the Antarctic Peninsula (De Angelis & Skvarca, 2003; Rignot et al. 2004) and Jakobshavns Isbrae in the Greenland Ice Sheet (Joughin et al. 2004), all of which have accelerated and/or thinned following significant melting or collapse of buttressing ice shelves. Recent numerical ice-sheet modelling studies have also suggested that ice streams on reverse slopes are inherently unstable and can propagate the rapid collapse of an ice sheet (e.g. Schoof, 2007; Nick et al. 2009; Katz & Worster, 2010). Basal topography is, therefore, thought to exert a fundamental control on icestream and tidewater glacier stability (Vieli et al. 2001; Schoof, 2007; Nick et al. 2009; Katz & Worster, 2010). However, well-documented examples from the palaeo-record indicate that rapid grounding-line retreat does not necessarily occur on reverse slopes (Shipp et al. 2002; Ó Cofaigh et al. 2008; Dowdeswell et al. 2008a). This dichotomy indicates that existing models of ice stream retreat may be failing to capture the full complexity of grounding line behaviour, perhaps as a result of oversimplified boundary conditions (e.g. basal or lateral geometry), or as a result of limitations in the physical processes incorporated in the models (e.g. ice shelf buttressing or lateral and longitudinal stress components). One suggestion is

that in the case of some ice streams that are grounded on reverse-sloping beds, resistive 'back 202 stresses' afforded by pinning points, and 'side drag' by trough width and relief may exert a 203 supplementary modulating effect on ice-stream stability (Echelmeyer et al. 1991, 1994; 204 Whillans & van der Veen, 1997; Joughin et al. 2004). Indeed, modelling studies have 205 demonstrated that ice shelves can act to stabilise the grounding line on a reverse slope 206 (Weertman, 1974; Dupont, 2005; Walker, 2008; Goldberg, 2009). In addition, Gomez et al. 207 (2010) demonstrate that gravity and deformation-induced sea-level changes local to the 208 grounding-line can act to stabilize ice sheets grounded on reverse bed slopes. Basal friction is 209 also an important component in the force balance of an ice stream (Alley, 1993a; MacAyeal et 210 al. 1995; Siegert et al. 2004; Rippin et al. 2006) and bed roughness and the presence of 211 'sticky-spots', such as bedrock bumps, can exert a strong influence on ice-sheet dynamics 212 (see Stokes et al. 2007 for a review). 213

3.1.2 Empirical evidence

214

229

230

231

232

233

234

235

236

237

238

239

240241

242

243

Table 2 provides a synthesis of the key physiographic data of each palaeo-ice stream in our 215 new inventory (see Fig. 1 and Table 1). All of the Antarctic palaeo-ice streams identified in 216 the literature are topographically controlled, with landforms pertaining to fast-flow restricted 217 to cross-shelf bathymetric troughs (e.g. Evans et al. 2005). This 'control' on ice stream 218 location exposes a classic 'chicken-and-egg' situation, whereby it is hard to discern whether 219 the palaeo-ice streams preferentially occupied pre-existing troughs, or whether the troughs 220 formed as a consequence of focused erosion during streaming (cf. Winsborrow et al. 2010). 221 222 Certainly, some palaeo-ice streams exhibit a strong tectonic control, such as the Gerlache-Boyd palaeo-ice stream, which flowed SW-NE along the Bransfield rift through the Gerlache 223 Strait before turning sharply west into the Hero Fracture Zone across Boyd Strait (cf. Canals 224 et al. 2000). However, it is clear that the cross-shelf bathymetric troughs were repeatedly 225 occupied by ice streams over multiple glacial cycles (e.g. Larter & Barker, 1989, 1991; 226 Barker, 1995; Bart et al. 2005) and would certainly have predisposed ice stream location in 227 more recent glacial periods (ten Brink & Schneider, 1995). 228

It is also apparent from Table 2 that there is considerable spatial variation in physiography between Antarctic palaeo-ice streams. Lengths range between 70 and 400 km, widths from 5 to 240 km and drainage basin areas from 23,000 km² to 1.6 million km². This variability is demonstrated by the difference between the eastern Ross Sea palaeo-ice streams, which occupy very broad troughs (100-240 km) with low-relief intervening ridges (>500 m deep) (Mosola & Anderson, 2006) and the Gerlache-Boyd palaeo-ice stream, which is controlled by a deep (up to 1200 m) and narrow (5-40 km) trough, heavily influenced by the underlying geological structure (Canals et al. 2000, 2003; Evans et al. 2004; Heroy & Anderson, 2005). Thus, the Gerlache-Boyd palaeo-ice stream may expect to be influenced more by 'drag' from its lateral margins and topographic 'pinning points'. Indeed, this is supported by the geomorphic evidence, with Smith Island on the outer-shelf interpreted to have acted as a barrier to ice flow (Canals et al. 2003), while large bedrock fault scarps and changes of relief within the main trough are associated with thick wedges of till, which are therefore thought to have acted as pinning points (Heroy & Anderson, 2005). On the Pacific margin of the Antarctic Peninsula, Biscoe (Amblas et al. 2006), Anvers-Hugo Island (Pudsey et al. 1994;

Domack et al. 2006) and Smith (Pudsey et al. 1994) troughs are also disrupted by a narrow, 244

elongate structural ridge (at ~300 m water depth) known as the "Mid-Shelf High" (Larter & 245

Barker, 1991). A number of East Antarctic troughs, such as Astrolabe-Français, Mertz-Ninnes 246

and Mertz troughs along Adelié Land, are also characterised by a shallower sill at the 247

continental shelf edge (Beaman et al. 2010). 248

261

249 The majority of the Antarctic palaeo-ice streams retreated across reverse slopes (Table 2; Fig. 2) probably created by repeated overdeepening of the inner shelf by glacial erosion over 250 successive glacial cycles (ten Brink & Schneider, 1995). The obvious exceptions to this are 251 the central Bransfield Basin palaeo-ice streams (Lafond, Laclavere and Mott Snowfield), 252 which exhibit steep normal slopes on the inner shelf and then dip gently towards the shelf-253 break (650-900 m) (Canals et al. 2002), whilst a number of the troughs have a seaward 254 dipping outer shelf, such as Belgica Trough (Fig. 2c) (Hillenbrand et al. 2005; Graham et al. 255 in press). On the outer shelf in Pine Island Bay, Graham et al. (2010) correlated phases of 256 rapid retreat with steeper reverse bed-slopes (local average of -0.149°), while lower angled 257 258 slopes (local average of -0.015°) have been associated with temporary still-stands and GZW formation. This observation lends credence to model experiments proposing sensitivity of ice 259 streams to bed gradients (e.g. Schoof, 2007). However, and as noted above, the inferred slow 260

retreat of some of the ice-streams since the LGM (e.g. JOIDES-Central Basin: Shipp et al.

1999; Ó Cofaigh et al. 2008) suggests that additional complexity exists. 262

In a comparison of four Antarctic palaeo-ice streams, Ó Cofaigh et al. (2008) proposed that 263 drainage basin size could be a key control on ice-stream dynamics. Geomorphic evidence for 264 slow retreat from the outer shelf of JOIDES-Central Basin is reconciled with two large 265 drainage basins (1.6 million km² and 265,000 km²) (Table 2) feeding the palaeo-ice stream 266 from East Antarctica (Farmer et al. 2006; Ó Cofaigh et al. 2008). In contrast, rapid retreat of 267 the Marguerite Bay palaeo-ice stream (Ó Cofaigh et al. 2002, 2005b, 2008; Kilfeather et al. 268 2010) is suggested to relate to the much smaller size of its drainage basin (10,000-100,000 269 km²), which is likely to have been much more sensitive to external and internal forcing. 270 Additionally, it is also likely that basal conditions, such as basal melting and freezing rates 271 (e.g. Tulaczyk & Hossainzadeh, 2011), and climatic conditions, such as precipitation (e.g. 272 Werner et al. 2001), were quite different between the Antarctic Peninsula and Ross Sea 273 sectors, and therefore may have contributed to the different retreat histories. 274

While some palaeo-ice streams consist of just one central trunk (e.g. Lafond, Laclavere and 275 Mott Snowfield: Canals et al. 2002), others have multiple tributaries (in an onset zone) that 276 converge into a central trough on the mid-outer shelf (e.g. Robertson palaeo-ice stream: 277 Evans et al. 2005; Getz-Dotson Trough: Graham et al. 2009, Larter et al. 2009; Gerlache-278 Boyd palaeo-ice stream: Canals et al. 2000, 2003; Evans et al. 2004; Biscoe palaeo-ice 279 stream: Canals et al. 2003) (see Fig. 1; Table 2). In Robertson Trough, competing ice-flows 280 from multiple tributaries (Prince Gustav channel, Greenpeace trough, Larsen-A & -B and 281 BDE trough) have left behind a palimpsest geomorphic signature of up to four generations of 282 cross-cutting MSGL, indicating switches in ice-flow direction (Camerlenghi et al. 2001; 283 Gilbert et al. 2003; Evans et al. 2005; Heroy & Anderson 2005). Clearly, the characteristics of 284 the ice stream's catchment area are likely to influence its behaviour in that an ice stream with 285

several tributaries with different characteristics (e.g. bathymetry) might retreat in a fundamentally different way from one which has a single tributary. Such differences are an important consideration when attempting to predict the future behaviour of ice streams in Greenland and Antarctica and, undoubtedly, add considerable complexity when attempting to model the behaviour of ice streams and resolve subglacial topography in ice sheet models.

3.2 Geology/Substrate

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324325

326

327

Many contemporary ice streams have been shown to be underlain by a soft, dilatant deformable sediment layer (Alley et al. 1987; Blankenship et al. 1987; Engelhardt et al. 1990; Smith, 1997; Anandakrishnan et al. 1998; Engelhardt & Kamb, 1998; Kamb, 2001; Studinger et al. 2001; Bamber et al. 2006; King et al., 2009). However, there is still uncertainty surrounding the exact contribution of the deforming layer to ice stream motion (i.e. basal sliding vs. sediment deformation), the thickness of the deforming layer, and the till rheology (i.e. viscous or plastic) (Alley et al. 2001). This is complicated by the spatial and temporal variability in bed properties that can characterise ice stream beds and has led both palaeo and contemporary scientists to propose a 'mosaic' of basal sliding and deformation to reconcile the often conflicting sedimentary evidence (Alley, 1993b; Piotrowski & Kraus, 1997; Clark et al. 2003; Piotrowski, 2004; D.J.A. Evans et al. 2006; Smith & Murray, 2008; King et al. 2009; Reinardy et al. 2011b). Crucially, Antarctic palaeo-ice streams present a useful opportunity to integrate bed properties over large spatial scales, enabling more complete descriptions of substrate characteristics beneath ice streams and its importance in controlling ice stream flow and landform development.

The majority of palaeo-ice streams in West Antarctica are characterised by a transition from crystalline bedrock on the inner shelf to unconsolidated sedimentary strata on the middle and outer shelf (Shipp et al. 1999; Wellner et al. 2001, 2006; Lowe & Anderson, 2002, 2003; Ó Cofaigh et al. 2002, 2005a; Canals et al. 2002, 2003; Evans et al. 2004, 2005, 2006; Anderson & Oakes-Fretwell, 2008; Graham et al. 2009; Weigelt et al. 2009). It has been suggested that this transition is crucial in modulating the inland extent of ice streams (Anandakrishnan et al. 1998; Bell et al. 1998; Studinger et al. 2001; Peters et al. 2006) and this is supported by palaeo-landform models that show a geomorphic transition from inferred slow flow over bedrock, to drumlins at the zone of acceleration (corresponding to the crystalline bedrockunconsolidated sediment transition) and then into the high velocities of the main ice stream trunk, as recorded by MSGL (Canals et al. 2002; Ó Cofaigh et al. 2002, 2005a; Shipp et al. 1999; Wellner et al. 2001; Evans et al. 2006; and see section 3.3.8). However, this relationship between substrate and ice velocities is complicated by observations of highly elongate bedforms within the zone of crystalline bedrock in the Marguerite Bay and Getz-Dotson troughs (Ó Cofaigh et al. 2002; Graham et al. 2009). Furthermore, the substrates of the palaeo-ice streams offshore of the Sulzberger Coast, in Smith Trough and in the upstream section of the Gerlache-Boyd palaeo-ice stream are primarily composed of crystalline bedrock, and spectacular parallel grooves (up to 40 km long) are incised into the bedrock (Canals et al. 2000; Wellner et al. 2001, 2006; Heroy & Anderson 2005). Indeed, a transition from stiff till on the inner shelf to deformation till on the outer shelf in Robertson Trough, East Antarctic Peninsula, has also been associated with a change in basal processes (from

basal sliding to deformation) and an increase in ice velocity (Reinardy et al. 2011b). The 328 time-dependent changes in freezing-melting and thermo-mechanical coupling between the ice 329 and the underlying sediment will play an important role in modulating ice flow, bedform 330 genesis and retreat rates and yet we only see a time-integrated subglacial imprint. Thus, given 331 the limited information about subglacial sediments (i.e. in sediment cores), we can only really 332 speculate about these processes from the palaeo-ice stream records. 333

Clearly, the underlying geology exerts an important control on the macro-scale roughness of 334 an ice-stream bed, which influences the frictional resistance to ice flow, with rougher areas 335 likely to act as 'sticky-spots' and reduce flow velocities. As a result, bed roughness of 336 Antarctic palaeo-ice streams tends to increase inland, i.e. upstream towards the onset zone 337 (Fig. 2; and also see Graham et al. 2009, 2010), and is therefore in accordance with radio-338 echo sounding evidence from below contemporary ice streams (Siegert et al. 2004). This 339 change in roughness is typically driven by a transition from bedrock (inner shelf) to 340 unconsolidated sediment (outer shelf) and therefore supports the notion that ice stream flow 341 342 may be controlled by underlying geology and its roughness (Siegert et al. 2004, 2005; Bingham & Siegert, 2009; Smith & Murray, 2009; Winsborrow et al. 2010). Incidentally, it is 343 surprising that so few studies have taken advantage of the now-exposed palaeo-ice stream 344 beds to provide a more detailed assessment of subglacial roughness, similar to those that have 345 been undertaken from sparse radio-echo-sounding flight-lines and localised studies from 346 beneath the ice (e.g. Siegert at al., 2004). 347

3.2.1. Till characteristics and associated deposits

348

363

364

365

366

367

368

349 One of the recurrent features identified from geophysical investigations on the Antarctic continental shelf is an acoustically transparent sedimentary unit (Fig. 3) that is confined to 350 cross-shelf troughs previously occupied by palaeo-ice streams and that underlies the post-351 glacial sedimentary drape (Ó Cofaigh et al. 2002, 2005a,b, 2007; Dowdeswell et al. 2004; 352 Evans et al. 2005, 2006; Mosola & Anderson, 2006; Graham et al. 2009). This unit is 353 underlain by a prominent subbottom reflector that ranges in thickness from 1-30 m, is 354 typically associated with MSGL, and consists of soft (shear strengths typically <20 kPa), 355 massive, matrix-supported diamicton (cf. Ó Cofaigh et al. 2007). The acoustically transparent 356 unit comprises diamicton that has been interpreted as both a subglacial deformation till 357 (Anderson et al. 1999; Shipp et al. 2002; Dowdeswell et al. 2004; Hillenbrand et al. 2005, 358 2009, 2010a; Ó Cofaigh et al. 2005a,b; Evans et al. 2005, 2006; Heroy & Anderson, 2005; 359 Mosola & Anderson 2006; Graham et al. 2009; Smith et al. 2011) and as a "hybrid" till 360 formed by a combination of subglacial sediment deformation and lodgement (Ó Cofaigh et al. 361 2007). 362

The geometry of the basal reflector underlying the acoustically transparent unit ranges from smooth and flat to irregular and undulating (Fig. 3) (Ó Cofaigh et al. 2005b, 2007; Evans et al. 2005, 2006). It has been hypothesised that an undulating basal reflector is indicative of an origin by grooving (Evans et al. 2006; Ó Cofaigh et al. 2007), whereby keels at the ice-sheet base (consisting of ice or rock) mobilise, erode and deform the underlying sediment (cf. Canals et al. 2000; Tulaczyk et al. 2001; Clark et al. 2003). In contrast, a smooth, flat, basal

reflector is thought to result from the mobilization of underlying stiff till into a traction carpet of soft till and its advection downstream (Ó Cofaigh et al. 2005b, 2007). Penetration of the subbottom reflector by sediment cores reveals a much stiffer (>98 kPa in Marguerite Bay) and less porous, massive and matrix-supported diamicton (Shipp et al. 2002; Dowdeswell et al. 2004; Ó Cofaigh et al. 2005b, 2007; Evans et al. 2005, 2006; Mosola & Anderson, 2006; Graham et al. 2009), which has been either interpreted as a lodgement till (Wellner et al. 2001; Shipp et al. 2002) or a 'hybrid' lodgement-deformation till (Ó Cofaigh et al. 2005b, 2007; Evans J. et al. 2005; Evans D.J.A. et al. 2006; Reinardy et al. 2011a). The genesis of the overlying soft till is thought to result from reworking of underlying stiff till and pre-existing sediments (Evans et al. 2005; Ó Cofaigh et al. 2005b, 2007; Hillenbrand et al. 2009; Reinardy et al. 2009, 2011a).

Geotechnical and micromorphological evidence (Ó Cofaigh et al. 2005b, 2007; Reinardy et al. 2011a) from troughs on the shelf east and west of the Antarctic Peninsula indicates that shear is concentrated within discrete zones between the stiff and soft till, up to 1.0 m thick. This implies that deformation is not pervasive throughout the soft till (Ó Cofaigh et al. 2005b, 2007; Reinardy et al. 2011a). Nonetheless, geophysical evidence for large-scale advection of the soft till implies that these localised shear zones can integrate to transport significant volumes of sediment beneath palaeo-ice streams (Ó Cofaigh et al. 2007; cf. Hindmarsh, 1997, 1998). Such transport is also manifest in the formation of substantial depocentres, both in the form of grounding-zone wedges on the shelf and trough mouth fans on the continental slope (Larter & Vanneste, 1995; Bart et al. 1999; Shipp et al. 2002; Canals et al. 2003; Ó Cofaigh et al. 2003; Mosola & Anderson, 2006; Dowdeswell et al. 2008b).

Deglacial sediment facies can provide important information on the style of retreat and depositional processes occurring at the grounding line. The thickness of the deglacial sediment unit has been used as a crude proxy for the retreat rate, with its absence or thin units, such as those from Marguerite Trough (typically <0.7 m) and troughs in the central and eastern Ross Sea (<1.0 m), suggesting rapid retreat of the palaeo-ice streams (Ó Cofaigh et al. 2005b, 2008; Mosola & Anderson, 2008). However, these authors acknowledge that sediment supply and bathymetric configuration also play important roles in controlling the deposition of deglacial sediments (cf. Leventer et al. 2006). Thus, a 'deglacial unit' may appear thick in a trough area, where an ice-shelf could be sustained for a long time (e.g. because of available pinning points or in an embayment) which may be completely unrelated to the retreat rate of the grounding-line. Conversely, deglacial (and open-marine) sediments in Belgica Trough are extremely thin, suggesting a rapid retreat, but this is contradicted by the bedform evidence and radiocarbon chronology (Ó Cofaigh et al. 2005a; Hillenbrand et al. 2010a). There, current-induced winnowing is apparently responsible for a relatively thin postglacial sediment drape on the outer shelf (Hillenbrand et al. 2010a).

Many Antarctic palaeo-ice streams may have terminated in ice shelves during deglaciation (e.g. Pope & Anderson, 1992; Domack et al. 1999; Pudsey et al. 1994, 2006; Kilfeather et al. 2010). These include the Gerlache-Boyd system, Marguerite Trough, Belgica Trough, the Ross Sea troughs, Robertson Trough, Anvers Trough, Nielsen Basin and Prydz Channel (e.g. see Willmott et al. 2003). The corresponding sediments comprise glacimarine diamictons

and/or a granulated facies (consisting of pelletized sandy-muddy gravel) typically overlain by 411 mud (sometimes laminated), interpreted to record rainout of sediment from the base of an ice-412 shelf (Pudsey et al. 1994, 2006; Licht et al. 1996, 1998, 1999; Domack et al. 1998, 1999, 413 2005; Harris & O'Brien, 1998; Evans & Pudsey, 2002; Brachfeld et al. 2003; Evans et al. 414 2005; Ó Cofaigh et al. 2005, Hillenbrand et al. 2005, 2009, 2010a,b; Kilfeather et al. 2010; 415 Smith et al. 2011). Ice shelves may play an important role in buttressing and therefore 416 stabilizing the flow of marine palaeo-ice streams on a foredeepened bed (e.g. Dupont & 417 Alley, 2005, 2006; Goldberg et al. 2009), with their reduction or loss capable of inducing 418 rapid acceleration and collapse of the grounded ice (e.g. Rignot et al. 2004; Scambos et al. 419 2004). It is, therefore, important to identify the former presence of ice shelves when 420 reconstructing the history of palaeo-ice streams and constraining modelling experiments. In 421 Gerlache-Boyd Strait, for example, Willmott et al. (2003) used the great thickness (6-70 m) 422 of deglacial and post-glacial sediment to infer the retreat history of the ice stream. They 423 assumed that sedimentation rates are uniform along the trough and argued that the thickest 424 deposits in Western Bransfield Basin are thought to record the earliest decoupling of ice. In 425 contrast, the confined setting of the Gerlache Strait, where the postglacial sediment drape is 426 negligible, is thought to have helped sustain the presence of an ice stream for a longer period 427 (Willmott et al. 2003). This reconstruction was based on the assumption that sedimentation 428 rates are uniform along the trough. 429

430

431

3.3 Geomorphology

- 432 As noted above, Antarctic palaeo-ice streams exhibit a number of characteristic landforms,
- some of which have recently been observed beneath a modern-day West Antarctic ice stream
- 434 (e.g. Smith & Murray, 2008; King et al. 2009). These features are summarised in Table 3 and
- described in detail below in order to illustrate the range of landforms that are associated with
- ice stream flow and their implications for subglacial processes.

437 3.3.1 *Mega-scale glacial lineations*

Mega-scale glacial lineations (MSGLs) are present on all Antarctic palaeo-ice stream beds 438 439 with the exception of Smith Trough and Sulzberger Bay Trough, which are dominated by parallel bedrock grooves (see Tables 1 and 3) (e.g. Shipp et al. 1999, 2002; Canals et al. 2000, 440 2002, 2003; Anderson et al. 2001; Wellner et al. 2001; Ó Cofaigh et al. 2002, 2005a,b; Lowe 441 & Anderson, 2002, 2003; Dowdeswell et al. 2004; Evans et al. 2004, 2005, 2006; Graham et 442 al. 2009, 2010). It is hard to discern whether MSGLs are diagnostic of ice streams or whether 443 they are only preserved in the troughs and overprinted on the shallower shelf beyond the 444 trough margins by iceberg scours. MSGLs comprise parallel sets of grooves and ridges, with 445 elongation ratios >10:1 (and up to ~90:1), formed in soft, dilatant till (Fig. 4a) (cf. Wellner et 446 al. 2006 for a review). Crest-to-crest spacings are typically 200-600 m (mode: 300 m), with 447 widths and lengths up to 500 m and 100 km respectively and amplitudes of 2-20 m (cf. Heroy 448 & Anderson, 2005; Wellner et al. 2006), although considerable intra-ice stream variability 449 exists and a 'single' set of MSGL may have individual lineations of varying sizes, although it 450

is often not clear whether lineations of different age are preserved. Heroy & Anderson (2005) 451 discuss two outliers, which do not fit this morphometric categorisation of MSGLs: Biscoe 452 Trough has MSGLs with crest spacings of >1 km and the 'bundle structures' in the Gerlache-453 Boyd palaeo-ice stream have crest spacings of 1-5 km and amplitudes of up to 75 m (Canals 454 et al. 2000, 2003; Heroy & Anderson, 2005). According to Heroy & Anderson (2005), the 455 unusual size of the Gerlache-Boyd palaeo-ice stream MSGLs are thought to have resulted 456 from groove-ploughing (Clark et al. 2003) associated with the bedrock structure of the trough 457 and large changes in relief. Although primarily associated with a soft sedimentary substrate 458 typically found on the outer West Antarctic continental shelf, MSGLs from the Gerlache-459 Boyd palaeo-ice stream emanate from bedrock highs, and upstream portions (~9 km) of the 460 lineations are composed of bedrock (Canals et al. 2000; Clark et al. 2003; Heroy & Anderson, 461 2005). This link between MSGL initiation and bedrock highs has similarly been observed in 462 Biscoe Trough (Amblas et al. 2006) and also on the northern Norwegian shelf (Ottesen et al. 463 2008). 464

465

466

467

468

469

470

471

472

473

474

475

476477

478

479

480

481

482

483

484

485

486

487

488

489

3.3.2 *Grooved, gouged and streamlined bedrock*

Where the inner and mid shelf is composed of rugged crystalline bedrock, palaeo-ice streams often preferentially erode the underlying strata and create a gouged, grooved and streamlined submarine landscape (Fig. 4b) (Anderson et al. 2001; Wellner et al. 2001, 2006; Lowe & Anderson, 2002, 2003; Gilbert et al. 2003; Evans et al. 2004, 2005; Heroy & Anderson, 2005; Ó Cofaigh et al. 2005a,b; Amblas et al. 2006; Domack et al. 2006; Anderson & Oakes-Fretwell, 2008; Graham et al. 2009; Larter et al. 2009). Grooves and gouges tend to be concentrated along the axis of glacial troughs and reach lengths of >40 km with spacing of less than 10 m to over 1 km and amplitudes of a few metres up to >100 m (Wellner et al. 2006). Grooves with similar dimensions have been infrequently observed in terrestrial settings in the northern hemisphere (e.g. Jansson et al. 2003; Bradwell, et al. 2007, 2008) and these have typically been linked to the onset of streaming flow (cf. Bradwell et al. 2008). A genetic distinction must be applied between MSGLs formed in soft sediment and bedrock grooves, which can also exhibit elongation ratios >10:1. Grooved, gouged and streamlined bedrock are erosional landforms probably controlled, at least in part, by the underlying structural geology, as illustrated by the way the grooves often follow bedrock structures. Their association with palaeo-ice streams implies fast, wet-based ice flow (promoting high erosion rates) as a prerequisite for their genesis. Graham et al (2009) also suggest that, given typical erosion rates cited in the literature (e.g. Hallet et al. 1996; Koppes & Hallet, 2006; Laberg et al. 2009), the larger bedrock features would require high erosion rates over a sustained period of time. Thus, heavily eroded bedrock exhibiting grooving and streamlining could potentially indicate a legacy of repeated ice streaming over several glacial cycles or persistent ice-streaming during a single glacial cycle.

3.3.3 Drumlinoid bedforms

490 'Drumlinoid' bedforms, which in this paper encompass both bedrock (including roches moutonées and whalebacks) and sediment cored structures (though see Stokes et al., 2011), 491 are commonly found clustered on the inner shelf in crystalline bedrock and at the transition 492 between this bedrock and unconsolidated sediment further out on the shelf (Fig. 4c and Table 493 3) (Anderson et al. 2001; Camerlenghi et al. 2001; Wellner et al. 2001, 2006; Canals et al. 494 2002; Ó Cofaigh et al. 2002, 2005a,b; Lowe & Anderson, 2002; Gilbert et al. 2003; Evans et 495 al. 2004, 2005; Heroy & Anderson, 2005; Domack et al. 2006; Mosola & Anderson, 2006; 496 Graham et al. 2009; Larter et al. 2009). Drumlins observed on the inner Antarctic continental 497 shelf are principally formed in bedrock, although not ubiquitously as demonstrated by 498 sediment cored drumlins in Eltanin Bay (upstream section of Belgica Trough) and the central 499 Ross Sea troughs (Wellner et al. 2001, 2006). At the bedrock-sediment transition, crag-and-500 tail bedforms are also prevalent (e.g. directly offshore from the Getz Ice Shelf and in 501 Marguerite Bay) with their stoss ends formed in bedrock and their attenuated tails grading 502 into sediment (Wellner et al. 2001, 2006; Ó Cofaigh et al. 2002; Heroy & Anderson, 2005; 503 Graham et al. 2009). 504

The formation of drumlins and crag-and-tail landforms at this substrate transition has been 505 related to accelerating/extensional flow at the onset of an ice stream (Wellner et al. 2001, 506 2006; Mosola & Anderson, 2006). Many drumlins are associated with crescentric 507 overdeepenings around their stoss sides (e.g. Wellner et al. 2001, 2006; Ó Cofaigh et al. 2002, 508 2005a,b; Lowe & Anderson, 2002; Gilbert et al. 2003; Heroy & Anderson, 2005; Graham et 509 al. 2009) and these are generally thought to result from localised meltwater production, 510 possibly due to pressure melting (cf. Wellner et al. 2001; Ó Cofaigh et al. 2002, 2005a,b, 511 2010b). The role of meltwater in the formation of drumlins is, however, contentious (e.g. see 512 Shaw et al. 2008; Ó Cofaigh et al. 2010b), with the geomorphic evidence failing to reconcile 513 whether crescentric overdeepenings formed synchronously with, or subsequent to, drumlin 514 genesis (cf. Ó Cofaigh et al. 2010b). 515

516 3.3.4 *Grounding Zone Wedges*

Grounding zone wedges ('till deltas'), characterised by a steep distal sea-floor ramp and 517 shallow back-slope are common features of Antarctic palaeo-ice stream troughs (Table 3 and 518 Fig. 4d) (Larter & Vanneste, 1995; Vanneste & Larter, 1995; Anderson, 1997, 1999; Bart & 519 Anderson, 1997; Domack et al. 1999; O'Brien et al. 1999; Shipp et al. 1999, 2002; Lowe & 520 Anderson, 2002; Canals et al. 2003; Howat & Domack, 2003; Evans et al. 2005; Heroy & 521 Anderson, 2005; Ó Cofaigh et al. 2005a,b, 2007; McMullen et al. 2006; Mosola & Anderson, 522 2006; Graham et al. 2009, 2010). They are composed of diamicton and are typically tens of 523 kilometres long and tens of meters high (with GZWs in the Ross Sea up to 100 m high) with 524 an acoustic signature which often includes inclined structures truncated by a gently dipping 525 overlying reflector and capped by an acoustically transparent sedimentary unit, similar in 526 geometry to Gilbert-style deltas (e.g. Alley et al. 1989; Domack et al. 1999; Shipp et al. 1999; 527 Ó Cofaigh et al. 2005a). These features are interpreted as grounding zone wedges (GZWs) 528 529 that are generally thought to have formed by the subglacial transport and then deposition of deformation till at the grounding-line during ice stream still-stands (Alley et al. 1989; 530 O'Brien et al. 1999; Anandakrishnan et al. 2007). Whilst the capping unit reflects the direct 531

emplacement of basal till at the ice stream bed, the inclined structures may relate to glacimarine sedimentation proximal to the grounding line, in particular deposition from

sediment gravity flows.

An alternative interpretation presented by Christoffersen et al. (2010) highlights the role of 535 basal freezing in the entrainment of sediment into basal ice layers (cf. Christoffersen & 536 Tulaczyk, 2003). During stagnant phases of ice stream cycles, sediment is accreted in the ice 537 via basal freezing, while during subsequent phases of fast ice-stream flow the sediment is 538 transported to the grounding line and GZWs formed by melt-out of this basal debris 539 (Christoffersen et al. 2010). MSGLs are commonly formed on the GZW surface, thereby 540 demonstrating the persistence of streaming flow during the last phase of their formation (e.g. 541 Ó Cofaigh et al. 2005a; Graham et al. 2010). Where MSGLs terminate at the wedge crest, the 542 GZW is interpreted to have formed during episodic retreat of the ice stream (e.g. Ó Cofaigh 543 et al. 2008). In contrast, GZWs completely overridden by MSGL, such as in outer Marguerite 544 Trough, obviously document an advance of the ice stream over the wedge (Ó Cofaigh et al. 545 2005b). A paucity of MSGLs across the surface of a prominent GZW in Trough 5 of the Ross 546 Sea combined with the presence of intervening morainal ridges gives evidence for a slow 547 phase of ice-stream retreat (Mosola & Anderson, 2006). 548

The formation and size of GZWs is likely to be a function of sediment supply vs. duration of 549 time the ice was grounded at the same position (Alley et al. 2007). Calculated subglacial 550 sediment fluxes from modelled, palaeo- and contemporary ice streams generally range 551 between 100 and 1000 m³ yr⁻¹ per meter wide (Alley et al. 1987, 1989; Hooke & Elverhøi, 552 1996; Tulaczyk et al. 2001; Shipp et al. 2002; Bougamont & Tulaczyk, 2003; Dowdeswell et 553 al. 2004a; Anandakrishnan et al. 2007; Laberg et al. 2009; Christoffersen et al. 2010), 554 although fluxes as high as 8000 m³ yr⁻¹ per meter wide have been estimated for the 555 Norwegian Channel Ice Stream (Nygård et al. 2007) and several 10s of thousands m³ yr⁻¹ per 556 meter width for the M'Clintock Channel Ice Stream in the Canadian Arctic (Clark and 557 Stokes, 2001). In order to generate and sustain this magnitude of sediment flux, subglacial 558 transport must be dominated by till deformation distributed over a considerable thickness 559 (>10 cm) (e.g. Alley et al. 1989; Bougamont & Tulaczyk, 2003; Anandakrishnan et al. 2007) 560 or via debris-rich basal ice layers (Christoffersen et al. 2010). Given these likely range of 561 estimates, GZWs tens of km's long and tens of metres thick would typically take ~100-562 10,000 years to form (e.g. Alley et al. 1987, 1989; Anandakrishnan et al. 2007; Larter & 563 Vanneste 1995; Graham et al. 2010). 564

Significantly, it has also been proposed that sedimentation at the grounding line and resultant GZW formation could cause temporary ice stream stabilization against small sea-level rises (Alley et al. 2007) similar to processes observed at tidewater glacier termini (Powell et al. 1991). This could act as a positive feedback mechanism with the proto-formation of a GZW stabilising the grounding line and therefore promoting further sediment deposition.

570 3.3.5 *Moraines*

In contrast to large GZWs, relatively small transverse ridges composed of soft till, with 571 amplitudes of 1-10 m, spacings of a few tens to hundreds of metres, and overprinted by 572 MSGLs have been identified in the JOIDES-Central Basin and troughs of the eastern Ross 573 Sea (Table 3) (Shipp et al. 2002; Mosola & Anderson, 2006; Ó Cofaigh et al. 2008; 574 Dowdeswell et al. 2008). In JOIDES-Central Basin, the ridges are found everywhere except 575 the inner-most shelf and are typically 1-2 m high, symmetrical, closely spaced and straight 576 crested (Shipp et al. 2002). In the eastern Ross Sea, the ridges are larger, straight to sinuous in 577 plan form, and with orientations that are oblique or transverse to ice flow (Fig. 4e) (Mosola & 578 Anderson, 2006). These smaller transverse ridges presumably reflect lower volumes of 579 sediment transported to the grounding line and/or, possibly, lower ice velocities (i.e. slow 580 retreat recessional moraines). 581

These ridges are interpreted as time-transgressive features formed at the grounding line by deposition and/or sediment pushing during minor grounding-line re-advances and stillstands, possibly on an annual cycle (Shipp et al. 2002). Their formation is thus consistent with De Geer moraine formation as identified in other marine-ice sheet settings (e.g. Ottesen & Dowdeswell, 2006; Todd et al. 2007). If the ridges were annually deposited, the retreat rate of the ice stream in JOIDES-Central Basin would have been ca. 40-100 m yr-1, which is consistent with independent dating controls (Domack et al. 1999; Shipp et al. 2002). In Lambert Deep, transverse ridges with scalloped edges have also been identified as push moraines formed during minor re-advances (O'Brien et al. 1999). Similar ridges have been identified in Prydz Channel (Table 3), although these features wedge out against the sides of flutes, are parallel between flutes, and display a convex geometry landward (O'Brien et al. 1999). These features are interpreted as sediment waves formed by ocean circulation in a subice shelf cavity that had formed immediately after the floating of the formerly grounded ice sheet (O'Brien et al. 1999). In Pine Island Trough, transverse ridges are observed along the entire width of the trough, with amplitudes of 1-2 m and wavelengths of 60-200 m (Jakobsson et al. 2011). These bedforms are referred to as 'fishbone moraine' and are interpreted to have formed during the distintegration of an ice shelf. Each ridge is thought to represent one tidal cycle in which the remnant ice shelf lifted, moved seaward and then subsided onto the sea floor, squeezing sediment out to form a ridge (Jakobsson et al. 2011). A similar tidal mechanism has been proposed for ridges formed within iceberg scours in the Ross Sea (Wellner et al. 2006).

3.3.6 Subglacial meltwater drainage networks

582

583

584585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

The distribution and flow of water beneath an ice sheet is an important control on ice 604 dynamics. This is demonstrated by observations that the water pressure beneath Whillans Ice 605 Stream, West Antarctica, is almost at flotation point (Engelhardt & Kamb, 1997; Kamb, 606 2001). Basal lubrication can promote fast ice streaming by lowering the effective pressure, 607 either within a soft, dilatant till layer, thus permitting deformation and/or sliding along the 608 surface (e.g. Alley et al. 1986, 1987, 1989b; Engelhardt et al. 1990; Engelhardt & Kamb, 609 610 1997; Tulaczyk et al. 2000); or in association with a spatially extensive subglacial hydraulic network, which can develop on both hard and soft beds. The form of this drainage network 611 has been variously described as a thin film (Weertman, 1972), a linked-cavity system (Kamb, 612

1987) and a channelized system of conduits incised either into the ice, sediment or bedrock 613 (Rothlisberger, 1972; Nye, 1976; Alley, 1989; Hooke, 1989; Clark & Walder, 1994; Walder & 614 Fowler, 1994; Fountain & Walder, 1998; Ng, 2000; Domack et al. 2006). In Antarctica, the 615 drainage network is likely to be further modulated by the routing of water from active 616 subglacial lakes beneath the ice sheet (Fricker et al. 2007; Stearns, 2008; Carter et al. 2009; 617 Smith et al. 2009). There has been a growing recognition that the subglacial hydrodynamics 618 of the ice sheet system exhibits considerable spatial and temporal variability (Kamb, 2001; 619 Wingham et al. 2006; Fricker et al. 2007), which is also consistent with recent observations 620 from beneath Rutford Ice Stream (Smith et al. 2007; Murray et al. 2008; Smith & Murray, 621 2008). Palaeo-ice stream beds provide a useful opportunity to describe the form, type and size 622 of subglacial meltwater networks and to examine their evolution both downflow, and over 623 both soft and hard substrates. 624

Extensive networks of relict subglacial meltwater channels and basins incised into crystalline 625 bedrock have been identified on the inner shelf sections of Anvers-Hugo Island Trough, 626 627 Marguerite Trough, Pine Island Trough and Dotson-Getz Trough (Anderson & Shipp, 2001; Anderson et al. 2001; Ó Cofaigh et al. 2002, 2005b; Lowe & Anderson, 2003, 2003; Domack 628 et al. 2006; Anderson & Oakes-Fretwell, 2008; Graham et al. 2009; Nitsche & Jacobs 2010). 629 There is also evidence of localised water flow from crescentric overdeepenings around the 630 stoss ends of drumlins (section 3.3.3). Relict hydrological networks associated with palaeo-631 ice streams are shown to exhibit variable forms, with the rugged bedrock of the innermost 632 shelf characterised by large isolated basins (e.g. Marguerite Bay, Anderson & Oakes-Fretwell, 633 2008), some of which have been interpreted as former subglacial lakes (e.g. Palmer Deep, 634 Anvers-Hugo Island Trough, Domack et al. 2006). 635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

Also present on the inner shelf of Marguerite and Pine Island troughs are tunnel valleys and anastomosing channel-cavity systems (Fig. 4f), which tend to follow the deepest portions of the bed, possibly along structural weaknesses and indicate a well organised subglacial drainage network (Lowe & Anderson, 2002, 2003; Domack et al. 2006; Anderson & Oakes-Fretwell, 2008; Graham et al. 2009). The largest tunnel valleys are up to 25 km long, 4.5 km wide and incise up to 450 m into the underlying substrate (Graham et al. 2009). Lowe & Anderson (2002, 2003) show that the anastomosing network in Pine Island Bay breaks down seaward into a dendritic channel system more aligned to the inferred former ice-flow direction. This progressive evolution and organisation in subglacial meltwater flow seems to be analogous to channel networks along palaeo-ice stream beds elsewhere in West Antarctica (Domack et al. 2006; Anderson & Oakes-Fretwell, 2008). Isolated straight and radial channels also occur across bedrock highs and along the flanks of basins (e.g. Anderson & Oakes-Fretwell, 2008). It has been suggested that, similar to the erosional bedforms on the inner shelf (section 3.3.2), the subglacial meltwater channel networks may have formed over multiple glacial cycles, possibly since the Mid-Miocene (Lowe & Anderson 2003; Smith et al. 2009).

In contrast to the discrete subglacial meltwater channel networks incised into the crystalline bedrock of the inner shelf, evidence of meltwater flow across the sedimentary substrate of the middle to outer shelf is largely absent or undetectable. Possible exceptions include a

meltwater channel and small braided channels at the mouth of Belgica Trough (Noormets et 655 al. 2009) and a large tunnel valley in Pennell Trough, western Ross Sea (Wellner et al. 2006). 656 Gullies and channels on the continental slope in-front of the glacial troughs (Table 3) were 657 interpreted to have formed by the drainage of sediment-laden meltwater from ice grounded at 658 the shelf break (Wellner et al. 2001, 2006; Canals et al. 2002; Dowdeswell, et al. 2004b, 659 2006, 2008b; Evans et al. 2005; Heroy & Anderson, 2005; Amblas et al. 2006; Noormets et 660 al. 2009) and therefore may demonstrate the evacuation of meltwater from the substrate. 661 However, erosion of these gullies and channels solely by turbidity current activity and/or the 662 down-slope cascading of dense shelf water masses has also been proposed (e.g., Michels et 663 al. 2002; Dowdeswell et al. 2006, 2008b; Hillenbrand et al. 2009; Muench et al. 2009), whilst 664 the role of groundwater outflow at the continental slope may also be significant (Uemura et 665 al. 2011). 666

3.3.7 Trough Mouth Fans

667

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

Trough Mouth Fans (TMFs) are large sedimentary depo-centres on the continental slope and 668 rise, located directly offshore of the mouth of palaeo-ice stream troughs (Vorren & Laberg et 669 al. 1997). They form over repeated glacial cycles due to the delivery of large volumes of 670 glacigenic sediment from the termini of fast flowing ice streams grounded at the shelf-break. 671 TMFs on the Antarctic continental margin have been identified from seaward bulging 672 bathymetric contours, large glacigenic debris-flow deposits, and pronounced shelf 673 progradation observed in seismic profiles (e.g. Bart et al. 1999; Ó Cofaigh et al. 2003; 674 Dowdeswell et al. 2008b; O'Brien et al. 2007). 675

Compared to the northern hemisphere (e.g. Dowdeswell et al. 1996; Vorren et al. 1989, 1998; Vorren & Laberg, 1997), TMFs are relatively rare around the continental margin of Antarctica and, to date, have only been recognized at four localities (Table 3): Northern Basin TMF in the western Ross Sea (Bart et al. 2000), Belgica TMF in the southern Bellingshausen Sea (Ó Cofaigh et al. 2005a; Dowdeswell et al. 2008b), Crary TMF in the southern Weddell Sea (Kuvaas & Kristoffersen, 1991; Moons et al. 1992; Bart et al. 1999) and Prydz Channel Fan (Kuvaas & Leitchenkov, 1992; O'Brien 1994, 2007. In contrast, most sections of the Antarctic margin are dominated by gullies and channels eroded either by meltwater and/or dense shelf water flowing down-slope (see section 3.3.6), or by turbidity currents originating in debris flows (e.g. Dowdeswell et al. 2004b, 2006; Hillenbrand et al. 2009, Noormets et al. 2009), with debris-flow frequency depending on glacigenic sediment supply, shelf width and, crucially, the gradient of the continental slope (Ó Cofaigh et al. 2003). One explanation proposed to explain the absence of TMFs along many areas of the Antarctic margin is that the relatively steep slopes promote rapid down-slope sediment transfer by turbidity currents resulting in sediment bypass of the upper slope, thereby precluding formation of debris flow dominated TMFs by facilitating development of a gully/channel system (Ó Cofaigh et al. 2003). However, there is a 'chicken and egg' problem to this interpretation with TMFs typically creating shallow slopes, whereas the surrounding continental margin may have much steeper slopes.

3.3.8 Impact of contrasting retreat rates on ice stream geomorphology

The genetic association between subglacial bedforms and processes (see Section 3.3) has 696 allowed the rate of palaeo-ice stream retreat to be inferred from their geomorphic imprint. 697 Three distinctive suites of landform assemblage, each of which represents a characteristic 698 retreat style (rapid, episodic and slow) have been proposed, see Fig. 5 (Dowdeswell et al. 699 2008a; Ó Cofaigh et al. 2008). 700

Palaeo-ice streams characterised by the preservation of unmodified MSGLs that have not been overprinted by other glacial features and with a relatively thin deglacial sedimentary unit (Fig. 5) (e.g. Marguerite Trough) are consistent with rapid deglaciation. In contrast, a series of transverse recessional moraines and GZWs on the palaeo-ice stream bed indicate slow and episodic retreat, respectively (Fig. 5). In particular, De Geer-style moraines are diagnostic of slow retreat, with each ridge possibly representing an annual stillstand, such as in the JOIDES-Central Basin (Shipp et al. 2002; Dowdeswell et al. 2008a; Ó Cofaigh et al. 2008). When grounding-line retreat was slow, it is likely that a thick deglacial sequence, including sub-ice shelf sediments, would have been deposited, although this is dependent on sedimentation rates (e.g. Domack et al. 1999; Willmott et al. 2003; Ó Cofaigh et al. 2008).

Marine palaeo-ice stream landsystem model

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721 722

723

724

725

726

727

728

729 730

731

732

733

734

735

736

The general distribution of glacial landforms associated with a typical palaeo-ice stream on the Antarctic continental shelf (discussed throughout Section 3.3) is summarised in Fig. 6. This landsystem model (cf. Graham et al. 2009) illustrates the different glacial bedforms associated with crystalline bedrock and unconsolidated sediments and the seaward transition of glacial features and their inferred relative velocities (see also models presented by Canals et al. 2002; Wellner et al. 2001, 2006). Models initially highlighted the general down-flow evolution of bedforms associated with a corresponding increase in velocity (Ó Cofaigh et al. 2002), especially marked at the boundary between crystalline bedrock and sedimentary substrate (e.g. Wellner et al. 2001). More recent attempts to produce a conceptual model of the palaeo-ice stream landsystem have acknowledged the role of substrate in landform genesis. Graham et al. (2009) try to distinguish between a sedimentary substrate on the outer shelf where landforms are dominated by MSGL and record the final imprint of ice streaming, and the rugged bedrock-dominated inner-shelf where landforms, such as meltwater channels, bedrock-cored drumlins, and streamlined, gouged and grooved bedrock could have formed time-transgressively over multiple glaciations and therefore represent an inherited signal (Fig. 6). These authors also highlight the bedform complexity, especially on the inner shelf, with rough, bare rock zones (i.e. potential sticky spots) interspersed with patches of lineations composed of unconsolidated sediment (i.e. enhanced sliding/deformation), which collectively indicates a complicated mosaic of palaeo-flow processes.

Antarctic palaeo-ice stream beds also exhibit less variation in landform type and distribution when compared to northern hemisphere palaeo-ice sheet beds. For example, eskers have not been reported anywhere on the Antarctic shelf and ice stagnation features, such as kames, also appear to be absent, presumably because of the general lack of surface melting in Antarctica. Drumlin fields are also uncommon on Antarctic palaeo-ice stream beds, apart from bedrock influenced features at the transition from hard to soft substrate (e.g. Wellner et

al. 2001, 2006). Drumlinoid forms cut into bedrock are also apparent over the inner Antarctic shelf (e.g. Ó Cofaigh et al. 2002). In comparison, on terrestrial ice stream beds in the northern hemisphere, drumlins have been mapped in the onset zone and towards the termini (e.g. Dyke & Morris, 1988; Stokes & Clark, 2003). Finally, ribbed moraine, which have been found in some ice stream onset zones in terrestrial settings of the northern hemisphere (Dvke & Morris, 1988) and as sticky spots further downstream (Stokes et al. 2008), have not been observed to date on the Antarctic shelf. These differences may, in part, be due to the likely lesser knowledge of Antarctic palaeo-ice streams and the scale of observations and data acquisition. Indeed, higher resolution datasets are beginning to uncover new bedforms that have hitherto gone unrecognised (e.g. Jakobsson et al. 2011).

4 AGE CONSTRAINTS ON RATES OF ICE-STREAM RETREAT AND DEGLACIATION

Accurately constraining the timing and rate of ice-stream retreat in Antarctica is crucial for: (i) identifying external drivers, which could have triggered deglaciation; (ii) assessing the sensitivity of individual ice streams to different forcing mechanisms; (iii) identifying regional differences in retreat histories; and (iv) determining the phasing between northern and southern hemispheric retreat and their relative contributions to sea-level change. The following section discusses some of the difficulties encountered when attempting to date palaeo-ice stream retreat from Antarctic shelf sediments. We then present a compilation of radiocarbon ages constraining the minimum age and rate of retreat from the Antarctic continental shelf since the LGM in order to investigate regional and inter-ice stream trends in their behaviour during deglaciation.

4.1 Problems in determining the age of grounding-line retreat from the Antarctic shelf by dating marine sediment cores

Providing constraints on the timing and rate of ice sheet retreat on the Antarctic continental shelf from marine radiocarbon dates is notoriously difficult (cf. Andrews et al. 1999; Anderson et al. 2002; Heroy & Anderson, 2007; Hillenbrand et al. 2010b for detailed reviews). Because of the scarcity of calcareous (micro-)fossils in Antarctic shelf sediments, ¹⁴C dates are usually obtained from the acid-insoluble fraction of the organic matter (AIO). The corresponding AIO ¹⁴C dates are, however, often affected by contamination with reworked fossil organic carbon resulting in extremely old ¹⁴C ages (e.g. up to 13,525±97 uncorrected ¹⁴C yrs BP for modern seafloor sediments on the eastern Antarctic Peninsula shelf: see Pudsey et al. 2006). To try and counter this effect, downcore AIO ¹⁴C dates in Antarctic shelf cores are usually corrected by subtracting the uncorrected AIO ¹⁴C age of sediment at the seafloor. This approach assumes that both the degree of contamination with fossil organic carbon and the ¹⁴C age of the contaminating carbon have remained constant through time. This assumption, however, is probably invalid for dating sediments from the base of the deglacial unit, which is required for obtaining an accurate age of grounding-line retreat. These sediments are dominated by terrigenous components and therefore contain only

small amounts of organic matter, i.e. even a small contribution of fossil organic carbon can cause a large offset between the ¹⁴C age obtained from the sediment horizon and the true time of its deposition. In addition, the supply of fossil organic matter was probably higher, and the ¹⁴C age of the contaminating carbon different, from the modern contamination, because the grounding line of the ice sheet (and therefore the source of the contaminating carbon) was located closer to the core site. This problem results in a drastic down-core increase of ¹⁴C ages in the deglacial unit (e.g. Pudsey et al. 2006) and is evident from a so-called 'dog leg' in age-depth plots for the sediment cores (e.g. Heroy & Anderson 2007).

Despite uncertainties regarding absolute deglaciation chronologies, the approach of AIO ¹⁴C dating often produces meaningful results for dating ice-sheet retreat, particularly when AIO ¹⁴C dates can be calibrated against more reliable ¹⁴C ages derived from carbonate or diatomrich sediments (Licht et al. 1996, 1998; Domack et al. 1998, 1999, 2005; Cunningham et al. 1999; Andrews et al. 1999; Heroy & Anderson, 2005, 2007; Ó Cofaigh et al. 2005b; Leventer et al. 2006; McKay et al. 2008; Hillenbrand et al. 2010a,b; Smith et al. 2011). Additionally, carbonate ¹⁴C dates, although much more dependable than the AIO dates, still need to be corrected for the marine reservoir effect (MRE) (¹⁴C offset between oceanic and atmospheric carbon reservoirs).

In this paper, for consistency and ease of comparison, we use a uniform MRE of 1,300 (±100) years (see Table 4), as suggested by Berkman & Forman (1996) for the Southern Ocean and in agreement with most other studies (Table 4), thereby assuming that the MRE has remained unchanged since the end of the LGM. Ideally, in order to obtain the best possible age on grounding-line retreat, calcareous (micro-)fossils from the transitional glaciomarine sediments lying directly above the till (i.e. the deglacial facies) should be radiocarbon-dated. Where carbonate ¹⁴C dates cannot be obtained from this terrigenous sediment facies, the chronology for ice-sheet retreat is often constrained only from ¹⁴C dates on calcareous (micro-)fossils in the overlying postglacial glaciomarine muds or AIO ¹⁴C dates from diatom-rich sediments. These ages actually record the onset of open marine conditions and thus provide only minimum ages for grounding-line retreat (Anderson et al. 2002; Smith et al. 2011). Wherever available, we also used core chronologies based on palaeomagnetic intensity dating (Brachfeld et al. 2003; Willmott et al. 2007; Hillenbrand et al. 2010b) to constrain the age of grounding-line retreat (Table 4). All deglaciation dates are reported as calibrated ages (Table 4).

4.2 Database of (minimum) ages for post-LGM ice-stream retreat

Heroy and Anderson (2007) compiled a database of radiocarbon dates related to the retreat of grounded ice from the Antarctic Peninsula shelf following the LGM. Since then, a number of additional dates have been published for the Antarctic Peninsula shelf (e.g. Heroy et al. 2008; Michalchuk et al. 2009; Milliken et al. 2009; Kilfeather et al. 2010) and here we present an updated synthesis of deglacial ages that record the retreat of grounded ice from the entire Antarctic continental shelf (Table 4 and Fig. 7). This is the most complete compilation of published deglacial dates recording the retreat of the Antarctic ice sheets since the LGM. A number of dates, despite being sampled from transitional glacimarine sediments directly

- above the diamicton, give ¹⁴C ages of >25,000 cal. yrs BP, such as those from JOIDES Basin,
- the eastern Ross Sea and the south-eastern Weddell Sea (cf. Anderson & Andrews, 1999;
- Licht & Andrews, 2002; Mosola & Anderson, 2006; Melis & Salvi, 2009). The anomalously
- old deglaciation ages probably indicated that, in these regions, grounded ice did not extend to
- the core sites since the LGM defined as the time interval from 23,000-19,000 cal yrs BP in
- the Southern Hemisphere (Gersonde et al. 2005).

824 4.3 Regional trends in ice-stream retreat

- The deglaciation of Antarctica is generally thought to have begun around 18 ka BP, in
- response to atmospheric warming (Jouzel et al. 2001). However, dates from the continental
- shelf show that ice streams exhibited considerable variation in the timing of initial retreat
- (Table 4; Fig. 8a,b). This is also supported by peaks in ice-rafted debris (IRD) in the central
- Scotia Sea at 19.5, 16.5, 14.5 and 12 ka which appear to indicate independent evidence for
- multiple phases of ice-sheet retreat (Weber et al. 2010). Ages for the onset of deglaciation
- range from 31-8 cal. ka BP, with the majority of ages bracketed between 18 and 8 cal. ka BP
- (Fig. 8a,b). This pattern is broadly consistent with results by Heroy & Anderson (2007) for
- the Antarctic Peninsula, who constrained the onset of deglaciation from the shelf edge from
- 834 ∼18-14 cal. ka BP.
- The chronology of ice sheet retreat from the shelf in East Antarctica is less well constrained,
- although the general consensus was of a much earlier deglaciation than in West Antarctica
- and the Antarctic Peninsula (cf. Anderson et al. 2002). Sparse dates from outside palaeo-ice
- stream troughs in the south-eastern Weddell Sea provide some support for ice recession from
- its maximum position prior to the LGM (Elverhøi, 1981; Bentley & Anderson, 1998;
- Anderson & Andrews, 1999; Anderson et al. 2002). However, our new compilation of
- deglacial ages (Table 4) favours a much later deglaciation of the East Antarctic palaeo-ice
- streams, with Fig. 8a and 8b illustrating that initial retreat occurred within a time frame
- coincident with elsewhere in Antarctica. In Mac. Robertson Land, for example, Nielsen
- Palaeo-Ice Stream started to retreat from the outer shelf at ~14 cal. ka BP (Mackintosh et al.
- 2011), with Iceberg Alley and Prydz Channel ice streams subsequently receding at ~12 cal. ka
- BP (Domack et al. 1998; Mackintosh et al. 2011).
- By comparing ages of the initial phase of retreat with global climate records and local
- bathymetric conditions it is possible to investigate the triggers and drivers of ice stream
- retreat. Fig. 8b indicates a good match between the onset of circum-Antarctic deglaciation
- 850 (~18 cal. ka BP) and atmospheric warming (Jouzel et al. 2001). This cluster of dates also
- occurred just after a period of rapid eustatic sea-level rise: the 19 cal. ka BP meltwater pulse
- 852 (Yokoyama et al. 2000; Clark et al. 2004). Another cluster of palaeo-ice stream deglacial ages
- are coincident with meltwater pulse 1a, suggesting that sea-level rise may have been an
- 854 important factor during that period, whilst palaeo-ice streams that underwent initial retreat
- between 12-10 cal. ka BP have, in contrast, been related to oceanic warming (e.g. Mackintosh
- et al. 2011).

Given the asynchronous retreat history (Figs. 8 & 9), internal factors are likely to have modulated the initial (and subsequent) response of palaeo-ice streams to external drivers. We have indicated on Fig. 8c the initial geometry and gradient of the troughs on the outer shelf; and also correlated the (isostatically adjusted) trough depth and trough width against the minimum age of deglaciation. Our results show poor correlations, with high scatter (low R²) for both depth and width (Fig. 8c). There is, however, a weak positive trend between the minimum age of deglaciation and both trough width and trough depth; with wider/deeper troughs associated with earlier retreat (Fig. 8c). However, this weak trend is heavily influenced by the Belgica Trough outlier. Nonetheless, these general trends mirror what we might expect, with deeper troughs more sensitive to changes in sea-level, whilst wider troughs are less sensitive to the effects of lateral drag, which can modulate retreat. In contrast, trough geometry and bed gradient seem to have little influence on the initial timing of retreat (Fig. 8b).

The overall pattern of palaeo-ice stream retreat to their current grounding-line positions is also highly variable, reflected by the large scatter of deglaciation ages throughout all regions of the Antarctic shelf (Fig. 9). This scatter is attributed to the variable behaviour of individual ice streams as opposed to errors inherent within the data. However, in the Antarctic Peninsula, Heroy & Anderson (2007) identified two steps in the chronology at ~14 cal. ka BP and ~11 cal. ka BP that corresponded to meltwater pulses 1a and 1b, respectively (Fairbanks, 1989; Bard et al. 1990, 1996). In summary, it can be concluded that palaeo-ice stream retreat was markedly asynchronous, with a number of internal factors likely responsible for modulating the response of ice streams to external forcing.

4.4 Palaeo-ice stream retreat histories

Given the variability in palaeo-ice stream retreat histories (Figs. 8 & 9), it is useful to produce high-resolution reconstructions of individual palaeo-ice streams to better understand the controls driving and modulating grounding-line retreat. Of the palaeo-ice streams identified in this paper, only those from Anvers Trough, Marguerite Trough, Belgica Trough, Getz-Dotson Trough and Drygalski Basin have well-constrained retreat histories supported by glacial geomorphic data (Fig. 10). In addition, ice-stream retreat in JOIDES-Central Basin is well constrained by De Geer-style moraines which allow the calculation of annual retreat rates (Shipp et al. 2002). Note that the retreat rates calculated for these palaeo-ice streams are maximum retreat rates because they are based on minimum deglacial ages and because they are averaged, over shorter timescales they are likely to have undergone faster and slower phases of retreat.

Anvers palaeo-ice stream (Antarctic Peninsula) retreated at a mean rate of 24 m yr⁻¹ (based on carbonate and AIO ¹⁴C dates) (Table 5), with retreat from the outer shelf commencing at ~16.0 cal. ka BP (Fig. 10a) (Pudsey et al. 1994; Heroy & Anderson, 2007) and Gerlache Strait on the innermost shelf becoming ice free by ~8.4 cal. ka BP (Harden et al. 1992) (Fig. 10a). Deglaciation of the inner fjords is corroborated by cosmogenic exposure ages from the surrounding terrestrial areas suggesting that final retreat occurred between 10.1 and 6.5 cal. ka BP (Bentley et al. in press). According to the most reliable deglacial ages (¹⁴C dates on

carbonate material), retreat accelerated towards the deep inner shelf of Palmer Deep (Fig. 10a), in accordance with an increase in the reverse slope gradient (Fig. 2d) (Heroy & Anderson, 2007). This retreat pattern is supported by the identification of GZWs on the outer shelf (Table 1) that are indicative of a punctuated retreat (Larter & Vanneste, 1995).

902

903

904

905

906

907

908

909

910

911912

913

914

915

916 917

926

927

928

929

930

931

932

933

934

935

936

937

938

939

Getz-Dotson Trough palaeo-ice stream was characterised by a two-step pattern of ice stream retreat back to the current ice-shelf front. Initial retreat was underway by ~22.4 cal. ka BP (Fig. 10b) and was slow (average retreat rate: 18 m yr⁻¹), with ice finally reaching the midshelf by ~13.8 cal. ka BP (Smith et al. 2011). Conversely, grounding-line retreat accelerated towards the inner shelf (retreat rates ca. 30-70 m vr⁻¹). The three inner-shelf basins directly north of the Dotson and Getz ice shelves deglaciated rapidly, with ice free conditions commencing between 10.2 and 12.5 cal. ka BP (Fig. 10b) (Hillenbrand et al. 2010a; Smith et al. 2011). The increase in the rate of retreat through the three tributary troughs is characterised by a corresponding steepening in sea-floor gradient into the deep basins (up to 1600 m) on the inner shelf (Graham et al. 2009; Smith et al. 2011). Contrary to the retreat chronology of Getz-Dotson palaeo-ice stream, the associated geomorphology displays uninterrupted MSGL on the outer shelf, in the zone of slow retreat, with a number of GZWs on the inner shelf, where the fastest rates of retreat are observed (Table 1) (Graham et al. 2009). The position of the GZWs in this zone of rapid retreat implies episodic, yet rapid retreat, with the GZWs formed over relatively short (sub-millennial) time scales (Smith et al. 2011).

Drygalski Basin palaeo-ice stream (western Ross Sea) is thought to have receded from its 918 maximum position, just north of Coulman Island on the mid-outer shelf, by ~14.0 cal. ka BP 919 (Fig. 10c) (Frignani et al. 1998; Domack et al. 1999; Brambati et al. 2002). An additional 920 carbonate-based deglaciation date of ~16.8 cal. ka BP from the outer-shelf of the 921 neighbouring Pennell Trough (Licht & Andrews, 2002) provides an additional constraint on 922 deglaciation in the western Ross Sea (Fig. 10c). However, Mosola & Anderson (2006) 923 suggest that the core may have sampled an iceberg turbate and therefore could be less reliable 924 than initially reported. 925

Development of open marine conditions in the vicinity of Drygalski Ice Tongue was complete by ~10.5 cal. ka BP (Finocchiaro et al. 2007), with grounded-ice reaching south of Ross Island by 11.6 cal. ka BP (hot water drill core taken through Ross Ice Shelf [HWD03-2] – McKay et al. 2008) and open marine conditions established by 10.1 cal. ka BP (Fig. 10c) (McKay et al. 2008). This new date for the development of ice-free conditions in the vicinity of Ross Island is earlier than previously reported (7.4 cal. ka BP) (Licht et al. 1996; Cunningham et al. 1999; Domack et al. 1999; Conway et al. 1999). Mean rates of retreat towards Ross Island were calculated to be ~50 m yr⁻¹ (Shipp et al. 1999), with retreat towards its present grounding-line position thought to have been much faster (~140 m yr⁻¹) (Shipp et al. 1999). This chronology suggests that ice retreated rapidly from its maximum position (mean retreat rate: 76 m yr⁻¹) with retreat accelerating south of Dryglaski Ice Tongue (average: 317 m yr⁻¹) (Fig. 10c) (McKay et al. 2008). Further recession to the current grounding line position proceeded at ~90 m yr⁻¹, with the Ross Ice Shelf becoming pinned against Ross Island during this period (McKay et al. 2008). Although geomorphological data

of the sub-ice shelf section of Drygalski palaeo-ice stream is not available, the bedform evidence north of Ross Island is dominated by MSGLs, with a large GZW marking its LGM limit (Shipp et al. 1999; Anderson et al. 2002).

The neighbouring JOIDES-Central Basin palaeo-ice stream, which also reached a maximum 943 position on the mid-outer shelf during the LGM (Licht et al. 1996; Domack et al. 1999; Shipp 944 et al. 1999, 2002), is floored by a series of transverse ridges that overprint all other landforms 945 (Shipp et al. 2002). These features are interpreted as annually deposited De Geer moraines, 946 formed at the grounding line during ice stream recession (see section 3.3.5) and have been 947 used to estimate a retreat rate of 40-100 m yr⁻¹ (Table 5) (Shipp et al. 2002). Open marine 948 conditions in outer JOIDES Basin were established by 13.0 cal. ka BP (Domack et al. 1999). 949 Thus, the rates of recession calculated from both the transverse moraines and the timing of 950 retreat inferred from radiocarbon ages in JOIDES-Central Basin are broadly consistent with 951 those from Drygalski Basin (Domack et al. 1999), even though the geomorphic signatures are 952 different. 953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978979

980

981

The Marguerite Trough palaeo-ice stream (western Antarctic Peninsula) underwent a stepped pattern of retreat, with rapid retreat across the outer 140 km of the shelf at ~14.0 cal. ka BP (Fig. 10d) (Kilfeather et al. 2010). This rapid phase of retreat is consistent with wellpreserved and uninterrupted MSGLs on the very outer shelf of the trough (Ó Cofaigh et al. 2008), whilst a number of GZWs further inland suggest that retreat became increasingly punctuated (Livingstone et al. 2010). However, as in Getz-Dotson Trough, the rapid retreat rates (i.e. within the error of the dates) suggest that GZW formation must have occurred over a relatively short (sub-millennial) time-scale (Livingstone et al. 2010). This was followed by a slower phase of retreat on the mid-shelf, which was also associated with the break-up of an ice-shelf. Thereafter, the ice stream rapidly retreated to the inner shelf at ~9.0 cal. ka BP (Fig. 10d) (Kilfeather et al. 2010). This latter phase of rapid retreat is supported by cosmogenic exposure ages at Pourquoi-Pas Island that indicate rapid thinning (350 m) at 9.6 cal. ka BP (Bentley et al., in press). George VI Sound is thought to have become ice free between ~6.6-9.6 cal. ka BP (Fig. 10d), based on ages from foraminifera and shells (Sugden and Clapperton, 1981; Hjort et al. 2001; Smith et al. 2007). The drivers for these two phases of rapid grounding-line retreat at 14.0 cal. ka BP and 9.0 cal. ka BP have been suggested as meltwater pulse 1a and the advection of relatively warm Circumpolar Deep Water (CDW) onto the continental shelf (Kilfeather et al. 2010). The mean retreat rate of the palaeo-ice stream along the whole trough was ~80 m yr⁻¹ (Table 5) (and ranged between 36-150 m yr⁻¹: Figure 10d) which is noticeably faster than Anvers palaeo-ice stream. Crucially, the two phases of rapid retreat (outer-mid shelf and mid-inner shelf (see above)) are associated with even greater rates of recession and actually within the error of the radiocarbon dates.

The deglacial chronology of Belgica Trough (southern Bellinghausen Sea) is significantly different to that experienced by other West Antarctic palaeo-ice streams because the ice stream in Belgica Trough had receded from its maximum position on the shelf edge as early as ~30.0 cal. ka BP (Fig. 10e) (Hillenbrand et al. 2010a). Grounding-line retreat towards the mid-shelf proceeded slowly, and the middle shelf eventually became free of grounded ice by ~24.0 cal. ka BP (Fig. 10e). The inner shelf had deglaciated by ~14.0 cal. ka BP in Eltanin

Bay and by ~4.5 cal. ka BP in Ronne Entrance (Fig. 10e) (Hillenbrand et al. 2010a). Mean retreat rates varied between 7-55 m yr⁻¹ (Table 5), with deglaciation thought to be prolonged and continuous (Hillenbrand et al. 2010a). However, a series of GZWs on the inner shelf of Belgica Trough suggests that retreat was characterised by episodic still-stands (Ó Cofaigh et al. 2005a).

5 DISCUSSION

Given the advantages of conducting research on palaeo-ice streams (see Section 1), and the information that has been obtained from their beds, it is important to contextualise observations within the broader themes of (palaeo)glaciology to inform discussions on how Antarctic ice streams may respond to future external forcings. The aim of this section, therefore, is to critically discuss the geological evidence for palaeo-ice streaming in terms of its implications for understanding ice-stream processes and its relevance to predictions of future Antarctic Ice Sheet behaviour.

5.1 Examples of contrasting Antarctic ice-stream retreat styles

Where detailed glacial geomorphic data exists along the length of palaeo-ice stream flow path and/or a deglacial chronology can be used to constrain the retreat rate (see Table 4), we have categorised Antarctic palaeo-ice streams into discrete retreat styles (Table 6). To discriminate between different asynchronous, multi-modal retreat patterns, Table 6 differentiates between palaeo-ice streams that exhibit slow/episodic retreat from the outer and middle shelf followed by rapid retreat from the inner shelf, and *vice-versa*. A good example of a palaeo-ice stream that underwent accelerated retreat from the inner shelf is Pine Island Trough. Five GZWs on the mid-outer shelf demarcate still-stand positions (Graham et al. 2010), whilst the deep, rugged inner shelf is characterised by a thin carapace of deglacial sediment with no evidence of morainal features (Lowe & Anderson 2002). In contrast, the Robertson Trough palaeo-ice stream has deposited no morainal features on the outer shelf (lineations which exhibit localised cross-cutting), whereas the mid-shelf is interrupted by a series of GZWs up to 20 m high (Gilbert et al. 2003; Evans et al. 2005). This is consistent with a switch from continuous and rapid retreat across the outer shelf to episodic retreat on the middle shelf (cf. Evans et al. 2005).

1012 2005)

The range of retreat rates and variability in the timing of deglaciation around the Antarctic shelf highlights that local factors such as drainage-basin size, bathymetry, bed roughness and ice-stream geometry are important in modulating grounding-line retreat. Even neighbouring palaeo-ice streams can exhibit strikingly different retreat styles, as exemplified by the different frequency, localities and sizes of GZWs in adjacent troughs in the eastern Ross Sea (Mosola & Anderson, 2006). A paucity of deglacial sediment within this region (<1 m) has been used to infer rapid collapse of the palaeo-ice streams (Mosola & Anderson, 2006), although the large and multiple GZWs point towards repeated still-stands and thus episodic

- retreat (Table 6). This apparent contradiction between the formation of large GZWs (up to
- 1022 180 m thick) and an apparent lack of deglacial sediment highlights current deficiencies in the
- understanding of: (i) rates of sub-, marginal- and pro-glacial sediment supply and deposition;
- 1024 (ii) speed of GZW formation; and (iii) depositional processes at the grounding line and
- beneath ice shelves.

1026

5.2 Controls on the retreat rate of palaeo-ice streams

A number of general observations can be made regarding characteristics which tend to be 1027 1028 symptomatic of distinctive retreat styles (Table 6). Firstly, there appears to be a correlation 1029 between bathymetric gradient of the trough floor and the rate of grounding-line retreat, as predicted by theoretical modelling (e.g. Schoof, 2007). This is demonstrated by the 1030 acceleration in grounding-line retreat on the reverse-slope, inner-shelves of the Anvers-Hugo 1031 Island and Getz-Dotson palaeo-ice streams (Figs. 2d; 10a,b; Table 6) (also see Smith et al. 1032 1033 2011). On a local scale, a link between lower gradients (average slope: 0.015°) and GZW development for Pine Island Trough has also been demonstrated (Graham et al. 2010). 1034 However, it is apparent that bed slope is not the only factor controlling grounding-line retreat 1035 and, indeed, can be modulated or in some circumstances suppressed by other factors. For 1036 1037 example, GZWs, which have been linked with stable grounding-line positions, are commonly observed along reverse gradients, such as in Marguerite Trough, Belgica Trough, Pine Island 1038 Trough, Getz-Dotson Trough and all of the Ross-Sea palaeo-ice stream beds (Tables 2 & 6). 1039 Significantly, slow retreat rates have also been described within some troughs with reverse 1040 1041 bed slopes (Shipp et al. 2002; Table 6). Belgica Trough is characterised by multiple GZWs on 1042 the inner shelf, where the trough dips steeply into Eltanin Bay (Ó Cofaigh et al. 2005a). Moreover, despite being characterised by a relative acceleration in grounding-line retreat 1043 1044 towards Palmer Deep, the absolute retreat rates within Anvers-Hugo Island Trough are low (Fig. 10a; Table 6). 1045

1046 The retreat of palaeo-ice streams over rugged bedrock-dominated inner shelves, which exhibit large variations in relief and well-defined banks (e.g. Gerlache Strait, Marguerite Bay, 1047 Anvers-Hugo Island and Pine Island Bay), was not universally slow. This is again contrary to 1048 theoretical studies, which propose slower rates of grounding-line retreat where lateral and 1049 basal drag is greatest (Echelmeyer et al. 1991, 1994; Alley, 1993a; MacAyeal et al. 1995; 1050 Whillans & van der Veen, 1997; Joughin et al. 2004; Siegert et al. 2004; Rippin et al. 2006; 1051 Stokes et al. 2007). Possible reasons for this discrepancy include the preferential flow of 1052 relatively warm oceanic waters to the grounding line due to the large changes in relief (high 1053 roughness) via pre-existing meltwater drainage routes and deep basins (Jenkins et al. 2010), 1054 1055 or increased lubrication generated as water starts to penetrate, and fill, deep 'hollows' in the rough bed (e.g. Bindschadler & Choi, 2007) as the ice reaches flotation. 1056

The palaeo-ice streams characterised by the highest retreat rates tend to be the smallest glacial systems, whilst those that underwent episodic/slow retreat are typically associated with large drainage basins and/or broad troughs (Tables 2 & 6) (also see Ó Cofaigh et al. 2008). This relationship is what you might expect, with the response times of large drainage

systems less sensitive to perturbations than a small drainage basin that can quickly re-adjust to a new state of equilibrium (e.g. thickness divided by mass balance rate).

Our review of the retreat styles of Antarctic palaeo-ice streams highlights the potential for using glacial landform signatures to investigate grounding-line retreat and reinforces the notion that local factors, such as trough width, drainage basin size, bed gradient, bed roughness, and substrate, play a critical role in modulating ice-stream retreat. It is also likely that subglacial meltwater (e.g. Bell, 2008) and the thermo-mechanical coupling between the ice and the underlying sediments (e.g. Tulaczyk & Hossainzadeh, 2011) also plays a major role in modulating ice-stream speed and retreat. However, these processes are harder to quantify from the palaeo-record. Our attempt to categorise palaeo-ice streams into discrete retreat styles has revealed the importance of drainage basin area and reverse slope gradient as potentially key controls governing the sensitivity of ice streams to grounding-line retreat.

5.3 Influence of underlying bedrock characteristics on ice-stream dynamics

The role of substrate (i.e. underlying bedrock geology and roughness) in controlling icestream dynamics is hard to quantify due to the lack of process understanding regarding how and over what time-period glacial landforms actually form in bedrock and, to an extent, in sediments as well (see Sections 3.2 & 3.3.8). Thus, although the generally 'higher' roughness and hardness of bedrock will almost certainly impact upon flow velocities, it is hard to unequivocally determine this relationship. Determining the role of substrate on ice velocity is therefore problematic for areas of bedrock, such as the inner Antarctic shelf. Indeed, the morphological signature of ice streaming over bedrock remains largely unresolved despite recent attempts to relate mega-grooves, roché moutonees and whalebacks to palaeo-ice streams (Roberts & Long, 2005; Bradwell et al. 2008). This is best exemplified by the downflow evolution of bedforms across the bedrock-sedimentary substrate transition in the Antarctic palaeo-ice stream troughs, which is mirrored by an increase in their elongation ratio (Fig. 6), and generally attributed to acceleration at the onset of streaming flow (Shipp et al. 1999; Wellner, et al. 2001, 2006; Canals et al. 2002; Ó Cofaigh et al. 2005a; Evans et al. 2006). However, it is unclear, whether this elongation change is caused by a genuine transition in ice velocity (i.e. zone of acceleration) or whether it simply reflects a change in underlying geological substrate and its potential for subglacial landform formation (Graham et al., 2009).

The strong substrate control on ice streaming implied by Antarctic geophysical observations (e.g. Anandakrishnan et al. 1991; Bell et al. 1998; Bamber et al. 2008) does support a genuine velocity transition. However, there are contemporary examples where streaming is thought to have occurred over a predominantly hard bedrock, e.g. Thwaites Glacier, West Antarctica (Joughin et al. 2009). In addition, the 'bundle structures' on the inner shelf of the Gerlache-Boyd palaeo-ice stream and the highly elongate grooves in Smith Trough and Sulzberger Bay Trough, which are eroded into bedrock and perhaps overconsolidated glacial till, may result

from fast ice-stream flow. These examples suggest that thermo-mechanical feedbacks can cause fast flow in deep troughs irrespective of roughness or substrate.

The role of rougher bedrock areas in the transition zone are also likely to be important in generating (and retaining) meltwater through strain heating to lubricate the bed and initiate and maintain streaming flow (Bell, et al. 2007; Bindschadler & Choi, 2007). This is supported by the widespread presence of large meltwater channels, basins and even subglacial lakes on the rugged inner shelf (see Section 3.3.6). Bed roughness evolves as substrate is eroded or buried by sediment deposition. This is especially relevant in the bedrock dominated onset zone regions, where we hypothesise that changes in roughness could influence ice stream dynamics and potentially lead to upstream migration of the onset zone. Given typical erosion rates cited for temperate valley glaciers (Bogen et al. 1996; Hallet et al. 1996) it is feasible that large-scale (potentially 100s meters amplitude) bedrock landforms can be smoothed over sub-Quaternary time scales (e.g. Jamieson et al. 2008). Furthermore, it is likely that as bed roughness evolves in response to glacial erosion and deposition, the behaviour of the ice stream will also evolve. However, the spatial and temporal scale and significance of such a potential feedback mechanism has not been systematically investigated in the context of ice streams.

1117

1118

1123

1124

1125

1126

1127

11281129

1130

1131

11321133

1134

1135

1136

1137

1138

1139

11021103

1104

1105 1106

1107

1108

1109

1110

1111

1112

11131114

1115

1116

5.4 Atmospheric circulation and precipitation patterns

The interaction between the cryosphere and atmosphere is fundamental in controlling ice sheet and glacier dynamics. Indeed shifting ice-dispersal centres and complex ice-flow in response to changing patterns of accumulation has been widely reported in former ice sheets of the northern hemisphere (e.g. Kleman et al. 2006).

The first order control on Antarctic precipitation is topography, which differs significantly between East and West Antarctica. East Antarctica has a steep coastal escarpment, a relatively small area of ice shelves and a high, large inland plateau, while West Antarctica has extensive ice shelves and gentler slopes (van de Berg et al. 2006). In the steep coastal margins precipitation is dominated by orographic lifting of relatively moist, warm air associated with transient cyclones that encircle the continent. The steep ice-topography acts as a barrier to the inland propagation of storm tracks and thus inland accumulation rates are very low, especially on the interior plateau of East Antarctica, which is effectively a polar desert (Vaughan et al. 1999; Arthern et al. 2006; van de Berg et al. 2006; Monaghan et al. 2006a,b). During times of ice expansion the zone of orographic precipitation will also move seawards, leading to further starvation of the interior of the ice sheet and consequently little thickening. Thus, given the general mass balance distribution over Antarctica, it is perhaps, not surprising that the most prominent and largest concentration of palaeo-ice stream troughs occur where precipitation is highest, in the West Antarctic and Antarctic Peninsula ice sheets. Indeed, reduced precipitation in the interior of East Antarctica may have affected the ability of ice streams to reach the shelf edge in the late Pleistocene (O'Brien et al. 2007). For example, during the LGM, Prydz Channel Ice Stream became dominated by ice-flow out of Ingrid Christensen 1140 Coast rather than along the axis of the Amery Ice Shelf, and this has been attributed to the 1141 topography setting of the Amery drainage basin relative to the circum-polar trough and 1142 associated storm tracks (O'Brien et al. 2007).

A further control on the pattern of accumulation is the Southern Annular Mode (SAM), whereby the synoptic-scale circum-polar vortex of cyclones oscillates between the Antarctic Coast and the mid-latitudes on week to millennial timescales. Typically, when the cyclones track across the Antarctic coastal slopes higher snow accumulation rates are observed (Goodwin et al. 2003, 2004). Precipitation is also affected by the regional variability in seaice extent around Antarctica. For example, according to Gersonde et al. (2005), LGM precipitation over the EAIS sector, between 90°E and 120°E, would have been much higher than over the EAIS sector, between 10°E and 30°W, because in the former sector the LGM summer sea-ice edge (and thus open water) was much closer to the continent than in the latter sector.

5.5 Landform-process interactions and subglacial sediment transport

The central tenet behind reconstructing palaeo-ice sheets from geological evidence is the causal link between subglacial processes and landform genesis. Success in using landforms and subglacial sediments to extract information on bed properties, and therefore in reconstructing the evolution of the ice sheet, relies upon a thorough comprehension of the genesis of landforms and sediments used in the 'inversion model' (cf. Kleman & Borgström, 1996; Kleman et al. 2006). This section investigates these linkages in reconstructing palaeo-ice streams by discussing the characteristics of palaeo-ice streams and, in particular, the two-tiered till structure and the formation of MSGL and GZWs in soft sediment. A further issue is that ice dynamics during ice sheet build up is not well constrained and, as such, some of the tills/landforms observed may be wholly or partially inherited from earlier ice flow events.

5.5.1 *Origin of the upper soft and lower stiff tills*

Three hypotheses were proposed by Ó Cofaigh et al. (2007) to account for the upward transition from stiff to soft till exhibited by palaeo-ice stream beds (Section 3.2): (1) till deposition during separate glacial advances, with the soft till associated with the development of an ice stream during the most recent phase; (2) a process transition from lodgement to deformation, with the deformation till associated with the onset of streaming flow; and (3) an upwards increase in dilatancy related to A/B horizons in a deformation till, a characteristic that has been previously observed beneath and in front of contemporary Icelandic glaciers (cf. Sharp, 1984; Boulton & Hindmarsh, 1987). Ó Cofaigh et al. (2007) view these hypotheses as 'end members', with aspects of each mechanism exhibiting some compatibility with the field evidence. They concluded that the soft till was a 'hybrid', formed by a combination of subglacial sediment deformation and lodgement. Reinardy et al. (2011a) identify significant (micro-scale) differences between the two till-types, which they also attribute to a deforming

1179 bed continuum. Initial deposition of till as ice advanced across the shelf produced ductile structures, with brittle structures produced subsequently following compaction and 1180 dewatering. The soft till was produced by a switch to streaming flow that resulted in 1181 deformation of the upper part of the stiff till (Ó Cofaigh et al. 2007; Reinardy et al. 2011a). 1182 The origin of the lower stiff and upper soft tills has important implications for understanding 1183 1184 the behaviour of ice streams over the last glacial cycle. Whereas hypotheses (1) and (2) imply that ice streams switched on at a late stage in the glacial cycle, subsequent to ice expansion 1185 onto the outer continental shelf, and possibly associated with the onset of deglaciation, 1186 hypothesis (3) could imply continuous streaming during both ice sheet advance and retreat. A 1187 lack of buried MSGL on top of the stiff till support the interpretation that it is not associated 1188 with streaming conditions. 1189

5.5.2 MSGL formation

1190

1191

1192

1193

1194 1195

1196

1197

1198 1199

1200

1201 1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

12171218

1219

Despite the use of MSGLs as a diagnostic landform for identifying palaeo-ice streams in the geologic record (Section 3.3.1), understanding of the genesis of this landform remains incomplete. There are four main hypotheses for their genesis: (1) as a product of subglacial erosion by high-discharge, turbulent meltwater floods (Shaw et al. 2000, 2008; Munro-Stasiuk & Shaw, 2002); (2) groove-ploughing of soft-sediment by ice keels formed at the base of an ice stream (Tulaczyk et al. 2001; Clark et al. 2003); (3) subglacial deformation of soft sediment from a point source, such as a bedrock obstacle or zone of stiff till beneath an ice-stream (Clark, 1993; Hindmarsh, 1998); and (4) the instability theory, which can be extended to include lineation genesis when a local subglacial drainage system is included in the calculations (Fowler, 2010). Hypothesis (3) has significant overlap with the groove-ploughing mechanism (hypothesis 2) reinforcing the idea that MSGL were formed by deformed sediment, in this case as the ice keels plough through the sediment (Clark et al. 2003).

The mega-flood hypothesis is contentious (e.g. Clarke et al. 2005; Ó Cofaigh et al. 2010), especially given recent observations of actively forming MSGL beneath Rutford Ice Stream, West Antarctica, in the absence of large discharges of meltwater (King et al. 2009). In Marguerite Trough, individual lineations show evidence for bifurcation or merging along their lengths, gradual increases in width and amplitude downflow, and also subtle 'seeding points' comprising flat areas devoid of lineations at their point of initiation (Ó Cofaigh et al. 2005b). These observations do not fit the expected landform outcome for the grooveploughing mechanism (cf. Clark et al. 2003). Indeed, there does not appear to be a consistent correlation between bedrock roughness elements upstream and MSGL distribution downstream, but there are locations where the formation of MSGL is obviously linked to bedrock roughness. This suggests that groove-ploughing was not the only mechanism for MSGL formation on the Antarctic continental shelf despite supporting evidence. For example, the influence of bedrock roughness in Biscoe Trough and Gerlache-Boyd palaeo-ice stream coupled with some observations of an undulating subbottom reflector (marking the boundary between the stiff lodgement till and the soft deformation till) indicates localised ploughing (Ó Cofaigh et al. 2007).

1220 The palaeo-ice stream landsystem model associates MSGLs with rapid ice-flow (Clark & Stokes, 2003) and they are often thought to record the final imprint of streaming (Graham et 1221 al. 2009). However, the preceding discussion highlights our lack of understanding regarding 1222 their formative mechanisms (cf. Ó Cofaigh et al. 2007), their relation to flow velocity (i.e. the 1223 potential interplay between velocity, ice-flow duration and sediment supply) and their 1224 implication for sediment transport and deposition at the ice-sheet bed. For example, is the 1225 evolution in elongation ratios along-flow related to their synchronous formation, with 1226 increased velocities towards the terminus, or a time-integrated signature related to changes in 1227 velocity as a function of grounding-line retreat? Are lineations transient features constantly 1228 (and rapidly?) being created and destroyed (depending on the prevalent bed conditions) or 1229 stable features capable of withstanding changes in basal processes? Resolving these genetic 1230 problems has implications for how ice flows, the bed properties and subglacial processes. For 1231 example, if we understand how MSGLs form, we will better understand ice stream flow 1232 1233 mechanisms and how to parameterize flow laws in numerical models.

1234 5.5.3 *GZW formation*

12451246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

12581259

There are two main hypotheses to explain GZW formation that are not mutually exclusive: 1235 (1) subglacial transport and then deposition of till at the grounding-line during still stands 1236 (e.g. Alley et al. 1989); and (2) the melt-out of basal debris at the grounding-line, with the 1237 debris entrained by basal freeze-on (e.g. Christoffersen & Tulaczyk, 2003). Each of these 1238 mechanisms has important implications for our understanding of bed properties and the mode 1239 1240 and rate of sediment transport to the grounding line. The few available sediment supply 1241 calculations (and assuming hypothesis 1) suggest that GZWs can form between 1,000 to 10,000 years with typical sediment fluxes ranging from 100 m³ yr⁻¹ per meter width to 1,000 1242 m³ yr⁻¹ per meter width (Section 3.3.4). Despite these gross calculations, little is known about 1243 sediment transport beneath ice streams. 1244

Recently, four 10-40 m thick, 5-10 km long and up to 8 km wide GZWs have been observed on the mid-outer shelf of Marguerite Trough (Livingstone et al. 2010). What is interesting is that these GZWs are situated within a zone of the trough where radiocarbon dates indicate ice stream retreat was rapid (i.e. within the error of the dates: Kilfeather et al. 2010). Thus, their occurrence hints at the potential for high sediment fluxes in GZW formation, with the quoted range of sediment fluxes suggesting that the GZWs would have taken between 500-5,000 years to form. High sediment fluxes of up to 8,000 m³ yr¹ per meter width have also been estimated for the Norwegian Channel (Nygård et al. 2007). Indeed, deglacial ages on the inner shelf of the Getz-Dotson Trough constrain GZW genesis to a ca. 1,650 year period (Smith et al. 2011). However, fluxes are dependent upon the large-scale mobilization of sediment, which is limited by the rate of subglacial erosion and the depth of deformation below the ice-stream base. For example, Anandakrishnan et al. (2007) estimated that the calculated sediment flux at the grounding line of Whillans Ice Stream (~150 m³ yr¹ per meter width) would require distributed upstream deformation of the subglacial sediment (hypothesis 1) over a considerable thickness (several tens of cm's).

A viscous till rheology could theoretically account for these large fluxes, but doubt has been cast on this particular assumption from both in situ borehole measurements (e.g. Engelhardt & Kamb, 1998; Fischer & Clarke, 1994; Hooke et al. 1997; Kavanaugh & Clarke, 2006) and laboratory experiments (e.g. Kamb, 1991; Iverson et al. 1998; Tulaczyk, 2000; Larsen et al. 2006). The plastic bed model is also potentially problematic as deformation can collapse to a single shear plane and thus limit sediment fluxes (Christoffersen et al. 2010). However, it has been shown that, over large scales, multiple failures can integrate to transport large volumes of sediment subglacially (e.g. Hindmarsh et al. 1997, 1998; Ó Cofaigh et al. 2007). Moreover, a change in basal thermal conditions from melting to freezing can cause a short-term movement of the shear plane into the till layer (Bougamont & Tulaczyk, 2003; Bougamont et al. 2003; Christoffersen & Tulaczyk, 2003a,b; Rempel, 2008). This change in thermal conditions is associated with basal freeze-on (hypothesis 2) and has resulted in the entrainment of large volumes of sediment within Kamb Ice Stream (Christoffersen et al. 2010). Subglacial sediment advection caused by changes in basal thermomechanical conditions also implies asynchronous erosion and transport and punctuated sediment delivery to the grounding line (cf. Christoffersen et al. 2010). Till ploughing by ice/clast keels offers an additional mechanism for mobilizing and transporting sediment (Tulaczyk et al. 2001).

A further potential mechanism for delivering pulses of increased sediment delivery is subglacial meltwater transport, especially given observations of major drainage events associated with active subglacial lakes beneath modern day ice masses (Fricker et al. 2007; Stearns et al. 2008; Carter et al. 2009; Smith et al. 2009). Jökulhlaups in Iceland, which may transport on the order of 10⁷-10⁸ tons of sediment, provides some support for this mechanism (Björnsson, 2002) and it is entirely plausible that meltwater may contribute to sediment being deposited at ice stream grounding lines.

The locally high rates of subglacial erosion (1 m yr⁻¹) monitored beneath Rutford Ice Stream (Smith et al. 2007) are up to four orders of magnitude greater than measured and interpreted values for subglacial environments (0.1-100 mm yr⁻¹) (e.g. Hallet et al. 1996; Alley et al. 2003) and indicate that sediment can be mobilized rapidly for subsequent redistribution. Indeed, these locally high erosion rates are much greater than published sediment fluxes for the formation of GZWs. This spatial variability is a common attribute from beneath active ice streams and reveals a dynamic sedimentary system that is characterised by spatial and temporal evolution in bed properties and the ability to undergo significant changes in erosion and deposition on decadal timescales (Smith, 1997; Smith et al. 2007; King et al. 2009). This conclusion is supported by the geological evidence, because many GZWs occupy discrete locations on ice stream beds, rather than spanning entire trough widths (e.g. Ó Cofaigh et al. 2005b; Graham et al. 2010), implying that sediment advected at the ice-stream bed can vary spatially at the macro-scale (tens of kms).

5.6 Sub-ice stream hydrological system

Catastrophic meltwater drainage (hypothesis 1) and/or sequential meltwater erosion over multiple glacial cycles (hypothesis 2) have been suggested to account for the large, deeply eroded subglacial meltwater channels and tunnel valleys incised into the bedrock-floored, inner continental shelf (Section 3.3.6). Tunnel valleys have been used as evidence for catastrophic meltwater discharge of water stored beneath ice sheets, with drainage occurring under bankfull conditions (Shaw et al. 2008). Recent observations show that active subglacial lake systems, intimately associated with outlet glaciers and ice streams, are characterised by periodic drainage along discrete flow-paths and thus provide some support for this hypothesis (Fricker et al. 2007; Stearns et al. 2008; Carter et al. 2009; Smith et al. 2009). However, it is equally plausible that the meltwater channels reflect an inherited signal of sequential erosion over multiple glaciations (hypothesis 2) (Lowe & Anderson 2003; Smith et al. 2009), with meltwater drainage pathways routing and re-routing along channel networks (Ó Cofaigh et al. 2010). Hypothesis 2 implies that meltwater streams across bedrock form stable wellorganised drainage systems that become progressively more 'fixed' over time as the geometry of the channel becomes increasingly important relative to the geometry of the overlying ice mass.

The scarcity of meltwater channels on the outer shelf (apart from the shelf break) likely results from a soft, mobile bed, which precludes formation of a stable meltwater system and instead adjusts transiently to fluctuations in subglacial water pressure (cf. Noormets et al. 2009). Meltwater transfer by Darcian flow through the uppermost sediment layer is generally considered the primary mode of drainage under ice streams underlain by sedimentary substrate (e.g. Tulaczyk et al. 1998) and shallow "canals" may form temporarily, where excess water occurs (e.g. Walder & Fowler, 1994). These shallow canals have been both predicted from theoretical studies (Walder & Fowler, 1994; Ng, 2000) and also observed on geophysical records from beneath the modern Rutford Ice Stream (King et al. 2004). Hence, it cannot be ruled out that these networks are present on the outer shelf parts of the Antarctic palaeo-ice stream troughs but that their dimensions lie below the spatial resolution of the swath bathymetry data and have therefore not been detected.

The paucity of eskers on the Antarctic continental shelf can be attributed to the polar climate, with cold temperatures preventing supra-glacial meltwater production. This additional input of meltwater, penetrating from the surface to the ice sheet bed, is thought to be critical in forming an esker (Hooke & Fastook, 2007). Furthermore, Clark & Walder (1994) have theorised that eskers should be rare in regions with subglacial deformation, because drainage should be dominated by many wide, shallow canals as opposed to relatively few, stable channels (see Section 3.3.6). The unconsolidated sedimentary substrate that floors the midouter continental shelf of Antarctic palaeo-ice stream troughs and the lack of meltwater channels within this soft bed supports this theory. However, it might also be that case that the lack of eskers reflects limits in the observable resolution of our instruments and is therefore merely a scale problem.

6. FUTURE WORK

Numerical ice-sheet and ice-stream models, developed for the prediction of the future contribution of Antarctic Ice Sheet dynamics to sea-level change, are only as good as our current level of understanding regarding the mechanics of ice drainage, the processes and feedbacks operating within the system and also the scale and spatial extent at which we make observations and collect data. This review has highlighted recent advances, but now also considers some key areas for further work, which we summarise as follows:

- The need for a better understanding of subglacial sediment erosion, transport and deposition. For example, what do GZWs actually tell us about grounding-line stability, and how quickly do they form?
 - An improved understanding of the timescales over which basal roughness is changed by glacial erosion and deposition and the consequent feedbacks with ice dynamics; i.e. if rough onset zones can prevent headward migration of ice streams, then over what timescales may this be overcome and is there a threshold roughness scale beyond which streaming is not possible?
 - Further work examining how ice stream flow influences erosion of hard bedrock. This includes distinguishing between the relative influences of ice-stream substrate, changes in slope gradient/steepness and ice-flow velocity on bedform genesis.
 - Resolving genetic links between landforms and subglacial processes, thereby allowing better parameterisation of the bed properties in numerical ice-stream and ice-sheet models.
 - Further work on subglacial meltwater flow and its role in ice-stream dynamics. For example, how does water flow over or through unconsolidated sediment, and can 'outburst floods' deliver large pulses of sediment to the grounding line?
 - Identifying the sensitivity of grounding-line retreat to external triggers and quantifying the influence of internal characteristics in either accelerating or reducing retreat rates.
- The following paragraphs briefly detail two approaches that may provide some scope for investigating these problems.
- Glacial-geomorphological mapping has been widely applied to palaeo-ice sheets in the northern hemisphere in order to reconstruct complex ice-flow dynamics and bed properties. So far, however, this detailed mapping has only been replicated in Antarctica for the Getz-Dotson Trough (see Graham et al. 2009). There is an urgent need for a more comprehensive analysis of the bed properties and their spatial and temporal variations for Antarctic palaeoice streams, especially given the fine-scale at which we can now identify glacial bedforms (e.g. Jakobssen et al. 2011). Detailed mapping must be augmented by further age constraints on the deglacial history. These are crucial to building up a database of individual palaeo-ice stream retreat styles, rates and timings, directly comparing against modern observations

beneath contemporary ice streams (e.g. King et al. 2009) and investigating external and internal controls on grounding-line retreat.

Reconstructing the behaviour of palaeo-ice streams has typically involved examination of empirical data from individual ice stream beds or numerical/theoretical treatments. However, there has been little attempt to integrate, compare and validate numerical modelling experiments against the observational record of ice-stream retreat (e.g. Stokes & Tarasov, 2010). A combined observational and modelling approach to investigate palaeo-ice streams would provide a powerful tool for identifying the controlling factors governing grounding-line retreat, as model simulations could be compared against distinctive retreat styles. This approach could also be used to compare relict meltwater channel networks to modelled drainage routeways (e.g. Wright et al. 2008; Le Brocq et al. 2009) and to investigate subglacial hydrological systems. Incorporation of basal sediment transport within ice stream simulations (e.g. Bougamont & Tulaczyk, 2003) could provide invaluable information into the subglacial mobilisation, transport and deposition of sediment.

7. CONCLUSIONS

The importance of ice streams is reflected in the fact that they act as regulators of ice sheet stability and thus the contribution of ice sheets to sea level. From recent changes we know that ice streams are characterised by significant variability over short (decadal) timescales. In order to extend the record of their behaviour back into the geological past and to glean important information on their bed properties, investigations have turned to palaeo-ice streams. In this paper we have compiled an inventory of all known circum Antarctica palaeo-ice streams, their basal characteristics, and their minimum ages for retreat from the LGM.

At the LGM, palaeo-ice streams in West Antarctica and the Antarctic Peninsula extended to the shelf edge, whereas in East Antarctica ice was typically (although not universally) restricted to the mid-outer shelf. All of the known palaeo-ice streams occupied cross-shelf bathymetric troughs of variable size, dimension and gradient, and were distinguished by a range of glacial bedforms (see Tables 3 & Fig. 5). Typically, the outer shelf zone of Antarctic palaeo-ice streams is characterised by unconsolidated sediment, which can often be further sub-divided into soft (upper) and stiff (lower) till units. Where unconsolidated sediment is present, and this is sometimes as patches of till on the inner shelf, MSGLs and GZWs are commonly observed. The inner shelf, by contrast, is generally characterised by crystalline bedrock and higher bed roughness. It is on this more rigid substrate that drumlins, gouged and grooved bedrock and meltwater channels are commonly observed.

The retreat history of the Antarctic Ice Sheet since the LGM has been characterised by significant variability, with palaeo-ice stream systems responding asynchronously to both external and internal forcings (cf. Fig. 10). This includes both the response of palaeo-ice streams to initial triggers of atmospheric warming, oceanic warming and sea-level rise, and the subsequent pattern of retreat back to their current grounding-line positions. Thus, the recent spatial and temporal variability exhibited by ice streams over short (decadal) time-

- scales (e.g. Truffer & Fahnestock, 2007) can actually be placed within a much longer record
- of asynchronous retreat. Whilst grounding line retreat may be triggered, and to some extent
- paced, by external factors, the individual characteristics of each ice stream will, nonetheless,
- modulate this retreat. Consequently, some ice streams will retreat rapidly, whereas others will
- retreat more slowly, even under the same climate forcing. It is therefore imperative that ice
- stream behaviour and grounding-line retreat is treated as unique to each ice stream and this
- highlights the importance of obtaining knowledge of their subglacial bed properties and bed
- geometry for constraining future ice stream behaviour.
- The inherent association linking subglacial bedform genesis with subglacial processes
- permits the geomorphological signature to be used as a proxy for reconstructing ice stream
- retreat behaviour. Based on preliminary research into the retreat styles and characteristics of
- individual ice streams (Section 5.2), it seems that ice streams with small drainage basins and
- steep reverse slopes are most sensitive to rapid deglaciation. In contrast, palaeo-ice streams
- with large drainage basins were generally the slowest to deglaciate.

1431

1432

Acknowledgments:

- This work was funded by NERC standard grants NE/G015430/1 and NE/G018677/1. We
- thank Laura De Santis for supplying core locations from the Italian-Australian WEGA
- project. This contribution has benefitted significantly from the insightful comments of two
- anonymous reviewers.

1437

1438

References:

- Allen, C.S., Oakes-Fretwell, L., Anderson, J.B., Hodgson, D.A., 2010. A record of Holocene glacial
- and oceanographic variability in Neny Fjord, Antarctic Peninsula. The Holocene 1-14 doi:
- 1441 10.1177/0959683609356581.
- Alley, R.B., Blankenship, D.D., Bentley, C.R., Rooney, S.T., 1986. Deformation of till beneath ice
- stream B, West Antarctica. Nature 322: 57-59.
- Alley, R.B., Blankenship, D.D., Rooney, S.T., Bentley, C.R., 1987. Till beneath Ice Stream B, 3, Till
- deformation: Evidence and implications. Journal of Geophysical Research 92: 8921-8929.
- Alley, R.B., Blankenship, D.D., Rooney, S.T., Bentley, C.R., 1989. Sedimentation beneath ice shelves
- 1447 the view from Ice Stream B. Marine Geology 85: 101-120.
- Alley, R.B., Blankenship, D.D., Rooney, S.T., Bentley, C.R., 1989b. Water pressure coupling of
- sliding and bed deformation. 3. Application to Ice Stream B, Antarctica. Journal of Glaciology 35:
- 1450 130-139.

- Alley, R.B., 1993a. Deforming bed origin for southern Laurentide till sheets. Journal of Glaciology
- 1452 37: 67-76.
- Alley, R.B., 1993b. In search of ice-stream sticky spots. Journal of Glaciology 39: 447-454.
- Alley, R.B., 2001. Continuity comes first: recent progress in understanding subglacial deformation.
- In: Maltman, A.J., Hubbard, B., Hambrey, M.J. (Eds.). Deformation of Glacial Materials, vol. 176.
- Geological Society, Special Publication, London, pp. 171-179.
- Alley, R.B., Lawson, D.E., Larson, G.J., Evenson, E.B., Baker, G.S., 2003. Stabilizing feedbacks in
- glacier bed erosion. Nature 424: 758-760.
- Alley, R.B., Anandakrishnan, S., Dupont, T.K., Parizek, B.R., Pollard, D., 2007. Effect of
- sedimentation on ice-sheet grounding-line stability. Science 315: 1838-1841.
- Amblas, D., Urgeles, R., Canals, M., Calafat, A.M., Rebesco, M., Camerlenghi, A., Estrada, F., De
- Batist, M., Hughes-Clarke, J.E., 2006. Relationship between continental rise development and palaeo-
- ice sheet dynamics, Northern Antarctic Peninsula Pacific margin. Quaternary Science Reviews 25:
- 1464 933-944.
- Anandakrishnan, S., Alley, R.B., 1997. Stagnation of ice stream C, West Antarctica, by water piracy.
- Geophysical Research Letters 24: 265-268.
- Anandakrishnan, S., Blankebship, D.D., Alley, R.B., Stoffa, P.L., 1998. Influence of subglacial
- geology on the position of a West Antarctic ice stream from seismic observations. Nature 394: 62-65.
- Anandakrishnan, S., Catania, G.A., Alley, R.B., Horgan, H.J., 2007. Discovery of till deposition at the
- grounding line of Whillans Ice Stream. Science 315: 1835.
- 1471 Anderson, J.B., Kurtz, D.D., Domack, E.W., Balshaw, K.M., 1980. Glacial and glacial marine
- sediments of the Antarctic continental shelf. Journal of Geology 88: 399-414.
- Anderson, J.B., Shipp, S.S., Siringan, F.P., 1992. Preliminary seismic stratigraphy of the northwestern
- Weddell Sea continental shelf, in Yoshida, Y., et al., (Ed.). Recent progress in Antarctic earth science:
- Tokyo, Terra Scientific Publishing Company, p. 603–612.
- Anderson, J.B., 1997. Grounding zone wedges on the Antarctic continental shelf, Weddell Sea. In
- Glaciated Continental Margins: an Atlas of Acoustic Images, Davies, T.A. et al. (Eds.). Chapman and
- 1478 Hall: London, pp. 98-99.
- 1479 Anderson, J.B., 1999. Antarctic Marine Geology. Cambridge University Press: Cambridge.

- Anderson, J.B., Andrews, J.T. 1999. Radiocarbon constraints on ice sheet advance and retreat in the
- 1481 Weddell Sea, Antarctica. Geology 27: 179-182.
- Anderson, J.B., Shipp, S.S., 2001. Evolution of the West Antarctic Ice Sheet: In: Alley, R.B. &
- 1483 Bindschadler, R.A. (Eds.), The West Antarctic ice Sheet: Behaviour and Environment, Antarctic
- 1484 Research Series, vol 77, pp. 45-57.
- Anderson, J.B., Wellner, J.S., Lowe, A.L., Mosola, A.B., Shipp, S.S., 2001. Footprint of the expanded
- 1486 West Antarctic Ice Sheet: ice stream history and behaviour. GSA Today 11: 4-9.
- Anderson, J.B., Shipp, S.S., Lowe, A.L., Wellner, J.S., Mosola, A.B., 2002. The Antarctic Ice Sheet
- during the Last Glacial Maximum and its subsequent retreat history: a review. Quaternary Science
- 1489 Reviews 21: 49-70.
- Anderson, J.B., Oakes-Fretwell, L., 2008. Geomorphology of the onset area of a palaeo-ice stream,
- Marguerite Bay, Antarctica Peninsula. 2008. Earth Surface Processes and Landforms 33: 503-512.
- Andrews, J.T., Domack, E.W., Cunningham, W.L., Leventer, A., Licht, K.J., Jull, A.J., DeMaster, D.J.,
- Jennings, A.E., 1999. Problems and possible solutions concerning radiocarbon dating of surface
- marine sediments, Ross Sea, Antarctica. Quaternary Research 52: 206-216.
- Arthern, R.J., Winebrenner, D.P., Vaughan, D.G. 2006. Antarctic snow accumulation mapped using
- polarization of 4.3 cm wavelength emission. Journal of Geophysical Research 111: D06107.
- Bamber, J.L., Ferraccioli, F., Joughin, I., Shepherd, T., Rippin, D.M., Siegert, M.J., Vaughan, D.G.,
- 1498 2006. East Antarctic ice stream tributary underlain by major sedimentary basin. Geology 34: 33-36.
- Bamber, J.L., Alley, R.B., Joughin, I., 2007. Rapid response of modern day ice sheets to external
- forcing. Earth and Planetary Science Letters 257: 1-13.
- Banfield, L.A., Anderson, J.B., 1995. Seismic facies investigation of the Late Quaternary glacial
- history of Bransfield Basin, Antarctica, In: Cooper, A.K. et al. (Eds.). Geology and seismic
- stratigraphy of the Antarctic margin: Antarctic Research Series 78: 123-140.
- Barbara, L., Crosta, X., Massé, G., Ther, O., 2010. Deglacial environments in eastern Prydz Bay, East
- 1505 Antarctica. Quaternary Science Reviews 29: 2731-2740.
- Bard, E., Hamelin, B., Fairbanks, R.G., 1990. U-Th ages obtained by mass spectrometry in corals
- from Barbados: sea level during the past 130,000 years. Nature 346: 456-458.

- Bard, E., Hamelin, B., Arnold, M., Montaggioni, L., Cabioch, G., Faure, G., Rougerie, F., 1996.
- Deglacial sea-level record from the Tahiti corals and the timing of global meltwater discharge. Nature
- 1510 382: 241-244.
- Barker, P.F., 1995. The proximal marine sediment record of Antarctic climate since the late Miocene.
- 1512 In: Cooper, A.K., Barker, P.F., Brancolini, G. (Eds.), Geology and Seismic Stratigraphy of the
- 1513 Antarctic Margin. Antarctic Research Series 68: 25–57.
- Barnes, P.W., 1987. Morphologic studies of the Wilkes Land Continental Shelf, Antarctica—glacial
- and iceberg effects. In: Eittreim, S.L., Hampton, M.A., (Eds.), The Antarctic Continental Margin:
- 1516 Geology and Geophysics of Offshore Wilkes Land, CPCEMR Earth Science Series, 5A. Circum-
- Pacific Council for Energy and Mineral Resources, Houston, Texas, pp. 175–194.
- 1518 Bart, P.J., Anderson, J.B., 1997. Grounding zone wedges on the Antarctic continental shelf, Antarctic
- Peninsula. In: Glaciated Continental Margins: an Atlas of Acoustic Images, Davies, T.A. et al. (Eds.).
- 1520 Chapman and Hall: London, pp. 96-97.
- 1521 Bart, P.J., De Batist, M., Jokat, W., 1999. Interglacial collapse of Crary Trough Mouth Fan, Weddell
- Sea, Antarctica: implications for Antarctic glacial history analysis. Journal of Sedimentary Research
- 1523 69: 1276-1289.
- Bart, P.J., Anderson, J.B., Trincardi, F., Shipp, S.S., 2000. Seismic data from the Northern Basin, Ross
- 1525 Sea, record extreme expansions of the East Antarctic Ice Sheet during the Late Neogene. Marine
- 1526 Geology 166: 31-50.
- Bart, P.J., Egan, D.E., Warny, S.A., 2005. Direct constraints on Antarctic Peninsula Ice Sheet
- grounding events between 5.12 and 7.94 Ma. Journal of Geophysical Research 110: F04008,
- 1529 doi:10.1029/2004JF000254.
- 1530 Beaman, R.J., Harris, P.T., 2003. Seafloor morphology and acoustic facies of the George V Land
- shelf. Deep-Sea Research 50: 1343-1355.
- Beaman, R.J., Harris, P.T., 2005. Bioregionalization of the George V shelf, East Antarctica.
- 1533 Continental Shelf Research 25: 1657-1691.
- Beaman, R.J., O'Brien, P.E., Post, A.L., De Santis, L., 2010. A new high resolution bathymetry model
- for the Terre Adelie and George V continental margin, East Antarctica. Antarctic Science (In press).
- Bell, R.E., Blankenship, D.D., Finn, C.A., Morse, D.L., Scambos, T.A., Brozen, J.M., Hodge, S.M.,
- 1537 1998. Influence of subglacial geology on the onset of a West Antarctic ice stream from
- aerogeophysical observations. Nature 394: 58-62.

- Bell, R.E., Studinger, M., Shuman, C.A., Fahnestock, M.A., Joughin, I., 2007. Large subglacial lakes
- in East Antarctica at the onset of fast-flowing ice streams. Nature 445: 904-907.
- Bell, R.E. 2008. The role of subglacial water in ice-sheet mass balance. Nature Geoscience 1: 297-
- 1542 304.
- Bennett, M.R., 2003. Ice Streams as the arteries of an ice sheet: their mechanics, stability and
- significance. Earth-Science Review 61 (3-4): 309-339.
- Bentley, M.J., Anderson, J.B., 1998. Glacial and marine geological evidence for the ice sheet
- 1546 configuration in the Weddell Sea-Antarctic Peninsula region during the Last Glacial Maximum.
- 1547 Antarctic Science 10: 309-325.
- Bentley, M. J., Fogwill, C.J., Le Brocq, A.M., Hubbard, A.L., Sugden, D.E., Dubnai, T.J., Freeman,
- 1549 S.P.H.T., 2010. Deglacial history of the West Antarctic Ice Sheet in the Weddell Sea embayment:
- 1550 Constraints on past ice volume change. Geological Society of America Bulletin 38: 411-414.
- Bentley, M.J. Johnson, J.S., Hodgson, D.A., Dunai/Binnie, Freeman, S., Ó Cofaigh, C., In press.
- Rapid deglaciation of Marguerite Bay, Antarctic Peninsula in the Early Holocene. Quaternary Science
- 1553 Reviews.
- Berkman, P.A., Forman, S.L., 1996. Pre-bomb radiocarbon and the reservoir correction for calcareous
- marine species in the Southern Ocean. Geophysical Research Letters 23: 363-366.
- Bindschadler, R., Choi, H., 2007. Increased water storage at ice-stream onsets: a critical mechanism?
- 1557 Journal of Glaciology 53: 163-171.
- Bingham, R.G., Siegert, M.J., 2009. Quantifying subglacial bed roughness in Antarctica: implications
- for ice-sheet dynamics and history. Quaternary Science Reviews 28: 223-236.
- Björnsson, H., 2002. Subglacial lakes and jökulhlaups in Iceland. Global and Planetary Change 35:
- 1561 255-271.
- Blankenship, D.D., Bentley, C.R., Rooney, S.T., Alley, R.B., 1986. Seismic measurements reveal a
- saturated, porous layer beneath an active Antarctic ice stream. Nature 322: 54-57.
- Bockheim, J.G., Wilson, S.C., Denton, G.H., Andersen, B.G., Stuiver, M., 1989. Late Quaternary ice-
- surface fluctuations of Hatherton Glacier, Transantarctic Mountains. Quaternary Research 31: 229-
- 1566 254.
- Bogen, J., 1996. Erosion rates and sediment yields of glaciers. Annals of Glaciology 22: 48-52.

- Bolmer, S.T., 2008. A note on the development of the bathymetry of the continental margin west of
- the Antarctic Peninsula from 65° to 71°S and 65° to 78°W. Deep Sea Research II 55: 271-276.
- Bougamont, M., Tulaczyk, S., 2003. Glacial erosion beneath ice streams and ice-stream tributaries:
- 1571 constraints on temporal and spatial distribution of erosion from numerical simulations of a West
- 1572 Antarctic ice stream. Boreas 32: 178-190.
- Bougamont, M., Tulaczyk, S., Joughin, I., 2003. Response of subglacial sediments to basal freeze-on:
- 2. Application in numerical modelling of the recent stoppage of ice stream C, West Antarctica. Journal
- of Geophysical Research 108: 2222, doi: 10.1029/2002JB001936.
- Boulton, G.S., Hindmarsh, R.C.A., 1987. Sediment deformation beneath glaciers: rheology and
- 1577 geological consequences. Journal of Geophysical Research 92: 9059-9082.
- Brachfeld, S., Domack, E.W., Kissel, C., Laj, C., Leventer, A., Ishman, S. Gilbert, R., Camerlenghi,
- 1579 A., Eglinton, L.B., 2003. Holocene history of the Larsen-A Ice Shelf constrained by geomagnetic
- paleointensity dating. Geology 31: 749-752.
- Bradwell, T., Stoker, M.S., Larter, R.D., 2007. Geomorphological signature and flow dynamics of the
- 1582 Minch palaeo-ice stream, NW Scotland. Journal of Quaternary Science 22: 609-617.
- Bradwell, T., Stoker, M., Krabbendam, M., 2008. Meagrooves and streamlined bedrock in NW
- 1584 Scotland: the role of ice streams in landscape evolution. Geomorphology 97: 135-156.
- Brambati, A., Melis, R., Quaia, T., Salvi, G., 2002. Late Quaternary climatic changes in the Ross Sea
- Area, Antarctica. In: Gamble, J.A., Skinner, D.N.B., Henrys, S. (Eds.), Antarctica at the close of the
- Millenium; Proceedings Volume 8th International Symposium on the Antarctic Earth Science. Royal
- Society of New Zealand Bulletin 35: 359-364.
- Camerlenghi, A., Domack, E., Rebesco, M., Gilbert, R., Ishman, S., Leventer, A., Brachfeld, S.,
- 1590 Drake, A., 2001. Glacial morphology and post-glacial contourities in northern Prince Gustac Channel
- 1591 (NW Weddell Sea, Antarctica). Marine Geophysical Researchers 22: 417-443.
- 1592 Canals, M.R., Urgeles, R., Calafat, A.M., 2000. Deep sea-floor evidence of past ice streams off the
- 1593 Antarctic Peninsula. Geology 28: 31-34.
- 1594 Canals, M., Casamor, J.L., Urgeles, R., Calafat, A.M., Domack, E.W., Baraza, J., Farran, M., De
- Batist, M. 2002. Seafloor evidence of a subglacial sedimentary system off the northern Antarctic
- 1596 Peninsula. Geology 30: 603-606.

- 1597 Canals M., Calafat A., Camerlenghi A., De Batist M., Urgeles R., Farran M., Geletti R., Versteeg W.,
- Amblas D., Rebesco M., Casamor J.L., Sanchez A., Willmott V., Lastras G., Imbo Y., 2003.
- 1599 Uncovering the footprint of former ice streams off Antarctica. Eos 84 (11): 97–103.
- 1600 Carter, S.P., Blankenship, D.D., Young, D.A., Peters, M.E., Holt, J.W., Siegert, M.J., 2009. Dynamic
- distributed drainage implied by the flow evolution of the 1996-1998 Adventure Trench subglacial lake
- discharge. Earth and Planetary Science Letters 283: 24-37.
- 1603 Christoffersen, P., Tulaczyk, S., 2003a. Response of subglacial sediment to basal freeze-on: I. Theory
- and comparison to observations from beneath West Antarctic ice Sheet. Journal of Geophysical
- 1605 Research 108: 2222, doi: 10.1029/2005JF000363.
- 1606 Christoffersen, P., Tulaczyk, S., 2003b. Thermodynamics of basal freeze-on: Predicting basal and
- subglacial signatures of stopped ice streams and interstream ridges. Annals of Glaciology 36: 233-
- 1608 243.
- 1609 Christoffersen, P., Tulaczyk, S., Behar, A., 2010. Basal ice sequences in Antarctic ice streams:
- 1610 Exposure of past hydrological conditions and a principle mode of sediment transfer. Journal of
- 1611 Geophysical Research 115: F03034.
- 1612 Clark, C.D., 1993. Mega-scale glacial lineations and cross-cutting ice-flow landforms. Earth Surface
- Processes and Landforms 18: 1-19.
- 1614 Clark, C.D., Stokes, C.R., 2001. Extent and basal characteristics of the M'Clintock Channel Ice
- 1615 Stream. Quaternary International 86: 81-101.
- 1616 Clark, C.D., Tulaczyk, S.M., Stokes, C.R., Canals, M., 2003. A groove-ploughing mechanism for the
- production of mega-scale glacial lineations, and implications for ice stream mechanics. Journal of
- 1618 Glaciology 49: 240-256.
- 1619 Clark, P.U., Walder, J.S., 1994. Subglacial drainage, eskers, and deforming beds beneath the
- Laurentide and Eurasion ice sheets. Geological Society of America Bulletin 106: 304-314.
- 1621 Clark, P.U., McCabe, A.M., Mix, A.C., Weaver, A.J., 2004. Rapid rise of sea level 19,000 years ago
- and its global implications. Science 304: 1141-1144.
- 1623 Clarke, G.K.C., Leverington, D.W., Teller, J.T., Dyke, A.S., Marshall, S.J. 2005. Fresh arguments
- against the Shaw megaflood hypothesis. A reply to comments by David Sharpe on "Paleohydraulics of
- the last outburst flood from glacial Lake Agassiz and the 8200 BP cold event". Quaternary Science
- 1626 Reviews 24: 1533-1541.
- 1627 Conway, H., Hall, B.L., Denton, G.H., Gades, A.M., Waddington, E.D., 1999. Past and future

- grounding-line retreat of the West Antarctic Ice Sheet. Science 286: 280-283.
- 1629 Conway, H., Catania, G., Raymond, C.F., Gades, A.M., Scambos, T.A., Engelhardt, H., 2002. Switch
- of flow in an Antarctic ice stream. Nature 419: 465-567.
- 1631 Crosta, X., Debret, M., Denis, D., Courty, M.A., Ther, O., 2007. Holocene long- and short-term
- climate changes off Adélie Land, East Antarctica. Geochemistry, Geophysics, Geosystems 8: doi:
- 1633 10.1029/2007GC001718.
- 1634 Cunningham, W.L., Leventer, A., Andrews, J.T., Jennings, A.E., Licht, K.J., 1999. Late Pleistocene-
- Holocene marine conditions in the Ross Sea, Antarctica: evidence from the diatom record. The
- 1636 Holocene 9: 129-139.
- 1637 Curry, P., Pudsey, C.J., 2007. New Quaternary sedimentary records from near the Larsen C and former
- Larsen B ice shelves; evidence for Holocene stability. Antarctic Science 19: 355-364.
- De Angelis, H., Kleman, J., 2005. Palaeo-ice streams in the northern Keewatin sector of the
- Laurentide Ice Sheet. Annals of Glaciology 42: 135-144.
- De Angelis, H. & Skvarca, P. 2003. Glacier surge after ice shelf collapse. Science 299: 1560-1562.
- De Angelis, H., Kleman, J., 2007. Palaeo-ice streams in the Foxe/Baffin sector of the Laurentide Ice
- Sheet. Quaternary Science Reviews 26: 1313-1331.
- Denis, D., Crosta, X., Schmidt, S., Carson, D.S., Ganeshram, R.S., Renssen, H., Bout-Roumazeilles,
- V., Zaragosi, S., Martin, B., Cremer, M., Giraudeau, J., 2009. Holocene glacier and deep water
- dynamics, Adélie Land region, East Antarctica. Quaternary Science Reviews 28: 1291-1303.
- Domack, E.W., 1982. Sedimentology of glacial and glacial marine deposits on the George V-Adelie
- 1648 continental shelf, East Antarctica. Boreas 11: 79-97.
- Domack, E.W., 1987. Preliminary stratigraphy for a portion of the Wilkes Land Continental Shelf,
- Antarctica: evidence from Till Provenance. In: Eittrem, S.L., Hampton, M.A., (Eds.), The Antarctic
- 1651 Continental Margin: Geology and Geophysics of OffshoreWilkes Land, CPCEMR Earth Science
- Series, 5A. Circum-Pacific Council for Energy and Mineral Resources, Houston, Texas, pp. 195–203.
- Domack, E.W., Jull, A.J.T., Kakao, S., 1991. Advance of East Antarctic outlet glaciers during the
- 1654 Hypsithermal: Implications for the volume state of the Antarctic ice sheet under global warming.
- 1655 Geology 19: 1059-1062.

- Domack, E.W., O'Brien, P., Harries, P., Taylor, F., Quilty, P.G., De Santis, L., Raker, B., 1998. Late
- 1657 Quaternary sediment facies in Prydz Bay, East Antarctica and their relationship to glacial advance
- onto the continental shelf. Antarctic Science 10: 236-246.
- Domack, E.W., Jacobson, E.A., Shipp, S.S., Anderson, J.B., 1999. Late Plaeistocene-Holocene retreat
- of the West Antarctic Ice-Sheet system in the Ross Sea: Part 2 Sedimentologic and stratigraphic
- signature. Geological Society of America Bulletin 111: 1517-1536.
- Domack, E.W., Leventer, A., Dunbar, R., Taylor, F., Brachfeld, S., Sjunneskog, C., 2001. Chronology
- of the Palmer Deep site, Antarctic Peninsula: a Holocene palaeoenvironmental reference for the
- circum-Antarctic. The Holocene 11: 1-9.
- Domack, E.W., Duran, D., Leventer, A., Ishman, S., Doane, S., McCallum, S., Amblas, D., Ring, J.,
- Gilbert, R., Prentice, M., 2005. Stability of the Larsen B ice shelf on the Antarctic Peninsula during
- the Holocene epoch. Nature 436: 681-685.
- Domack, E.W., Amblàs, D., Gilbert, R., Brachfeld, S., Camerlenghi, A., Rebesco, M., Canals, M.,
- 1669 Urgeles, R., 2006. Subglacial morphology and glacial evolution of the Palmer deep outlet system,
- 1670 Antarctic Peninsula. Geomorphology 75: 125-142.
- Dowdeswell, J.A., Kenyon, N., Elverhøi, A., Laberg, J.S., Mienert, J., Siegert, M.J., 1996. Large-scale
- sedimentation on the glacier-influenced Polar North Atlantic margins: long-range side-scan sonar
- evidence. Geophysical Research Letters 23: 3535-3538.
- Dowdeswell, J.A., Ó Cofaigh, C., Pudsey, C.J., 2004a. Thickness and extent of the subglacial till layer
- beneath an Antarctic palaeo-ice stream. Geology 32: 13-16.
- Dowdeswell, J.A., Ó Cofaigh, C., Evans, J., 2004b. Continental slope morphology and sedimentary
- processes at the mouth of an Antarctic palaeo-ice stream. Marine Geology 204: 203-214.
- Dowdeswell, J.A., Evans, J., Ó Cofaigh, C., Anderson, J.B., 2006. Morphology and sedimentary
- processes on the continental slope off Pine Island Bay, Amundsen Sea, West Antarctica. Geological
- Society of America Bulletin 118: 606-619.
- Dowdeswell, J.A., Ottesen, D., Evans, J., Ó Cofaigh, C., Anderson, J.B., 2008a. Submarine glacial
- landforms and rates of ice-stream collapse. Geology 36: 819-822.
- Dowdeswell, J.A., Ó Cofaigh, C., Noormets, R., Larter, R.D., Hillenbrand, C.-D., Benetti, S., Evans,
- J., Pudsey, C.J., 2008b. A major trough-mouth fan on the continental margin of the Bellingshausen
- Sea, West Antarctica: The Belgica Fan. Marine Geology 252: 129-140.

- Dupont, T.K., Alley, R.B., 2005. Assessment of the importance of ice-shelf buttressing to ice-sheet
- flow. Geophysical Research Letters 32: L04503.
- Dupont, T.K., Alley, R.B., 2006. Role of small ice shelves in sea-level rise. Geophysical Research
- 1689 Letters 33: L09503.
- Dyke, A.S., Morris, T.F., 1988. Drumlin fields, dispersal trains and ice streams in Arctic Canada.
- 1691 Canadian Geographer 32: 86-90.
- 1692 Echelmeyer, K.A., Clarke, T.S., Harrison, W.D., 1991. Surficial glaciology of Jakobshavn Isbrae,
- West Greenland: part 1. Surface morphology. Journal of Glaciology 37: 368-382.
- Echelmeyer, K.A., Harrison, W.D., Larsen, C., Mitchell, J.E., 1994. The role of the margins in the
- dynamics of an active ice stream. Journal of Glaciology 40: 527-538.
- 1696 Eittreim, S.L., Cooper, A.K., Wannesson, J., 1995. Seismic stratigraphic evidence of ice-sheet
- advances on the Wilkes Land margin of Antarctica. Sedimentary Geology 96 (1–2): 131–156.
- 1698 Elverhøi, A., 1981. Evidence for a Late Wisconsin glaciation of the Weddell Sea. Nature 293: 641-
- 1699 642.
- 1700 Engelhardt, H.F., Humphrey, N., Kamb, B., Fahnestock, M., 1990. Physical condition at the base of a
- fast moving Antarctic ice stream. Science 248: 57-59.
- 1702 Engelhardt, H.F., Kamb, B., 1997. Basal hydraulic system of a West Antarctic ice stream: Constraints
- from borehole observations. Journal of Glaciology 43: 207-230.
- Engelhardt, H.F., Kamb, B., 1998. Sliding velocity of Ice Stream B. Journal of Glaciology 43: 207-
- 1705 230.
- Escutia, C., Warnke, D., Acton, G.D., Barcena, A., Burckle, L., Canals, M., Frazee, C.S., 2003.
- 1707 Sediment distribution and sedimentary processes across the Antarctic Wilkes Land margin during the
- 1708 Quaternary. Deep-Sea Research II 50: 1481-1508.
- Evans, J., Pudsey, C.J., 2002. Sedimentation associated with Antarctic Peninsula ice shelves:
- implications for paleoenvironmental reconstructions of glacimarine sediments. Journal of the
- 1711 Geological Society 159: 233-237.
- Evans, J., Dowdeswell, J.A., Ó Cofaigh, C., 2004. Late Quaternary submarine bedforms and ice-sheet
- flow in Gerlache Strait and on the adjacent continental shelf, Antarctic Peninsula. Journal of
- 1714 Quaternary Science 19: 397-407.

- Evans, J., Pudsey, C.J., Ó Cofaigh, C., Morris, P.W., Domack, E.W., 2005. Late Quaternary glacial
- history, dynamics and sedimentation of the eastern margin of the Antarctic Peninsula Ice Sheet.
- 1717 Quaternary Science Reviews 24: 741-774.
- Evans, J., Dowdeswell, J.A., Ó Cofaigh, C., Benham, T.J., Anderson, J.B., 2006. Extent and dynamics
- of the West Antarctic Ice Sheet on the outer continental shelf of Pine Island Bay during the last
- 1720 Glaciation. Marine Geology 230: 53-72.
- Evans, D.J.A., Phillips, E.R., Hiemstra, J.F., Auton, C.A., 2006. Subglacial till: formation,
- sedimentary characteristics and classification. Earth Science Reviews 78: 115-176.
- Fairbanks, R.G., 1989. 1 17,000-year glacio-eustatic sea level record: influence of glacial melting
- rates on the Younger Dryas event and deep-ocean circulation. Nature 342: 637-642.
- Farmer, G.L., Licht, K., Swope, R.J., Andrews J., 2006. Isotopic constraints on the provenance of
- 1726 fine-grained sediment in LGM tills from the Ross Embayment, Antarctica. Earth and Planetary
- 1727 Science Letters 249: 90–107.
- Finocchiaro, F., Melis, R., Tosato, M., 2000. Late Quaternary environmental events in two cores from
- 1729 Southern Joides Basin (Ross Sea, Antarctica). Prooc. Workshop Palaeoclimatic Reconstructions from
- Marine Sediments of the Ross Sea (Antarctica) and Southern Ocean, Trieste, Italy. Terra Antarctica
- 1731 Report 4: 125-130.
- 1732 Finocchiaro, F., Langone, L., Colizza, E., Fontolan, G., Giglio, F., Tuzzi, E., 2005. Record of the early
- Holocene warming in a laminated sediment core from Cape Hallett Bay (Northern Victoria Land,
- Antarctica. Global and Planetary Change 45: 193-206.
- 1735 Fischer, U.H., Clarke, G.K.C., 1994. Ploughing of subglacial sediment. Journal of Glaciology 44:
- 1736 223-230.
- Fountain, A.G., Walder, J.S., 1998. Water flow through temperate glaciers. Review of Geophysics 36:
- 1738 299-328.
- 1739 Fowler, A.C., 2010. The formation of subglacial streams and mega-scale glacial lineations.
- 1740 Proceedings of the Royal Society A: Mathematical, Physical & Engineering Science 466: 3181-3201.
- 1741 Fricker, H.A., Scambos, T., Bindschadler, R., Padman, L., 2007. An active subglacial water system in
- 1742 West Antarctica mapped from space. Science 315: 1544-1548.
- 1743 Fricker, H.A., Scambos, T., 2009. Connected subglacial lake activity on lower Mercer and Whillans
- 1744 Ice Streams, West Antarctica, 2003-2008. Journal of Glaciology 55: 303-315.

- Frignani, M., Giglio, F., Langone, L., Ravaioli, M., Mangini, A., 1998. Late Pleistocene-Holocene
- sedimentary fluxes of organic carbon and biogenic silica in the northwestern Ross Sea, Antarctica.
- 1747 Annals of Glaciology 27: 697-703.
- Fütterer, D.K., Melles, M., 1990. Sediment patterns in the southern Weddell Sea: Filchner shelf and
- Filchner depression. In: Bleil, U., Thiede, J., (Eds.), Geologic History of the Polar Oceans: Arctic
- versus Antarctic. Kluwer Academic Publishers, Boston, pp. 381-401.
- Gersonde, R., Crosta, X., Abelmann, A., Armand, L., 2005. Sea-surface temperature and sea ice
- distribution of the Southern Ocean at the EPILOG Last Glacial Maximum—a circum-Antarctic view
- based on siliceous microfossil records. Quaternary Science Reviews 24: 869–896.
- Gilbert, R., Domack, E.W., Camerlenghi, A., 2003. Deglacial history of the Greenpeace Trough: ice
- sheet to ice shelf transition in the northern Weddell Sea. In Domack, E., Leventer, A., Burnett, A.,
- Bindschadler, R., Peter, C., Kirby, M., (Eds.) Antarctic Peninsula Climate Variability; Historical and
- Paleoenvironmental Perspectives, Antarctic Research Series 79: 195-204.
- Gingele, F.X., Kuhn, G., Maus, B., Melles, M., Schöne, T., 1997. Holocene ice retreat from the
- Lazarev Sea shelf, East Antarctica. Continental Shelf Research 17: 137-163.
- Goldberg, D., Holland, D.M., Schoof, C., 2009. Grounding line movement and ice shelf buttressing in
- marine ice sheets. Journal of Geophysical Research 114: F04026.
- Gomez, N., Mitrovica, J.X., Huybers, P., Clark, P.U., 2010. Sea level as a stabilizing factor for
- marine-ice-sheet grounding lines. Nature Geoscience doi: 10.1038/NGEO1012.
- Goodwin, I, de Angelis, M., Pook, M., Young, N.W. 2003. Snow accumulation variability in Wilkes
- Land, East Antarctica and the relationship to atmospheric ridging in the 130° to 170° E region since
- 1766 1930. Journal of Geophysical Research 108 (D21): 4673.
- Goodwin, I.D., van Ommen, T.D., Curan, M.A.J., Mayewsju, P.A. 2004. Mid-latitude winter climate
- variability in the south Indian and south-west Pacific region since 1300 AD. Climate Dynamics 22:
- 1769 783-794.
- Graham, A.G.D., Fretwell, P.T., Larter, R.D., Hodgson, D.A., Wilson, C.K., Tate, A.J., Morris, P.,
- 1771 2008. New bathymetric compilation highlights extensive paleo-ice sheet drainage on continental shelf,
- 1772 South Georgia, sub-Antarctica. Geochemistry, Geophysics, Geosystems 9: 1-21.
- Graham, A.G.C., Later, R.D., Gohl, K., Hillenbrand, C.-D, Smith, J.A., Kuhn, G., 2009. Bedform
- signature of a West Antarctic ice stream reveals a multi-temporal record of flow and substrate control.
- 1775 Quaternary Science Reviews 28: 2774-2793.

- Graham, A.G.C., Later, R.D., Gohl, K., Dowdeswell, J.A., Hillenbrand, C.-D, Smith, J.A., Evans, J.,
- Kuhn, G., Deen, T., 2010. Flow and retreat of the Late Quaternary Pine Island-Thwaites palaeo-ice
- stream, West Antarctica. JGR-Earth Surface 115: F03025.
- Graham, A.G.C., Nitsche, F.O., Larter, R.D., submitted. An improved bathymetry compilation for the
- Belligshausen Sea, Antarctica, to inform ice-sheet and ocean models. The Cryosphere Discuss 4:
- 1781 2079-2102.
- Griffiths, S.D., Peltier, W.R., 2008. Megatides in the Arctic Ocean under glacial conditions.
- 1783 Geophysical Research Letters 35: L08605.
- Griffiths, S.D., Peltier, W.R., 2009. Modelling of Polar Ocean Tides at the Last Glacial Maximum:
- amplification, sensitivity and climatological implications. Journal of Climate 22: 2905-2924.
- Gudmundsson, G.H., 2007. Tides and the flow of Rutford Ice Stream, West Antarctica. Journal of
- 1787 Geophysical Research 112: F04007.
- Haase, G.M., 1986. Glaciomarine sediments along the Filchner/Rønne Ice Shelf, southern Weddell
- 1789 Sea first results of the 1983/84 ANTARKTIS-II/4 expedition. Marine Geology 72: 241-258.
- Hallet, B., Hunter, L.E., Bogen, J., 1996. Rates of erosion and sediment evacuation by glaciers: a
- review of field data and their implications. Global Planetary Change 12: 213-235.
- Harden, S.L., DeMaster, D.J., Nittrouer, C.A., 1992. Developing sediment geochronologies for high-
- latitude continental shelf deposits: a radiochemical approach. Marine Geology 103: 69-97.
- Harris, P.T., O'Brien, P.E., 1996. Geomorphology and sedimentology of the continental shelf adjacent
- to MacRobertson Land, East Antarctica: a scalped shelf. Geo-Marine Letters 16: 287-296.
- Harris, P.T., O'Brien, P.E., 1998. Bottom currents, sedimentation and ice-sheet retreat facies
- succestions on the Mac Robertson shelf, East Antarctica. Marine Geology 151: 47-72.
- Harris, P.T., Brancolini, G., Armand, L., Busetti, M., Beaman, R.J., Giogetti, G., Presti, M., Trincardi,
- F., 2001. Continental shelf drift deposit indicates non-steady state Antarctic bottom water production
- in the Holocene. Marine Geology 179: 1-8.
- Hemer, M.A., Harris, P.T., 2003. Sediment core from beneath the Amery Ice Shelf, East Antarctica,
- suggests mid-Holocene ice-shelf retreat. Geology 31: 127-130.
- 1803 Heroy, D.C., Anderson, J.B., 2005. Ice-sheet extent of the Antarctic Peninsula region during the Last
- 1804 Glacial Maximum (LGM) Insights from glacial geomorphology. Geological Society of America
- 1805 Bulletin 117: 1497-1512.

- Heroy, D.C., Anderson, J.B., 2007. Radiocarbon constraints on Antarctic Peninsula Ice Sheet retreat
- following the Last Glacial Maximum (LGM). Quaternary Science Reviews 26: 3286-3297.
- Heroy, D.C., Sjunneskog, C., Anderson, J.B., 2008. Holocene climate change in the Bransfield Basin,
- 1809 Antarctic Peninsula: evidence from sediment and diatom analysis. Antarctic Science 20: 69-87.
- Hillenbrand, C.-D., Baesler, A., Grobe, H., 2005. The sedimentary record of the last glaciation in
- 1811 western Bellingshausen Sea (West Antarctica): implications for the interpretation of diamictons in a
- polar-marine setting. Marine Geology 216: 191-204.
- Hillenbrand, C.-D., Ehrmann, W., Larter, R.D., Benetti, S., Dowdeswell, J.A., Ó Cofaigh, C., Graham,
- 1814 A.G.C., Grobe, H., 2009. Clay mineral provenance of sediments in the southern Bellingshausen Sea
- reveals drainage changes of the West Antarctic Ice Sheet during the Late Quaternary. Marine Geology
- 1816 265: 1-18.
- Hillenbrand, C.-D., Larter, R.D., Dowdeswell, J.A., Ehrmann, W., Ó Cofaigh, C., Benetti, S., Graham,
- 1818 A., Grobe, H., 2010a. The sedimentary legacy of a palaeo-ice stream on the shelf of the southern
- Bellingshausen Sea: Clues to West Antarctic glacial history during the Late Quaternary. Quaternary
- 1820 Science Reviews (in press).
- Hillenbrand, C.-D., Smith, J.A., Kuhn, G., Esper, O., Gersonde, R., Larter, R.D., Maher, B., Moreton,
- 1822 S.G., Shimmield, T.M., Korte, M., 2010b. Age assignment of a diatomaceous ooze deposited in the
- 1823 western Amundsen Sea Embayment after the Last Glacial Maximum. Journal of Quaternary Science
- 1824 25: 280-295.
- Hindmarsh, R.C.A., 1997. Deforming plastic beds: viscous and plastic scales of deformation.
- 1826 Quaternary Science Reviews 16: 1039-1056.
- Hindmarsh, R.C.A., 1998. Drumlinisation and drumlin-forming instabilities: viscous till mechanisms.
- 1828 Journal of Glaciology 44: 293-314.
- Hjort, C., Bentley, M.J., Ingólfsson, O., 2001. Holocene and pre-Holocene temporary disappearance
- of the George VI Ice Shelf, Antarctic Peninsula. Antarctic Science 13: 296-301.
- Holland, D.M., Thomas, R.H., De Young, B., Ribergaard, M.H., Lyberth, B., 2008. Acceleration of
- 1832 Jakobshavn Isbrae triggered by warm subsurface ocean waters. Nature Geoscience DOI:
- 1833 10.1038/NGEO316.
- Hollin, J.T., 1962. On the glacial history of Antarctica. Journal of Glaciology 4: 173-195.
- Hooke, R.L., Elverhøi, A., 1996. Sediment flux from a fjord during glacial periods, Isfjorden,
- 1836 Spitsbergen. Global and Planetary Change 12: 237-249.

- Hooke, R.L., Hanson, N.R., Iverson, P., Jansson, P., Fischer, U.H., 1997. Rheology of till beneath
- 1838 Storglaciaren, Sweden. Journal of Glaciology 43: 172-179.
- Hooke, R.L., Fastook, J., 2007. Thermal conditions at the bed of the Laurentide ice sheet in Maine
- during deglaciation: implications for esker formation. Journal of Glaciology 53: 646-658.
- Howat, I.M., Domack, E.W., 2003. Reconstruction of western Ross Sea palaeo-ice stream grounding
- zones from high-resolution acoustic stratigraphy. Boreas 32: 56-75.
- Howat, I.M., Joughin, I., Scambos, T.A., 2007. Rapid changes in ice discharge from Greenland outlet
- 1844 glaciers. Science 315: 1559-1561.
- 1845 Intergovernmental Panel on Climate Change (IPCC), 2007. Climate Change 2007: The Physical
- 1846 Basis: Contributions of Working Group 1 to the fourth Assessment Report, edited by S. Solomon et
- al., pp. 747-845, Cambridge University Press, Cambridge, U.K.
- 1848 Iverson, N.R., Hooyer, T.S., Baker, R.W., 1998. Ring-shear studies of till deformation: Coulomb-
- plastic behaviour and distributed strain in glacier beds. Journal of Glaciology 44: 634-642.
- Jakobsson, M., Anderson, J.B., Nitsche, F.O., Dowdeswell, J.A., Gyllencreutz, R., Kirchner, N.,
- Mohammad, R., O'Regan, M.A., Alley, R.B., Anandakrishnan, S., Eriksson, B., Kirshner, A.E.,
- Fernandez-Vasquez, R.A., Stolldorf, T.D., Minzoni, R.L., Majewski, W. 2011. Geological record of
- ice shelf break-up and grounding-line retreat, Pine Island Bay, West Antarctica. Geology, 39; 691-694.
- Jamieson, S.S.R., Hulton, N.R.J., Hagdorn, M., 2008. Modelling landscape evolution under ice sheets.
- 1855 Geomorphology 97: 91-108.
- Jansson, K.N., Stoeven, A.P., Kleman, J., 2003. Configuration and timing of Ungava Bay ice streams,
- Labrador-Ungava, Canada. Boreas 32: 256-263.
- Jenkins, A., Dutrieux, P., Jacobs, S.S., McPhail, S.D., Perrett, J.R., Webb, A.T., White, D., 2010.
- 1859 Observations beneath Pine Island Glacier in West Antarctica and implications for its retreat. Nature
- 1860 Geoscience DOI: 10.1038/NGEO890.
- Joughin, I., Rignot, E., Rosanova, C.E., Lucchitta, B.K., Bohlander, J., 2003. Timing of recent
- accelerations of Pine Island Glacier, Antarctica. Geophysical Research Letters 30 (13): 1706.
- Joughin, I., Abdalati, W., Fahnestock, M., 2004. Large fluctuations in speed on Greenland's
- Jakobshavn Isbrae glacier. Nature 432: 608-610.
- Joughin, I., Das, S.B., King, M.A., Smith, B.E., Howat, I.M., Moon, T., 2008. Seasonal speedup along
- the western flank of the Greenland Ice Sheet. Science 320: 781-783.

- Joughin, I., Tulaczyk, S., Bamber, J.L., Blankenship, D., Holt, J.W., Scambos, T., Vaughan, D.G.,
- 1868 2009. Basal conditions for Pine Island and Thwaites Glaciers, West Antarctica, determined using
- satellite and airborne data. Journal of Glaciology 55: 245-257.
- Jouzel, J., Masson, V., Cattani, O., Falourd, S., Stievenard, M., Stenni, B., Longinelli, A., Johnsen,
- 1871 S.J., Steffenssen, J.P., Petit, J.R., Schwander, J., Souchez, R., Barkov, N.I., 2001. A new 27 ky high
- resolution East Antarctic climate record. Geophysical Research Letters 28: 3199-3202.
- Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Minster, B., Nouet, J., Barnola,
- J.M., Chappellaz, J., Fischer, H., Gallet, J.C., Johnsen, S., Leuenberger, M., Loulergue, L., Luethi, D.,
- Oerter, H., Parrenin, F., Raisbeck, G., Raynaud, D., Schilt, A., Schwander, J., Selmo, E., Souchez, R.,
- Spahni, R., Stauffer, B., Steffensen, J.P., Stenni, B., Stockerm T,F,M Tison, J.L., Werner, M., Wolff,
- 1877 E.W., 2007. Orbital and millennial Antarctic climate variability over the past 800,000 years. Science
- 1878 317: 793-796.
- 1879 Kamb, B., 1987. Glacier surge mechanism based on linked cavity configuration of the basal water
- conduit system. Journal of Geophysical Research 92: 9083-9100.
- Kamb, B., 1991. Rheological nonlinearity and flow instability in the deforming bed mechanism of ice
- stream motion. Journal of Geophysical Research 96: 16585-16595.
- Kamb, B., 2001. Basal zone of the West Antarctic Ice Sheet. In: Alley, R.B., Bindschadler, R.A.,
- 1884 (Eds.), The West Antarctic Ice Sheet: Behaviour and Environment, vol 77. American Geophysical
- Union, Antarctic Research Series, pp. 157-199.
- Katz, R.F., Worster, M.G., 2010. Stability of ice-sheet grounding lines. Proceedings of the Royal
- 1887 Society A 466: 1597-1620.
- 1888 Kavanaugh, J.L., Clarke, G.K.C., 2006. Discrimination of the flow law for subglacial sediment using
- in situ measurements and an interpretation model. Journal of Geophysical Research 111: F01002.
- Kellogg, T.B., Truesdale, R.S., Osterman, L.E. 1979. Late Quaternary extent of the West Antarctic ice
- sheet: new evidence from Ross Sea cores. Geology 7: 249-253.
- 1892 Kennedy, D.S., Anderson, J.B., 1989. Glacial-marine sedimentation and Quaternary glacial history of
- 1893 Marguerite Bay, Antarctic Peninsula. Quaternary Research 31: 255-276.
- Kilfeather, A.A., Ó Cofaigh, C., Lloyd, J.M., Dowdeswell, J.A., Xu, S., Moreton, S.G., 2010. Ice
- stream retreat and ice shelf history in Marguerite Bay, Antarctic Peninsula: sedimentological and
- 1896 formainiferal signatures. Geological Society of America Bulletin (in press).

- 1897 Kim, D., Park, B.-K., Yoon, H.I., Kang, C.Y., 1999. Geochemical evidence for Holocene
- paleoclimatic changes in Maxwell Bay of South Shetland Islands, West Antarctica. Geosciences
- 1899 Journal 3: 55-62.
- King, E.C., Woodward, J., Smith, A.M., 2004. Seismic evidence for a water-filled canal in deforming
- till beneath Rutford Ice Stream, West Antarctica, Geophysical Research Letters 31: L20401.
- King, E.C., Hindmarsh, R.C.A., Stokes, C.R., 2009. Formation of mega-scale glacial lineations
- observed beneath a West Antarctic ice stream, Nature Geoscience DOI: 10.1038/NGEO581.
- Kleman, J., Borgström, I., 1996. Reconstruction of palaeo-ice sheets: the use of geomorphic data.
- 1905 Earth Surface Processes and Landforms 21: 893-909.
- Kleman, J., Hättestrand, C., Stroeven, P., Jansson, K.N., De Angelis, H., Borgström, I., 2006.
- 1907 Reconstruction of palaeo-ice sheets inversion of their glacial geomorphological record. In: Knight,
- 1908 P., (Ed.). Glaciology and Earth's Changing Environment. Blackwell, pp. 192-198.
- Koppes, M., Hallet, B., 2006. Erosion rates during rapid deglaciation in Icy Bay, Alaska. Journal of
- 1910 Geophysical Research: Earth Surface 111: F02023.
- Kuvaas, B., Kristoffersen, Y., 1991. The Crary Fan: a trough-mouth fan on the Weddell Sea
- 1912 continental margin, Antarctica. Marine Geology 97: 345-362.
- Kuvaas, B., Leitchenkov, G., 1992. Glaciomarine turbidite and current controlled deposits, Prydz Bay,
- 1914 Antarctica. Marine Geology 108: 365-381.
- Laberg, J.S., Eilertsen, R.S., Vorren, T.O., 2009. The palaeo-ice stream in Vestfjorden, north Norway,
- over the last 35 k.y.: glacial erosion and sediment yield. GSA Bulletin 121: 434-447.
- Larsen, N.K., Piotrowski, J.A., Christiansen, F., 2006. Microstructures and microshears as proxy for
- strain in subglacial diamicts: Implications for basal till formation. Geology 34: 889-892.
- 1919 Larter, R.D., Barker, P.F., 1989. Seismic stratigraphy of the Antarctic Peninsula Pacific margin: a
- record of Pliocene-Pleistocene ice volume and paleoclimate. Geology 17: 731-734.
- Larter, R.D., Barker, P.F., 1991. Neogene interaction of tectonic and glacial processes at the Pacific
- margin of the Antarctic Peninsula. Special Publications of the International Association of
- 1923 Sedimentologists 12: 165-186.
- Larter, R.D., Vanneste, L.E., 1995. Relict subglacial deltas on the Antarctic Peninsula outer shelf.
- 1925 Geology 23: 33-36.

- Larter, R.D., Graham, G.C.A., Gohl, K., Kuhn, G., Hillenbrand, C.-D., Smith, J.A., Deen, T.J.,
- Livermore, R.A., Schenke, H.-W., 2009. Subglacial bedforms reveal a complex basal regime in a zone
- of palaeo-ice stream convergence, Amundsen Sea Embayment, West Antarctica. Geology 37: 411-
- 1929 414.
- Le Brocq, A.M., Payne, A.J., Siegert, M.J., Alley, R.B., 2009. A subglacial water-flow model for West
- 1931 Antarctica. Journal of Glaciology 55: 879-888.
- Leventer, A., Domack, E., Dunbar, R., Pike, J., Stickley, C., Maddison, E., Brachfeld, S., Manley, P.,
- McClennen, C., 2006. Marine sediment record from the East Antarctic margin reveals dynamics of ice
- sheet recession. GSA Today 16: 4-10.
- Licht, K.L., Jennings, A.E., Andrews, J.T., Williams, K.M., 1996. Chronology of the late Wisconsin
- ice retreat from the western Ross Sea, Antarctica. Geology 24: 223-226.
- Licht, K.L., Cunningham, W.L., Andrews, J.T., Domack, E.W., Jennings, A.E., 1998. Established
- chronologies from acid-insoluble organic ¹⁴C dates on Antarctic (Ross Sea) and arctic (North Atlantic)
- marine sediments. Polar Research 17: 203-216.
- 1940 Licht, K.L., 1999. Investigations into the Late Quaternary history of the Ross Sea, Antarctica.
- 1941 Unpublished Ph.D. Dissertation, University of Colorado, Boulder, CO.
- Licht, K.J., Dunbar, N.W., Andrews, J.T., Jennings, A.E., 1999. Distinguishing subglacial till and
- 1943 glacial marine diamictons in the western Ross Sea, Antarctica: implications for a Last Glacial
- Maximum grounding line. Geological Society of America Bulletin 111: 91-103.
- Licht, K., Andrews, J.T., 2002. The ¹⁴C record of Late Pleistocene ice advance and retreat in the
- 1946 Central Ross Sea, Antarctica. Arctic, Antarctic and Alpine Research 34: 324-333.
- Licht, K., Lederer, J.R., Swope, R.J., 2005. Provenance of LGM glacial till (sand fraction) across the
- 1948 Ross embayment, Antarctica. Quaternary Science Reviews 24: 1499-1520.
- Livingstone, S.J., Jamieson, S.S.R., Vieli, A., Ó Cofaigh, C., Stokes, C.R., Hillenbrand, C.-D., 2010.
- 1950 Geomorphic signature of an Antarctic palaeo-ice stream: implications for understanding subglacial
- processes and grounding-line retreat. AGU Abstract: C51B-05.
- Lowe, A.L., Anderson, J.B., 2002. Reconstruction of the West Antarctic Ice Sheet in Pine Island Bay
- during the Last Glacial Maximum and its subsequent retreat history. Quaternary Science Reviews 21:
- 1954 1879-1897.
- Lowe, A.L., Anderson, J.B., 2003. Evidence for abundant subglacial meltwater beneath the palaeo-ice
- sheet in Pine Island Bay, Antarctica. Journal of Glaciology 49: 125-137.

- MacAyeal, D.R., Bindchadler, R.A., Scambos, T.A., 1995. Basal friction of Ice Stream E, West
- 1958 Antarctica. Journal of Glaciology 5: 661-690.
- 1959 Mackintosh, A., Golledge, N., Domack, E., Dunbar, R., Leventer, A., White, D., Pollard, D., DeConto,
- 1960 R., Fink, D., Zwartz, D., Gore, D., Lavoie, C., 2011. Retreat of the East Antarctic ice sheet during the
- last glacial termination. Nature Geoscience: DOI:10.1038/NGEO1061.
- Maddison, E.J., Pike, J., Leventer, A., Dunbar, R., Brachfeld, S., Domack, E.W., Manley, P.,
- McClennen, C., 2006. Post-glacial seasonal diatom record of the Mertz Glacier Polynya, East
- 1964 Antarctica. Marine Micropaleontology 60: 66-88.
- 1965 McKay, R.M., Dunbar, G.B., Naish, T.R., Barrett, P.J., Carter, L., Harper, M., 2008. Retreat history of
- the Ross Ice Sheet (Shelf) since the Last Glacial Maximum from deep-basin sediment cores around
- 1967 Ross Island. Palaeogeography, Palaeoclimatology, Palaeoecology 260: 245-261.
- 1968 McMullen, K., Domack, E., Leventer, A., Olson, C., Dunbar, R., Brachfeld, S., 2006. Glacial
- morphology and sediment formation in the Mertz Trough, East Antarctica. Palaeogeography,
- 1970 Palaeoclimatology, Palaeoecology 231: 169-180.
- 1971 Melis, R., Salvi, G., 2009. Late Quaternary foraminiferal assemblages from western Ross Sea
- 1972 (Antarctica) in relation to the main glacial and marine lithofacies. Marine Micropaleontology 70: 39-
- 1973 53.
- Melles, M., Kuhn, G., Fütterer, D.K., Meischner, D., 1994. Processes of modern sedimentation in the
- southern Weddell Sea, Antarctica Evidence from surface sediments. Polarforschung 64: 45-74.
- 1976 Mercer, J.H., 1978. West Antarctic Ice Sheet and CO2 greenhouse effect: a threat of disaster. Nature
- 1977 271: 321-325.
- 1978 Michalchuk, B.R., Anderson, J.B., Wellner, J.S., Manley, P.L., Majewski, W., Bohaty, S., 2009.
- 1979 Holocene climate and glacial history of the northeastern Antarctic Peninsula: the marine sedimentary
- record from a long SHALDRIL core. Quaternary Science Reviews 28: 3049-3065.
- 1981 Michels, K.H., Kuhn, G., Hillenbrand, C.-D., Diekmann, B., Fütterer, D.K., Grobe, H., Uenzelmann-
- Neben, G. 2002. The southern Weddell Sea: Combined contourite turbidite sedimentation at the
- southeastern margin of the Weddell Gyre. In: Stow, D.A.V., Pudsey, C.J., Howe, J.A., Faugeres, J.-C.,
- 1984 Viana, A.R., (Eds.), Deep-Water Contourites: Modern drifts and ancient series, seismic and
- sedimentary characteristics, Geological Society of London Memoirs 22: 305-323.

- 1986 Milliken, K.T., Anderson, J.B., Wellner, J.S., Bohaty, S.M., Manley, O.L., 2009. High resolution
- climate record from Maxwell Bay, South Shetland Islands, Antarctica. Geological Society of America
- 1988 Bulletin 121: 1711-1725.
- Monaghan, A.J., Bromwich, D.H., Wang, S.-H. 2006a. Recent trends in Antarctic snow accumulation
- 1990 from Polar MM5 simulations. Philosophical Transactions of the Royal Society A 364: 1683-1708.
- Monaghan, A.J., Bromwich, D.H., Fogt, R.L., Wang, S.-H., Mayewski, P.A., Dixon, D.A., Ekaykin,
- 1992 A., Frezzotti, M., Goodwin, I., Isaksson, E., Kaspari, S.D., Morgan, V.I., Oerter, H., Ommen, T.D.V.,
- 1993 Van der Veen, C.J., Wen, J., 2006b. Insignificant change in Antarctic snowfall since the international
- 1994 geophysical year. Science 313: 827-830.
- Moons, A., De Batist, M., Henriet, J.P., Miller, H., 1992. Sequence stratigraphy of Crary Fan,
- southeastern Weddell Sea. In: Yoshida, K., Shiraishi, K., (Eds.), Recent Progress in Antarctic Earth
- 1997 Science, pp. 613-618.
- Mosola, A.B., Anderson, J.B., 2006. Expansion and rapid retreat of the West Antarctic Ice Sheet in
- eastern Ross Sea: possible consequence of over-extended ice streams? Quaternary Science Reviews
- 2000 25: 2177-2196.
- Muench, R.D., Wåhlin, A.K., Özgökmen, T.M., Hallberg, R., Padman, L., 2009. Impacts of bottom
- 2002 corrugations on a dense Antarctic outflow: NW Ross Sea. Geophysical Research Letters 36: L23607,
- 2003 doi:10.1029/2009GL041347.
- 2004 Munro-Stasiuk, M., Shaw, J., 2002. The Blackspring Ridge Flute Filed, south-central Alberta, Canada:
- evidence for subglacial sheetflow erosion. Quaternary International 90: 75-86.
- Murray, T., Corr, H., Forieri, A., Smith, A.M., 2008. Contrasts in hydrology between regions of basal
- deformation and sliding beneath Rutford Ice Stream, West Antarctica, mapped using radar and seismic
- data. Geophysical Research Letters 35: L12504.
- Ng, F.S.L., 2000. Canals under sediment-based ice sheets, Annals of Glaciology 30: 207-230.
- Nick, F.M., Vieli, A., Howat, I.M., Joughin, I., 2009. Large-scale changes in Greenland outlet glacier
- dynamics triggered at the terminus. Nature Geoscience DOI: 10.1038/NGEO394.
- Nishimura, A., Tanahashi, M., Tokuhashi, S., Oda, H., Nakasone, T., 1999. Polar Geoscience 12: 215-
- 2013 226.
- Nitsche, F.O., Jacobs, S.S., Larter, R.D., Ó Cofaigh, C., Evans, J., 2009. Morphology of the upper
- 2015 continental slope in the Bellingshausen and Amundsen seas implications for sedimentary processes
- at the shelf edge of West Antarctica. Marine Geology 258: 100-114.

- Nitsche, F.O., Jacobs, S.S., 2010. Paleo ice-flow and sub-glacial hysrology in the inner Pine Island
- 2018 Bay, West Antarctica. AGU Abstract: C43C-0560.
- Noormets, R., Dowdeswell, J.A., Larter, R.D., Ó Cofaigh, C., Evans, J., 2009. Morphology of the
- 2020 upper continental slope in the Bellingshausen and Amundsen Seas Implications for sedimentary
- processes at the shelf edge of West Antarctica. Marine Geology 258: 100-114.
- Nye, J.F., 1976. Water flow in glaciers: Jokulhlaups, tunnels and veins. Journal of Glaciology 17: 181-
- 2023 207.
- Nygård, A., Sejrup, H.P., Haflidason, H., Lekens, W.A.H., Clark, C.D., Bigg, G.R., 2004. Extreme
- sediment and ice discharge from marine-based ice streams; new evidence from the North Sea.
- 2026 Geology 35: 395-398.
- 2027 Oakes L., Anderson J., 2002. Reconstructing the maximum extent of glacial systems and the nature of
- their retreat in Marguerite Bay, Antarctic Peninsula, since the last glacial maximum (LGM).
- 2029 Preliminary results from Nathaniel B. Palmer Cruise 2002 (NBP0201), Eos Transactions 93 (47).
- O'Brien, P.E., Truswell, E.M., Burton, H., 1994. Morphology, seismic stratigraphy and sedimentation
- 2031 history of the MacRobertson shelf, East Antarctica. Terra Antarctic 1: 407-408.
- 2032 O'Brien, P.E. 1994., Morphology and late glacial history of Prydz Bay, Antarctica, based on echo
- sounder data. In: Cooper, A.K., Barker, P.F., Webb, P.-N., Brancolini, G., (Eds.). The Antarctic
- 2034 continental margin: geophysical and geological stratigraphic records of Cenozoic glaciation,
- palaeoenvironments and sea-level change. Terra Antarctic 1: 403-406.
- O'Brien, P.E., Harris, P.T., 1996. Patterns of glacial erosion and deposition in Prydz Bay and past
- behaviour of the Lambert Glacier. Papers and Proceedings of the Royal Society of Tasmania 13: 79-
- 2038 86.
- 2039 O'Brien, P.E., De Santis, L., Harries, P.T., Domack, E., Quilty, P.G., 1999. Ice shelf grounding zone
- features of western Prydz Bay, Antarctica: sedimentary processes from seismic and sidescan images.
- 2041 Antarctic Science 11: 78-91.
- 2042 O'Brien, P.E., Goodwin, I., Forsberg, C.-F., Cooper, A.K., Whitehead, J., 2007. Late Neogene ice
- drainage changes in Prydz Bay, East Antarctica and the interaction of Antarctic ice sheet evolution
- and climate. Palaeogeography, Palaeoclimatology, Palaeoecology 245: 390-410.
- 2045 Ó Cofaigh, C., Pudsey, C.J., Dowdeswell, J.A., Morris, P., 2002. Evolution of subglacial bedforms
- along a paleo-ice stream, Antarctic Peninsula continental shelf. Geophysical Research Letters 29:
- 2047 10.1029/2001.GL014488, 41-1-41-4.

- 2048 Ó Cofaigh, C., Taylor, J., Dowdeswell, J.A., Pudsey, C.J., 2003. Palaeo-ice streams, trough mouth
- fans and high-latitude continental slope sedimentation. Boreas 32: 37-55.
- 2050 Ó Cofaigh, C., Larter, R.D., Dowdeswell, J.A., Hillenbrand, C.-D., Pudsey, C.J., Evans, J., Morris, P.,
- 2051 2005a. Flow of West Antarctic Ice Sheet on the continental margin of the Bellinghausen Sea at the
- 2052 Last Glacial Maximum. Journal of Geophysical Research 110: B11103.
- 2053 Ó Cofaigh, C., Dowdeswell, J.A., Allen, C.S., Hiemstra, J., Pudsey, C.J., Evans, J., Evans, D.J.A.,
- 2054 2005b. Flow dynamics and till genesis associated with a marine-based Antarctic palaeo-ice stream.
- 2055 Quaternary Science Reviews 24: 709-740.
- 2056 Ó Cofaigh, C., Dowdeswell, J.A., Evans, J., Larter, R.D., 2008. Geological constraints on Antarctic
- palaeo-ice stream retreat. Earth Surface Processes and Landforms 33: 513-525.
- O Cofaigh, C., Evans, D.J.A., Smith, I.R., 2010a. Large-scale reorganization and sedimentation of
- 2059 terrestrial ice streams during late Wisconsinan Laurentide Ice Sheet deglaciation. Geological Society
- 2060 of America Bulletin 122: 743-756.
- O Cofaigh, C., Dowdeswell, J.A., King, E.C., Anderson, J.B., Clark, C.D., Evans, D.J.A., Hindmarsh,
- 2062 R.C.A., Larter, R.D., Stokes, C.R., 2010b. Comment on Shaw, J., Pugin, A., Young, R., (2008): "A
- 2063 meltwater origin for Antarctic shelf bedforms with special attention to megalineations",
- 2064 Geomorphology 102: 364-375. Geomorphology 117: 195-198.
- Orheim, O., Elverhøi, A., 1981. Model for submarine glacial deposition. Annals of Glaciology 2: 123-
- 2066 127.
- Ottesen, D., Dowdeswell, J.A., Rise, L., 2005. Submarine landforms and the reconstruction of fast-
- 2068 flowing ice streams within a large Quaternary ice sheet: The 2500-km –long Norwegian-Svalbard
- 2069 margin (57°-80°N). Geological Society of America Bulletin 117: 1033-1050.
- 2070 Ottesen, D., Dowdeswell, J.A., 2006. Assemblages of submarine landforms produced by tidewater
- 2071 glaciers in Svalbard. Journal of Geophysical Research 111: F01016.
- Ottesen, D., Stokes, C.R., Rise, L., Olsen, L., 2008. Ice-sheet dynamics and ice streaming along the
- 2073 coastal parts of northern Norway. Quaternary Science Reviews 27: 922-940.
- Padman, L., Costa, D.P., Bolmer, S.T., Goebel, M.E., Huckstadt, L.A., Jenkins, A., McDonald, B.I.,
- 2075 Shoesmith, D.R., 2010. Seals map bathymetry of the Antarctic continental shelf. Geophysical
- 2076 Research Letters 37: L21601.
- 2077 Parizek, B.R., Alley, R.B., 2004. Implications of increased Greenland surface melt under global-
- warming scenarios: Ice sheet simulations. Quaternary Science Reviews 23: 1013-1027.

- Payne, A.J., Vieli, A., Shepherd, A.P., Wingham, D.J., Rignot, E.J., 2004. Recent dramatic thinning of
- 2080 largest West Antarctic ice stream triggered by oceans. Geophysical Research Letters 31: L23401.
- Peters, L.E., Anandakrishnan, S., Alley, R.B., Winberry, J.P., Voigt, D.E., Smith, A.M., Morse D.L.,
- 2006. Subglacial sediments as a control on the onset and location of two Siple Coast ice streams, West
- 2083 Antarctica. Journal of Geophysical Research 111: B01302.
- 2084 Piotrowski, J.A., Larsen, N.K., Junge, F., 2004. Reflections on soft subglacial beds as a mosaic of
- deforming and stable spots. Quaternary Science Reviews 23: 993-1000.
- 2086 Piotrowski, J.A., Kraus, A., 1997. Response of sediment to ice sheet loading in northwestern
- 2087 Germany: effective stresses and glacier bed stability. Journal of Glaciology 43: 495-502.
- 2088 Pope, P.G., Anderson, J.B., 1992. Late Quaternary glacial history of the northern Antarctic Peninsula's
- western continental shelf: evidence from the marine record. Antarctic Research Series 57: 63-91.
- 2090 Presti, M., De Santis, L., Brancolini, G., Harris, P.T., 2005. Continental shelf record of the East
- 2091 Antarctic Ice Sheet evolution: seismo-stratigraphic evidence from the George V Basin. Quaternary
- 2092 Science Reviews 24: 1223-1241.
- 2093 Pudsey, C.J., Barker, P.F., Larter, R.D., 1994. Ice sheet retreat from the Antarctic Peninsula shelf.
- 2094 Continental Shelf Research 14: 1647-1675.
- Pudsey, C.J., Evans, J., 2001. First survey of Antarctic sub-ice shelf sediments reveals mid-Holocene
- ice shelf retreat. Geology 29: 787-790.
- Pudsey, C.J., Murray, J.W., Appleby, P., Evans, J., 2006. Ice shelf history from petrographic and
- foraminiferal evidence, northeast Antarctic Peninsula. Quaternary Science Reviews 25: 2357-2379.
- Reinardy, B.T.I, Pudsey, C.J., Hillenbrand, C.-D., Murray, T., Evans, J., 2009. Contrasting sources for
- 2100 glacial and interglacial shelf sediments used to interpret changing ice flow directions in the Larsen
- Basin, Northern Antarctic Peninsula. Marine Geology 266: 156-171.
- Reinardy, B.T.I., Hiemstra, J., Murray, T., Hillenbrand, C-D., Larter, R., 2011a. Till genesis at the bed
- of an Antarctic Peninsula palaeo-ice stream as indicated by micromorphological analysis. Boreas 40:
- 2104 498-517.
- 2105 Reinardy, B.T.I., Larter, R.D., Hillenbrand, C.-D., Murray, T., Hiemstra, J.F., Booth, A.D. 2011b.
- 2106 Streaming flow of an Antarctic Peninsula palaeo-ice stream, both by basal sliding and deformation of
- substrate. Journal of Glaciology 57: 596-608.

- Rempel, A.W., 2008. A theory for ice-till interactions and sediment entrainment beneath glaciers.
- Journal of Geophysical Research 113: F01013.
- 2110 Retzlaff, R., Bentley, C.R., 1993. Timing of stagnation of Ice Stream C, West Antarctica, from short
- pulse radar studies of buried surface crevasses. Journal of Glaciology 39 (133): 553-561.
- 2112 Rignot, E., Casassa, G., Gogineni, S., Krabill, W., Rivera, A., Thomas, R., 2004. Accelerated ice
- discharge from the Antarctic Peninsula following the collapse of Larsen B ice shelf. Geophysical
- 2114 Research Letters 31: L18401.
- 2115 Rignot, E., 2008. Changes in West Antarctic ice stream dynamics observed with ALOS PALSAR data.
- 2116 Geophysical Research Letters 35: L12505.
- 2117 Rippin, D.M., Bamber, J.L., Siegert, M.J., Vaughan, D.G., Corr, H.F.J., 2006. Basal conditions
- beneath enhanced-flow tributaries of Slessor Glacier, East Antarctica. Journal of Glaciology 52: 481-
- 2119 490.
- 2120 Rippin, D.M., Vaughan, D.G., Corr, H.F.J. 2011. The basal roughness of Pine Island Glacier, West
- 2121 Antarctica. Journal of Glaciology 57: 67-76.
- 2122 Roberts, D.H., Long, A.J., 2005. Streamlined bedrock terrain and fast ice flow, Jakobshavn Isbrae,
- West Greenland: implications for ice stream and ice sheet dynamics. Boreas 34: 25-42.
- 2124 Rothlisberger, H., 1972. Water pressure in intra- and subglacial channels. Journal of Glaciology 11:
- 2125 117-203.
- Salvi, C., Busetti, M., Marinoni, L., Brambati, A., 2006. Late Quaternary glacial marine to marine
- sedimentation in the Pennell Trough (Ross Sea, Antarctica). Palaeogeography, Palaeoclimatology,
- 2128 Palaeoecology 231: 199-214.
- Scambos, T.A., Bohlander, J.A., Shuman, C.A., Skvarca, P., 2004. Glacier acceleration and thinning
- after ice shelf collapse in the Larsen B embayment, Antarctica. Geophysical Research Letters 110:
- 2131 F01003.
- Scherer, R.P., Aldaham, A., Tulaczyk, S., Kamb, B., Engelhardt, H., Possnert, G., 1998. Pleistocene
- 2133 collapse of the West Antarctic Ice Sheet. Science 281: 82-85.
- Schoof, C.G., 2007. Ice sheet grounding line dynamics: steady states, stability and hysteresis. Journal
- of Geophysical Research, 112; F03S28.

- Shaw, J., Faragini, D.M., Kvill, D.R., Rains, R.B., 2000. The Athabascafluting field, Alberta, Canada:
- 2137 implications for the formation of large-scale flutings (erosional lineations). Quaternary Science
- 2138 Reviews 19: 959-980.
- Shaw, J., Pugin, A., Young, R.R., 2008. A meltwater origin for Antarctic shelf bedforms with special
- 2140 attention to megalineations. Geomorphology 102: 364-375.
- Sharp, M., 1984. Annual moraine ridges at Skálafellsjökull, south-east Iceland, Journal of Glaciology
- 2142 30: 82-93.
- Shepherd, A., Wingham, D., Rignot, E., 2004. Ocean warming is eroding West Antarctic Ice Sheet.
- Geophysical Research Letters 31: L23402.
- Shevenell, A.E., Domack, E.W., Kernan, G.W., 1996. Record of Holocene paleoclimatic change along
- the Antarctic Peninsula: evidence from glacial marine sediments, Lallemand Fjord. Papers and
- 2147 Proceedings of the Royal Society of Tasmania 130: 55-64.
- Shipp, S., Anderson, J.B., Domack, E., 1999. Late Pleistocene-Holocene retreat of the West Antarctic
- 2149 Ice-Sheet system in the Ross Sea: Part 1 Geophysical results. Geological Society of America
- 2150 Bulletin 111: 1486-1516.
- Shipp, S.S., Wellner, J.S., Anderson, J.B., 2002. Retreat signature of a polar ice stream: sub-glacial
- 2152 geomorphic features and sediments from the Ross Sea, Antarctica. In Dowdeswell JA, Ó Cofaigh C
- 2153 (eds.). Glacier-Influenced Sedimentation on High-Latitude Continental Margins, Geological Society,
- 2154 London, Special Publication 203: 277–304.
- Siegert, M.J., Taylor, J., Payne, A.J., Hubbard, B., 2004. Macro-scale bed roughness of the Siple
- 2156 Coast ice streams in West Antarctica. Earth Surface Processes and Landforms 29: 1591-1596.
- Siegert, M.J., Taylor, J., Payne, A.J., 2005. Spectral roughness of subglacial topography and
- implications for former ice-sheet dynamics in East Antarctica. Global Planetary Change 45: 249-263.
- Smith, A.M., 1997. Basal conditions on Rutford Ice Stream, West Antarctica, from seismic
- observations. Journal of Geophysical Research 102: 543-552.
- Smith, A.M., Murray, T.M., Nicholls, K.W., Makinson, K., Adalgeirsdóttir, G., Behar, A.E., Vaughan,
- 2162 D.G., 2007. Rapid erosion, drumlin formation, and changing hydrology beneath an Antarctic ice
- 2163 stream. Geology 35: 127-130.
- Smith, A.M., Murray, T., 2009. Bedform topography and basal conditions beneath a fast-flowing West
- 2165 Antarctic ice stream. Quaternary Science Reviews 28: 584-596.

- Smith, B.E., Fricker, H.A., Joughin, I.R., Tulaczyk, S., 2009. An inventory of active subglacial lakes
- in Antarctica detected by ICESat (2003-2008). Journal of Glaciology 55: 573-595.
- Smith, J.A., Bentley, M.J., Hodgson, D.A., Roberts, S.J., Leng, M.J., Lloyd, J.M., Barrett, M.S.,
- Bryant, C., Sugden, D.E., 2007. Oceanic and atmospheric forcing of early Holocene ice shelf retreat,
- 2170 George VI Ice Shelf, Antarctic Peninsula. Quaternary Science Reviews 26: 500-516.
- Smith, J.A., Hillenbrand, C.-D., Larter, R.D., Graham, A.G.C., Kuhn, G., 2009. The sediment infill of
- subglacial meltwater channels on the West Antarctic continental shelf. Quaternary Research 71: 190-
- 2173 200.
- Smith, J.A., Hillenbrand, C.-D., Kuhn, G., Larter, R.D., Graham, A.G.C., Ehrmann, W., Moreton,
- S.G., Forwick, M., 2011. Deglacial history of the West Antarctic Ice Sheet in the western Amundsen
- 2176 Sea Embayment. Quaternary Science Reviews 30: 488-505.
- Sohn, H.-G., Jezek, K.C., van der Veen, C.J., 1998. Jakobshavns Glacier, West Greenland: 30 years of
- spaceborne observations. Geophysical Research Letters 27: 2699-2702.
- Stearns, L.A., Smith, B.E., Hamilton, G.S., 2008. Increased flow speed of a large East Antarctic outlet
- glacier caused by subglacial floods. Nature Geoscience 1: 827-831.
- 2181 Stephenson, S.N. Bindschadler, R.A. 1988. Observed velocity fluctuations on a major Antarctic ice
- 2182 stream. Nature 334: 695-697.
- Stickley, C.E., Pike, J., Leventer, A., Dunbar, R., Domack, E.W., Brachfeld, S., Manley, P.,
- McClennan, C., 2005. Deglacial ocean and climate seasonality in laminated diatom sediments,
- 2185 Mac.Robertson Shelf, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology 227: 290-310.
- Stokes, C.R., Clark, C.D., 1999. Geomorphological criteria for identifying Pleistocene ice streams.
- 2187 Annals of Glaciology 28: 67-74.
- Stokes, C.R., Clark, C.D., 2001. Palaeo-ice streams. Quaternary Science Reviews 20: 1437-1457.
- 2189 Stokes, C.R., Clark, C.D., 2003. The Dubawnt Lake palaeo-ice stream: evidence for dynamic ice sheet
- behaviour on the Canadian Shield and insights regarding the controls on ice stream location and
- 2191 vigour. Boreas 32: 263-279.
- Stokes, C.R., Clark, C.D., Lian, O.B. & Tulaczyk, S., 2007. Ice stream sticky spots: A review of their
- identification and influence beneath contemporary and palaeo-ice streams. Earth Science Reviews 81:
- 2194 217-249.

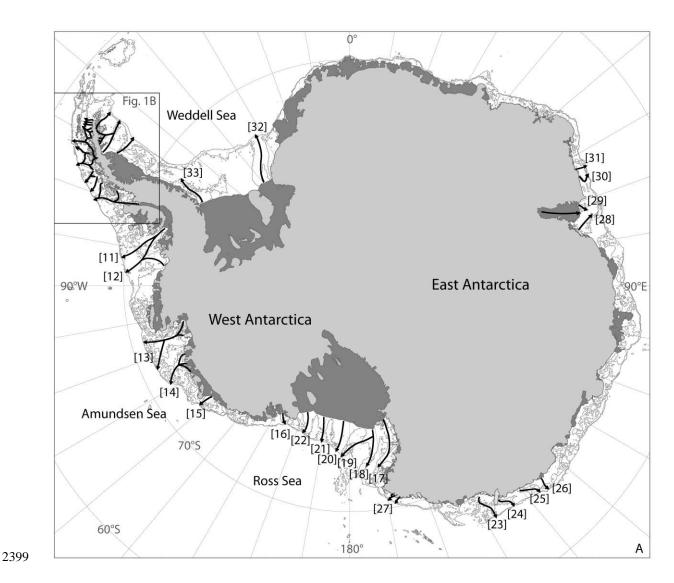
- Stokes, C.R., Lian, O.B., Tulaczyk, S., Clark, C.D. 2008. Superimposition of ribbed moraines on a
- palaeo-ice stream bed: implications for ice stream dynamics and shutdown. Earth Surface Processes
- 2197 and Landforms, 33, 593-609.
- Stokes, C.R., Clark, C.D., Storrar, R., 2009. Major changes in ice stream dynamics during
- deglaciation of the north-western margin of the Laurentide Ice Sheet. Quaternary Science Reviews 28:
- 2200 721-738.
- Stokes, C.R., Tarasov, L., 2010. Ice streaming in the Laurentide Ice Sheet: a first comparison between
- data-calibrated numerical model output and geological evidence. Geophysical Research Letters 37:
- 2203 L01501.
- Stokes, C.R., Spagnolo, M., Clark, C.D. 2011. The composition and internal structure of drumlins:
- complexity, commonality, and implications for a unifying theory of their formation. Earth-Science
- 2206 Reviews, 107, 398-422.
- Studinger, M., Bell, R.E., Blankenship, D.D., Finn, C.A., Arko, R.A., Morse, D.L., Joughin, I., 2001.
- 2208 Subglacial sediments: a regional geological template for ice flow in West Antarctica. Geophysical
- 2209 Research Letters 28: 3493-3496.
- 2210 Stuiver, M., Reimer, P.J., Reimer, R.W., 2005. CALIB 5.0 [http://calib.qub.ac.uk/calib/]
- Sugden, D.E., Clapperton, C.M., 1981. An ice shelf moraine, George VI Sound, Antarctica. Annals of
- 2212 Glaciology 2: 135-141.
- Sugden, D.E., Bentley, M.J., Ó Cofaigh C., 2006. Geological and geomorphological insights into
- Antarctic ice sheet evolution. Philosophical Transactions of the Royal Society A 364: 1607-1625.
- Taylor, F., McMinn, A., 2002. Late Quaternary Diatom Assemblages from Prydz Bay, Eastern
- 2216 Antarctica. Quaternary Research 57: 151-161.
- ten Brink, U., Schneider, C., 1995. Glacial morphology and depositional sequences of the Antarctic
- continental shelf. Geology 23: 580-584.
- Thomas, R.H., Bentley, C.R., 1978. A model for Holocene retreat of the West Antarctic Ice Sheet.
- 2220 Quaternary Research 10: 150-170.
- Thomas, R.H., 1979. The dynamics of marine ice sheets. Journal of Glaciology 24: 167-177.
- Todd, B.J., Valentine, P.C., Longva, O., Shaw, J., 2007. Glacial landforms on German Bank, Scotian
- 2223 Shelf: evidence for late Wisconsinan ice-sheet dynamics and implications for the formation of De
- 2224 Geer moraines. Boreas 36: 148-169.

- 2225 Truffer, M., Fahnestock, M., 2007. Rethinking ice-sheet timescales. Science 315: 1508-1510.
- Tulaczyk, S.B., Kamb, B., Scherer, R.P., Englehardt, H.F., 1998. Sedimentary processes at the base of
- 2227 a West Antarctic Ice Stream: Constraints from textural and compositional properties of subgalcail
- sediment. Journal of Sedimentary Research 68: 487-496.
- Tulaczyk, S.B., Kamb, B., Engelhardt, H.F., 2000a. Basal mechanisms of Ice Stream B, West
- Antarctica 1: Till mechanics. Journal of Geophysical Research 105: 463-481.
- Tulaczyk, S.B., Kamb, B., Engelhardt, H.F., 2000b. Basal mechanisms of Ice Stream B, West
- Antarctica 2: Undrained plastic bed model. Journal of Geophysical Research 105: 483-494.
- Tulaczyk, S.B., Scherer, R.P., Clark, C.D., 2001. A ploughing model for the origin of weak tills
- beneath ice steams: a qualitative treatment. Quaternary International 86: 59-70.
- Tulaczyk, S.B., Hossainzadeh, S. 2011. Antarctica's deep frozen "lakes". Science 331: 1524-1525.
- Uemura, T., Tanigucji, M., Shibuya, K. 2011. Submarine groundwater discharge in Lützow-Holm Bay,
- 2237 Antarctica. Geophysical Research Letters 38, L08402.
- Vanneste, L.E., Larter, R.D., 1995. Deep-tow boomer survey on the Antarctic Peninsula Pacific
- 2239 margin: an investigation of the morphology and acoustic characteristics of Late Quaternary
- sedimentary deposits on the outer continental shelf and upper slope. In: Cooper, A.K., Barker, P.F.,
- Brancolini, G., (Eds.). Geology and seismic stratigraphy of the Antarctic margin. Antarctic Research
- 2242 Series 68, pp. 97-121.
- van de Berg, W.J., van den Broeke, M.R., Reimer, C.H., van Meigaard, E. 2006. Reassessment of the
- Antarctic surface mass balance using calibrated output of a regional atmospheric climate model.
- Journal of Geophysical Research 111: D11104.
- Vaughan, D.G., Bamber, J.L., Giovinetto, M., Cooper, A.P.R. 1999. Reassessment of net surface mass
- balance in Antarctica. Journal of Climatology 12: 933-946.
- Vaughan, D.G., Arthern, R., 2007. Why is it hard to predict the future of ice sheets? Science 315:
- 2249 1503-1504.
- Vieli, A., Funk, M., Blatter, H., 2001. Flow dynamics of tide-water glaciers: a numerical modelling
- approach. Journal of Glaciology 47: 595-606.
- 2252 Vorren, T.O., Lebesbye, E., Andreassen, K., Larsen, K.B., 1989. Glacigenic sediments on a passive
- 2253 continental margin as exemplified by the Barents Sea. Marine Geology 85: 251-272.

- Voren, T.O., Laberg, J.S., 1997. Trough Mouth Fans palaeoclimate and ice-sheet monitors.
- 2255 Quaternary Science Reviews 16: 865-881.
- Voren, T.O., Laberg, J.S., Blaume, F., Dowdeswell, J.A., Kenyon, N.H., Mienert, J., Rumohr, J.,
- Werner, F., 1998. The Norwegian-Greenland Sea continental margins: morphology and late
- 2258 Quaternary sedimentary processes and environment. Quaternary Science Reviews 17: 273-302.
- Walder, J.S., Fowler, A., 1994. Channelized subglacial drainage over a deformable bed. Journal of
- 2260 Glaciology 40: 3-15.
- Walker, R.T., Dupont, T.K., Parizek, B.R., Alley, R.B., 2008. Effects of basal-melting distribution on
- the retreat of ice-shelf grounding lines. Geophysical Research Letters 35: L17503.
- Weber, M.E., Kuhn, G., Clark, P.U., Sprenk, D., 2010. New insights into Antarctic Ice-Sheet retreat
- during the last sea-level rise. AGU Abstract: PP31D-05.
- Weertman, J., 1974. Stability of the junction of an ice sheet and an ice shelf. Journal of Glaciology 13:
- 2266 3-13.
- Weigelt, E., Gohl., K., Uenzelmann-Neben, G., Larter, R.D., 2009. Late Cenozoic ice sheet cyclicity
- in the western Amundsen Sea Embayment Evidence from seismic records. Global and Planetary
- 2269 Change 69: 162-169.
- Wellner, J.S., Heroy, Lowe, A.L., Shipp, S.S., Anderson, J.B. 2001. Distribution of glacial geomorphic
- features across the continental shelf. Geomorphology 75: 157-171.
- Wellner, J.S., Heroy, D.C., Anderson, J.B., 2006. The death mask of the Antarctic ice sheet:
- 2273 Comparison of glacial geomorphic features across the continental shelf. Geomorphology 75: 157-171.
- Werner, M., Heimann, M., Hoffmann, G. 2001. Isotopic composition and origin of polar precipitation
- in present and glacial climate simulations. Tellus 53B: 53-71.
- Whillans, I.M., van der Veen, C.J., 1997. The role of lateral drag in the dynamics of Ice Stream B,
- 2277 Antarctica. Journal of Glaciology 43: 231-237.
- Whitehouse, P., Bentley, M., LeBrocq, A., Milne, G., In prep. A deglacial model for Antarctica:
- 2279 geological constraints and glaciological modelling as a basis for a new glacio-isostatic adjustment
- 2280 correction for satellite gravity data.
- 2281 Willmott, V., Canals M., Casamor, J.L., 2003. Retreat History of the Gerlache-Boyd Ice Stream,
- Northern Antarctic Peninsula: an ultra-high resolution acoustic study of the deglacial and post-glacial
- sediment drape. In: Domack, E.W. Leventer, A. Burnett, A. Bindschadler, R. Convey P., Kirby, M.E.,

- 2284 (Eds.). Antarctic Peninsula Climate Variability: a Historical and Paleoenvironmental Perspective,
- Antarctic Research Series, American Geophysical Union, Washington, DC, pp. 183–194.
- Willmott, V., Domack, E.W., Padman, L., Canals, M., 2007. Glaciomarine sediment drifts from
- Gerlache Strait, Antarctic Peninsula. In: Glasser, N., Hambrey, M.J., (Eds.). Glacial sedimentary
- processes and products. IAS Special Publication, Blackwells, 67-84.
- Wingham, D.J., Siegert, M.J., Shepherd, A., Muir, A.S., 2006. Rapid discharge connects Antarctic
- 2290 subglacial lakes. Nature 440: 1033-1036.
- Wingham, D.J., Wllis, D.W., Shepherd, A., 2009. Spatial and temporal evolution of Pine Island
- Glacier thinning, 1995-2006. Geophysical Research Letters 36: L17501.
- Winsborrow, M.C.M., Clark, C.D., Stokes, C.R., 2004. Ice streams of the Laurentide Ice Sheet.
- 2294 Géographie physique et Quaternaire 58: 269-280.
- 2295 Winsborrow, M.C.M., Clark, C.D., Stokes, C.R., 2010. What controls the location of ice streams?
- 2296 Earth-Science Reviews 103: 45-59.
- 2297 Wright, A.P., Siegert, M.J., Le Brocq, A.M., Gore, D.B., 2008. High sensitivity of subglacial
- 2298 hydrological pathways in Antarctica to small ice-sheet changes. Geophysical Research Letters 35:
- 2299 L17504.
- 2300 Yokoyama, Y., Lambert, K., De Deckker, P., Johnston, P., Fifield, L.K., 2000. Timing of the Last
- Glacial Maximum from observed sea-level minima. Nature 406: 713-716.
- 2302 Yoon, H.I., Park, B.-K., Kim, Y., Kang, C.Y., 2002. Glaciomarine sedimentation and its paleoclimatic
- 2303 implications on the Antarctic Peninsula shelf over the last 15,000 years. Palaeogeography,
- Palaeoclimatology, Palaeoecology 185: 235-254.
- Zwally, H.J., Abdalati, W., Herring, T., Larson, K., Saba, J., Steffen, K., 2002. Surface melt-induced
- acceleration of Greenland Ice-Sheet flow. Science 297: 218-222.

2308 Figures:


2307

- Fig. 1: Locations of the main palaeo-ice streams known on the Antarctic continental shelf.
- Approximate locations of ice streams are depicted by a black arrow and the numbers refer to
- 2311 the corresponding citation and evidence outlined in Table 1.

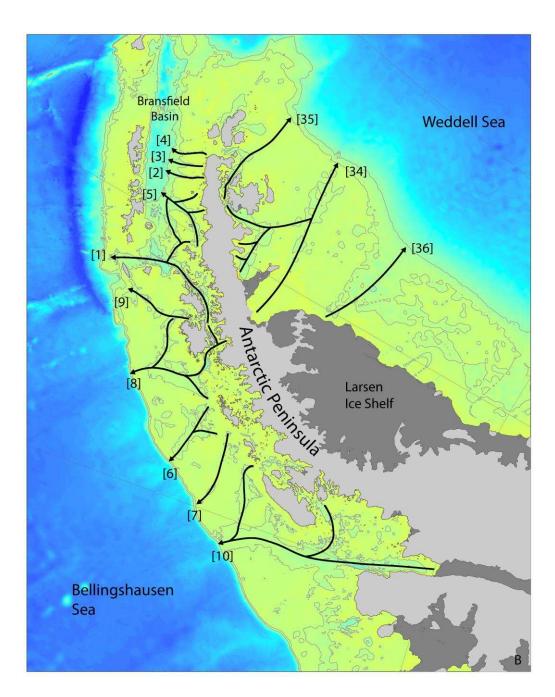
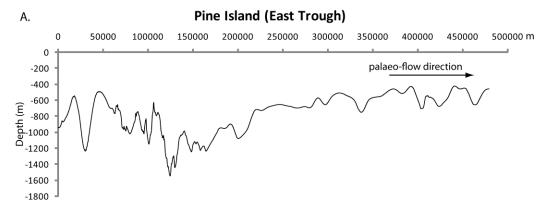
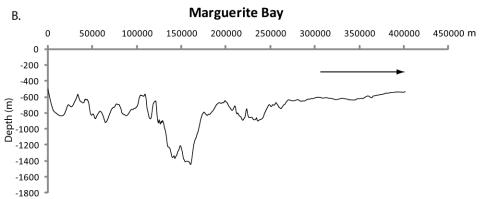
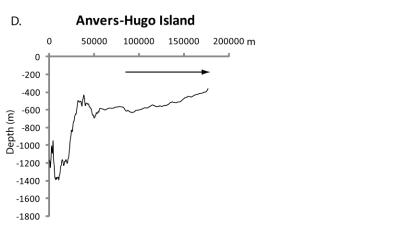

- Fig. 2: Typical bathymetric long profiles taken along the axial length of: A: Pine Island
- 2313 (Eastern Trough) palaeo-ice stream (from modern ice-front); B: Marguerite Bay palaeo-ice
- stream (from ice-shelf front); C: Belgica Trough (Eltanin Bay palaeo-ice stream (from ice-
- shelf front); and D: Anvers-Hugo Island palaeo-ice stream (from modern ice front). Vertical
- exaggeration 90:1.
- Fig. 3: TOPAS sub-bottom profiler records showing acoustic sedimentary units from outer
- Marguerite Bay: A: cross-line showing MSGL formed in acoustically transparent sediment;
- B: cross-line showing MSGL formed in acoustically transparent sediment, with a locally
- 2320 grooved sub-bottom reflector and sediment drape; and C: line parallel to trough long axis
- showing MSGL formed in acoustically transparent sediment (Reprinted from Ó Cofaigh et al.
- 2322 2005b, with permission from Elsevier).
- Fig. 4: Examples of glacial geomorphic landforms identified at the beds of marine-based
- Antarctic palaeo-ice streams: A: MSGLs from the outer shelf of Marguerite Bay (Reprinted
- from Ó Cofaigh et al. 2008, with permission from Wiley); B: Grooved and gouged bedrock
- on the mid-shelf of Marguerite Bay (light direction from the NE; x8 vertical exaggeration);
- 2327 C: Drumlins from Belgica Trough showing cresentric overdeepenings (light direction from
- 2328 the E; x8 vertical exaggeration); D: Grounding zone wedges in Marguerite Trough (note the
- subtle change in lineation direction across the GZW) (light direction from the N; x8 vertical
- exaggeration); E: morainal ridges in the Eastern Basin of the Ross Sea, orientated oblique to
- ice-flow direction (modified from Mosola & Anderson, 2006); F: Channel network cut into
- bedrock of the Palmer Deep Outlet Sill (Reprinted from Domack et al. 2006, with permission
- 2333 from Elsevier).
- Fig. 5: A landsystem model of palaeo-ice stream retreat, Antarctica. The three panels
- represent different retreat styles: rapid (A), episodic (B) and slow (C) (Reprinted from Ó
- 2336 Cofaigh et al. 2008, with permission from Wiley).
- Fig. 6: A landsystem model (based on Canals et al. 2002; Wellner et al. 2001, 2006) showing
- 2338 the general distribution of glacial landforms associated with a typical (Getz-Dotson) marine
- palaeo-ice stream on the continental shelf of Antarctica (Reprinted from Graham et al. 2009,
- with permission from Elsevier).
- Fig. 7: Sediment core locations of (minimum) ages for post-LGM ice sheet retreat (see Table
- 4 for corresponding details): A: Antarctica; B: Antarctic Peninsula; and C: Ross Sea.

Fig. 8: Chronology of initial deglaciation for Antarctic palaeo-ice streams and comparison 2343 with climate proxy records and bathymetric conditions for the period 32-5 ka BP: A: Colour 2344 coded map illustrating initial timing of retreat from the Antarctic continental shelf since the 2345 LGM (dates in black refer to the dots and represent initial retreat of the palaeo-ice streams; 2346 2347 dates in grey refer to initial retreat of the ice sheet). The black line shows the reconstructed position of grounded ice at the LGM. The dotted line indicates approximate grounding-line 2348 positions due to a paucity of data. B: Timing of deglaciation for marine palaeo-ice streams 2349 around the Antarctic shelf are distinguished by region with one sigma error. The grey line is 2350 2351 the EPICA Dome C δD ice core record which is used as a proxy for temperature, whilst the grey bands refer to periods of rapid eustatic sea-level rise. Bed gradient of the outer shelf (-2352 gradient = negative gradient; + gradient = positive gradient); Width geometry of the outer 2353 shelf (= geometry = a constant trough width; > geometry = narrowing trough; < = widening 2354 trough). C: Plot of trough width and trough depth against timing of initial deglaciation for 2355 circum-Antarctic palaeo-ice streams. Trough depth has been adjusted to account for the effect 2356 of isostasy at the LGM (Whitehouse et al. in prep). 2357 Fig. 9: Deglacial history of Antarctic palaeo-ice streams by sediment facies and carbon source 2358 2359 (Hollow circles: AIO; Filled-in circles: Carbonate; red: Antarctic Peninsula; blue: East Antarctica; and green: West Antarctica; TGM = transitional glaciomarine). 2360 Fig. 10: Retreat chronologies of: A: Anvers palaeo-ice stream (the core at 0 km [DF86-83] 2361 indicates when Gerlache Strait was ice free); B: Getz-Dotson Trough; C: Drygalski Basin 2362 palaeo-ice stream. The oldest date is a carbonate age from the outer shelf of Pennell Trough; 2363 2364 HWD03-2 is a hot-water drill core taken from Ross Ice Shelf [Mckay et al. 2008]; The terrestrial date is from algal remains at Hatherton Glacier [Bockheim et al. 1989]; D: 2365 Marguerite Bay palaeo-ice stream (terrestrial dates are from shells and foraminifera along the 2366 margin of George VI Ice Shelf [Sugden & Clapperton, 1981; Hjort et al. 2001; Smith et al. 2367 2007]); and E: Belgica Trough palaeo-ice stream. Hollow circles refer to AIO carbon; filled-2368 2369 in circles indicate a carbonate source; and squares are additional terrestrial dating constraints. Red = Transitional Glaciomarine; Green = Iceberg Turbate; Blue = Diatomaceous Ooze; 2370 2371 Diamict = Black; and Purple = glaciomarine. The dotted line is the predicted retreat history as 2372 based on the most reliable dates. Reliable ages are determined by the carbon source and the 2373 sediment sampled.

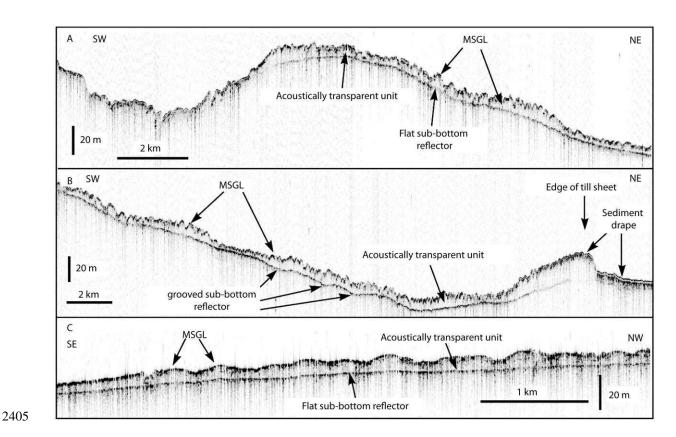

2313	Tables:
2376	Table 1: Proposed palaeo-ice streams of the Antarctic Ice Sheet during the last glacial and
2377	main lines of evidence used in their identification (numbers in square brackets refer to their
2378	location in Fig. 1).
2379	Table 2: Physiography of the identified Antarctic palaeo-ice streams (collated from the
2380	literature: Table 1).
2381	Table 3: Geomorphic features observed at the former beds of Antarctic marine ice streams.
2382	Table 4: Compiled uncorrected and calibrated marine radiocarbon ages representing
2383	minimum estimates of glacial retreat.
2384	Table 5: Retreat rates of palaeo-ice streams
2385	Table 6: Palaeo-ice streams, their inferred style of retreat and the evidence for this.
2386	
2387	
2388	
2389	
2390	
2391	
2392	
2393	
2394	
2395	
2396	
2397	
2398	

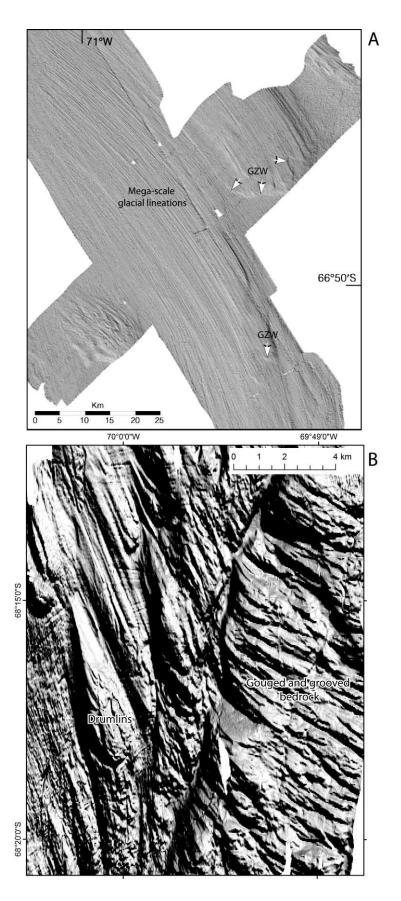


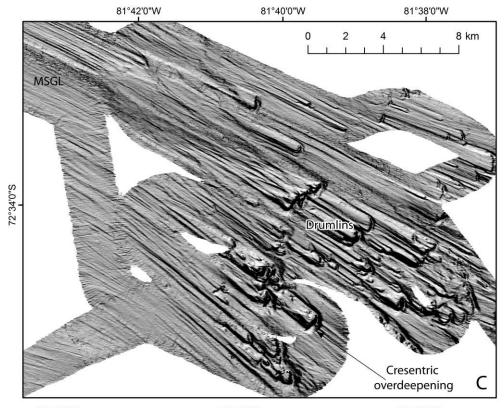

2400 1a

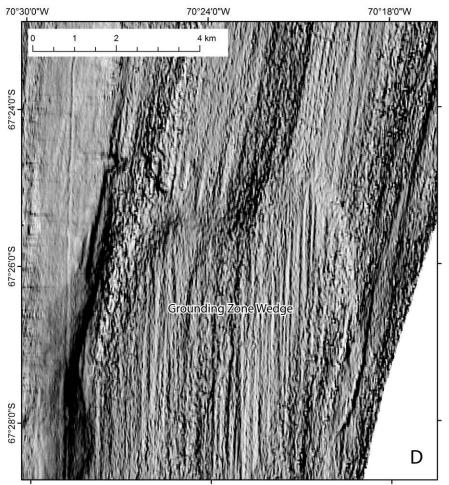


2402 1b





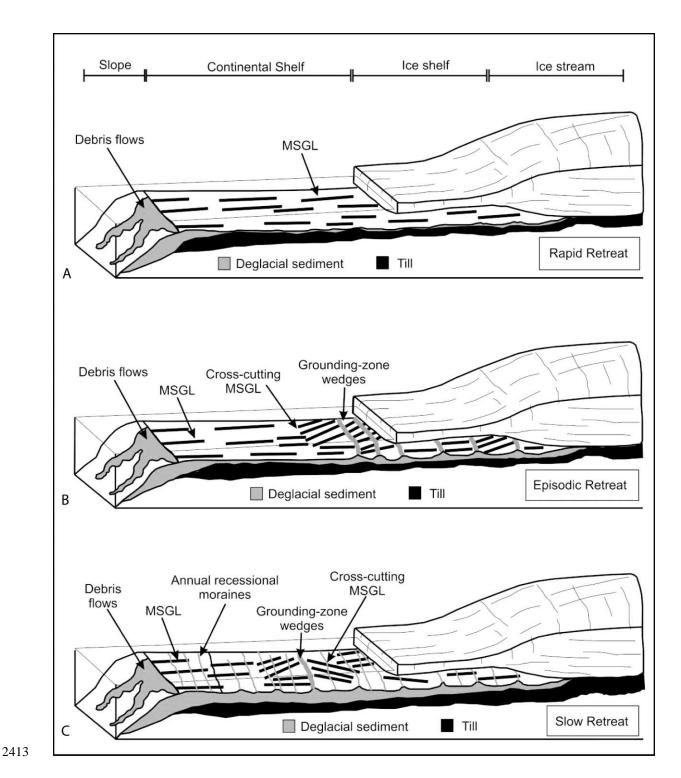


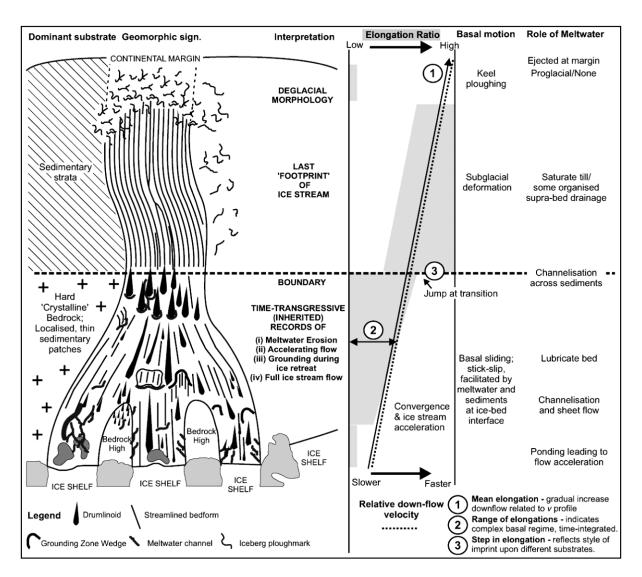

2404 2

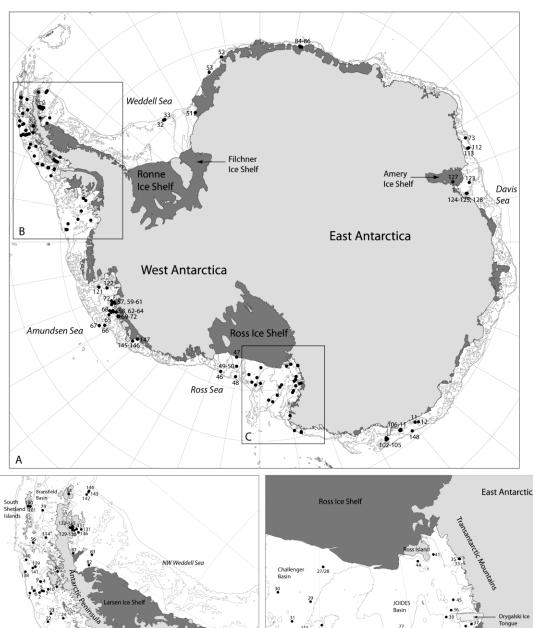
2408 4a-b

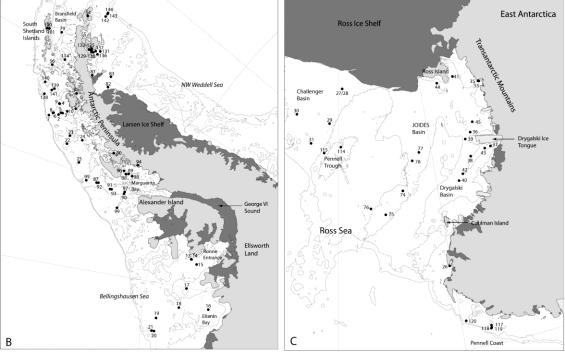
2410 4c-d

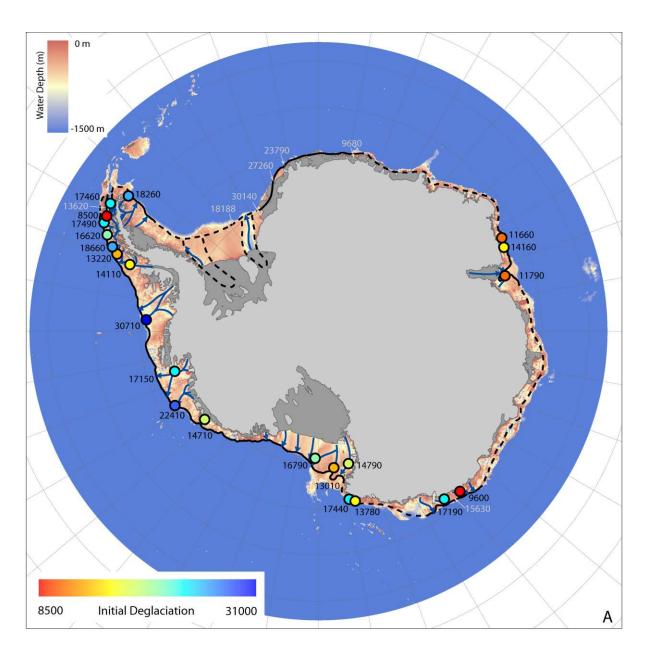
2412 4e-f

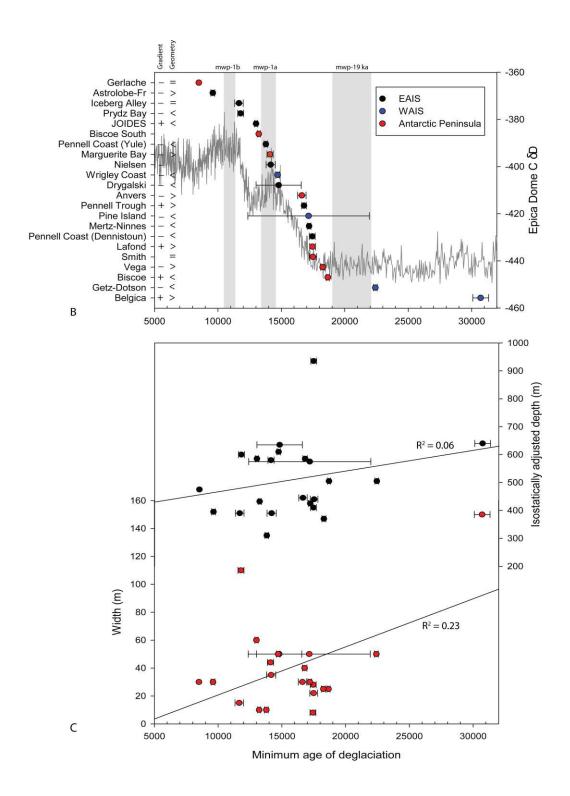

2411

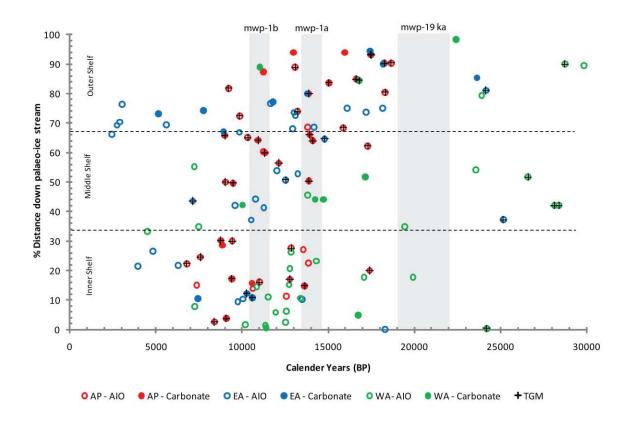

64° 50'S


64° 54′S


Meltwater channe


2 km





2420 8a

8b-c



Table 1: Proposed palaeo-ice streams of the Antarctic Ice Sheet during the last glacial period and the main lines of evidence used in their identification (numbers in square brackets refer to their location in Fig. 1, whilst those palaeo-ice streams with a question mark are less certain).

REFERENCES	ICE STREAM	DRAINAGE BASIN	EXTENT AT LGM	PRINCIPLE EVIDENCE FOR ICE STREAM ACTIVITY
Canals et al. (2000, 2003); Willmott et al. (2003) Evans et al. (2004); Heroy & Anderson (2005).	[1] Gerlache-Boyd	Western Bransfield Basin	Shelf-break	A convex-up elongate sediment body comprising parallel to sub parallel ridges and grooves (bundles) up to 100 km long; a convergent ice-flow pattern exhibiting a progressive increase in elongation into the main trough; and an outer-shelf sediment lobe seaward of the main trough.
Banfield & Anderson (1995); Canals et al. (2002); Heroy & Anderson (2005).	[2] Lafond	Central Bransfield Basin	Shelf-break	Deeply incised U-shaped trough with a drumlinised bed on the inner shelf and elongate grooves and ridges on the outer shelf; and a well developed shelf-edge lobe and slope debris apron.
Banfield & Anderson (1995); Canals et al. (2002); Heroy & Anderson (2005).	[3] Laclavere		Shelf-break	Deeply incised U-shaped trough with a drumlinised bed on the inner shelf and elongate grooves and ridges on the outer shelf; and a well developed shelf-edge lobe and slope debris apron.
Banfield & Anderson (1995); Canals et al. (2002); Heroy & Anderson (2005).	[4] Mott Snowfield		Shelf-break	Deeply incised U-shaped trough with a drumlinised bed on the inner shelf and elongate grooves and ridges on the outer shelf; and a well developed shelf-edge lobe and slope debris apron.
Bentley & Anderson (1998); Heroy et al. (2008)	[5] Orleans Trough		?	A large cross-shelf trough. Streamlined bedforms including drumlins and scalloped features.
Canals et al. (2003); Amblas et al. (2006).	[6] Biscoe Trough	Antarctic Peninsula	Shelf-break	Biscoe Trough exhibits a convergent flow pattern at the head of the ice stream, with well-developed MSGL observed throughout. These bedforms show a progressive elongation towards the shelf edge, with the less elongate landforms on the inner shelf formed in bedrock and interpreted as roche moutonées.
Heroy & Anderson (2005); Wellner et al. (2006).	[7] Biscoe South Trough (= Adelaide Trough)		?	A distinctive cross-shelf bathymetric trough characterised by rock cored drumlins on the inner shelf and MSGL on the outer shelf.
Pudsey et al. (1994); Larter & Vannester (1995); Vanneste & Larter (1995); Domack et al. (2006).	[8] Anvers-Hugo Island Trough		Shelf-break	Comprised of three tributaries which converge on a central trough. The inner-shelf is characterised by streamlined bedrock, and meltwater channels which cut across the mid-shelf high. The outer trough is floored by sediment and dominated by MSGL, with grounding zone wedges also identified in this zone.
Heroy & Anderson (2005).	[9] Smith Trough		?	A cross shelf bathymetric trough containing streamlined bedrock features such as grooves and drumlins, with elongations ratios of up to 20:1.
Kennedy & Anderson (1989); Anderson et al. (2001); Wellner et al. (2001);Oakes & Andeson (2002); Ó Cofaigh et al. (2002, 2005b, 2007, 2008); Dowdeswell et al. (2004a, b); Anderson & Oakes-Fretwell (2008); Noormets et al. (2009); Kilfeather et al. (2010).	[10] Marguerite Trough	Marguerite Bay	Shelf-break	Streamlined subglacial bedforms occur in a cross-shelf bathymetric trough; the bedforms show a progressive down-flow evolution from bedrock drumlins and ice-moulded bedrock on the inner shelf to MSGL on the outer shelf in soft sediment; and the MSGL are formed in subglacial deformation till which is not present on the adjacent banks.
Ó Cofaigh et al. (2005a); Graham et al. (2010).	[11] Latady Trough	Ronne Entrance	?	MSGL located in a cross-shelf bathymetric trough.
Ó Cofaigh et al. (2005a); Dowdeswell et al.	[12] Belgica Trough	Eltanin Bay &	Shelf-break	Elongate bedforms are located in a cross-shelf bathymetric trough; the

(2008b); Noormets et al. (2009); Hillenbrand et al. (2009, 2010a); Graham et al. (2010b).		Ronne Entrance		head of the ice stream is characterised by a strongly convergent flow pattern; the trough exhibits a down-flow transition from drumlins to MSGL, with the MSGL formed in subglacial deformation till; and large sediment accumulations have been observed including a TMF in front of Belgica Trough and a series of GZWs on the mid and inner shelf.
Anderson et al. (2001); Wellner et al. (2001); Lowe & Anderson (2002, 2003); Dowdeswell et al. (2006); Evans et al. (2006); Ó Cofaigh et al. (2007); Noormets et al. (2009); Graham et al. (2010a).	[13] Pine Island Trough	Pine Island Trough	Shelf-break	MSGL with elongation ratios of >10:1 in the middle/outer shelf composed of soft till formed by subglacial deformation; the bedforms are concentrated in a cross-shelf bathymetric trough; and a bulge in the bathymetric contours in-front of the trough indicates progradation of the continental slope.
Anderson et al. (2001); Wellner et al. (2001); Larter et al. (2009); Graham et al. (2009); Hillenbrand et al. (2010b); Smith et al. (in press).	[14] Getz-Dotson	Bakutis Coast	Shelf-break	Bedforms converge into a central trough from three main tributaries; the bedforms which occupy the trough have elongation ratios up to 40:1 and comprise drumlins, crag-and-tails and MSGL; MSGL on the outer shelf are formed in soft till; and the inner and mid-shelf contain a series of GZWs.
Wellner et al. (2001, 2006); Anderson et al. (2002).	[15] Wrigley Gulf	Wrigley Gulf	Outer- shelf/shelf break	A cross-shelf bathymetric trough containing drumlins and grooves on the inner shelf and MSGL on the outer shelf.
Wellner et al. (2001, 2006).	[16] Sulzberger	Sulzberger Bay	?	A prominent trough aligned with the structural grain of the coast. The bedrock floored trough is characterised by roche moutonées and erosional grooves which are concentrated along the axis of the trough; MSGL occupy the trough on the outer shelf.
Anderson (1999); Domack et al. (1999); Shipp et al. (1999); Bart et al. (2000); Licht et al. (2005); Melis & Salvi (2009).	[17] Drygalski Basin (Trough 1)	Western Ross Sea	Outer shelf	A narrow trough containing MSGL formed in deformation till, a distinctive dispersal train and a GZW on the outer shelf.
Anderson (1999); Domack et al. (1999); Shipp et al. (1999, 2002); Bart et al. (2000); Anderson et al. (2001); Howat & Domack (2003); Licht et al. (2005); Farmer et al. (2006); Melis & Salvi (2009).	[18] JOIDES-Central Basin (Trough 2)		Outer shelf	JOIDES-Central Basin forms a narrow trough characterised by MSGL along its axial length. The trough also exhibits a distinctive dispersal train, and has a GZW on the outer shelf.
Domack et al. (1999); Shipp et al. (1999); Howat & Domack (2003); Licht et al. (2005); Mosola & Anderson (2006); Salvi et al. (2006).	[19] Pennell Trough (Trough 3)	Central Ross Sea	Shelf-break	A narrow cross-shelf trough characterised by a drumlinised inner shelf, with MSGL extending across the mid and outer shelf. The MSGL are formed in deformation till, with gullies on the continental shelf in-front of the trough. The trough also exhibits a distinctive dispersal train.
Domack et al. (1999); Shipp et al. (1999); Licht et al. (2005); Mosola & Anderson (2006).	[20] Eastern Basin (Trough 4)		Shelf-break	Cross-cutting MSGL, formed in deformation till, extend along the entire axis of the trough, with gullies on the continental slope in-front of the broad trough. GZWs have also been identified along the length of the trough. The trough is also characterised by a distinctive dispersal train.
Licht et al. (2005); Mosola & Anderson (2006).	[21] Eastern Basin (Trough 5)	Eastern Ross Sea	Shelf-break	The broad trough that hosted this ice stream is characterised by MSGL and multiple GZWs and terminates in gullies on the continental slope. The MSGL are formed in deformation till. The trough is also characterised by a distinctive dispersal train.

Licht et al. (2005); Mosola & Anderson (2006).	[22] Eastern Basin (Trough 6)		Shelf-break	Trough 6 is a broad depression comprising MSGL and 3 GZWs. The MSGL are formed in a deformation till and there is sharp lateral boundary into non-deformed till. The continental slope is dominated by gullies. The trough is also characterised by a distinctive dispersal train.
Barnes (1987); Domack (1987); Eittreim et al. (1995); Escutia et al. (2003); McCullen et al. (2006); Crosta et al. (2007).	[23] Mertz Trough	Wilkes Land Coast	?	A broad cross-shelf trough floored by deformation till and characterised by MSGL and GZWs. The outer shelf is characterised by prograding wedges, with steep foresets composed of diamict.
Barnes (1987); Domack (1987); Eittreim et al. (1995); Beaman & Harris (2003, 2005); Escutia et al. (2003); Presti et al. (2005); Leventer et al. (2006); McCullen et al. (2006); Crosta et al. (2007); Denis et al. (2009).	[24] Mertz-Ninnes Trough		?	A broad cross-shelf trough floored by deformation till and characterised by MSGL and GZWs. The outer shelf is characterised by a number of GZWs, with steep foresets composed of diamict. Further evidence is provided by the presence of lateral moraines on the adjacent banks.
Eittreim et al. (1995); Escutia et al. (2003); Crosta et al. (2007); Denis et al. (2009).	[25] Astrolabe-Français		?	A broad cross-shelf trough. Steeply prograded GZW on the outer shelf and MSGL on the inner and mid shelf.
Eittreim et al. (1995); Escutia et al. (2003); Crosta et al. (2007).	[26] Dibble Trough		?	A broad cross-shelf trough. The outer shelf is characterised by GZWs, with steep foresets composed of diamict.
Wellner et al. (2006).	[27] Pennell Coast (?)	Pennell Coast	?	The shelf offshore of Pennell Coast has two prominent troughs which merge on the inner shelf; the troughs are characterised by erosional grooves (amplitudes of over 100 m and wavelengths of 10 m to 1 km).
O'Brien (1994); O'Brien et al. (1999, 2007); O'Brien & Harris (1996); Domack et al. (1998); Taylor & McMinn (2002); Leventer et al. (2006).	[28] Prydz Channel	Prydz Bay	Inner-shelf/mid-shelf	The shelf is bisected by a large trough with elongate bedforms (flutes) along its floor. The flutes are overprinted by a series of transverse moraines; in front of the trough there is a bulge in the bathymetric contours, typical of a TMF; and GZWs have been observed on the inner shelf.
O'Brien (1994); O'Brien et al. (1999, 2007); O'Brien & Harris (1996); Domack et al. (1998); Taylor & McMinn (2002); Leventer et al. (2006).	[29] Amery		Inner-shelf/mid-shelf	The shelf is bisected by a large trough with elongate bedforms (flutes) along its floor. The flutes are overprinted by a series of transverse moraines; in front of the trough there is a bulge in the bathymetric contours, typical of a TMF; and GZWs have been observed on the inner shelf.
Harris & O'Brien (1996, 1998); Leventer et al. (2006); Mackintosh et al. (2011).	[30] Nielsen	Mac.Robertson Land	Outer shelf/shelf break	A deep trough that strikes across the shelf. The trough contains GZWs, MSGL and parallel grooves.
O'Brien et al. (1994); Harris & O'Brien (1996); Stickley et al. (2005); Leventer et al. (2006); Mackintosh et al. (2011).	[31] Iceberg Alley		Outer shelf/shelf break	A narrow trough containing a GZW and MSGL.
Melles et al. (1994); Bentley & Anderson (1998); Bart et al. (1999); Anderson & Andrews (1999); Anderson et al. (2002); Bentley et al. (2010).	[32] Crary Trough (?)	Southern Weddell Sea	?	A broad trough on the continental shelf of SE Weddell Sea and an oceanward-convex bulge in the bathymetric contours in front of the trough (TMF).
Haase (1986); Bentley & Anderson (1998).	[33] Ronne Trough (?)		?	Shallow trough on the inner shelf

Gilbert et al. (2003); Evans et al. (2005);	[34] Robertson Trough	NW Weddell	Shelf-break	A strong convergence of multiple tributaries (and bedforms) into a large
Brachfeld et al. (2003); Domack et al. (2005);	(Prince Gustav channel;	Sea		central trough on the outer shelf; bedforms which range from short
Pudsey et al. (2006); Curry & Pudsey (2007); Ó	Larsen-A, -B, BDE,			bedrock drumlins, grooves and lineations on the inner shelf to MSGL on
Cofaigh et al. (2007); Reinardy et al. (2009,	Greenpeace)			the outer shelf are confined to the cross-shelf troughs; bedforms show a
2011a,b).				progressive elongation down-flow and where formed in sediment are
				associated with soft till; prominent GZWs on the inner shelf document
				still-stand positions.
Anderson et al. (1992); Bentley & Anderson,	[34] North Prince Gustav		Outer	Subglacial bedforms, including mega-flutes, drumlins, crag-and-tails
(1998); Carmelenghi et al. (2001); Heroy &	channel-Vega Trough		shelf/shelf-	have been identified within a deep trough which broadens towards the
Anderson (2005).			break	shelf edge. On the outer shelf MSGL are common and there is a
		_		prominent GZW.
Bentley & Anderson (1998).	[35] Jason Trough (?)		?	A large cross-shelf trough.

Table 2: Physiography of the palaeo-ice stream troughs collated from the literature (see Table 1). * Derived from GEBCO; ¹ the gradient (degrees) is averaged from a long profile extracted along the axial length of the trough (from the shelf edge to the modern ice-front) using the GEBCO data. ² From Graham et al. (2010). ³ Grounding of ice in Ronne Trough and Crary Trough at the LGM is disputed. ⁴ Crary Trough = Thiel Trough = Filchner Trough. EB = Eltanin Bay; RE = Ronne Entrance; PG = Prince Gustav channel; R = Robertson Trough.

Delega in street and the second	Length	Width	Major	D D (12)			Gradient ¹		
Palaeo-ice stream trough	(km)	(km)	tributaries	Drainage Basin (km²)	Shelf-break	Water de Mid-outer shelf	Inner shelf	banks	(main trough)
[1] Gerlache-Boyd	340	5-40	2	23,000	400-500	500-800	1200	300-400	-0.0001
[2] Lafond	75*	10-28	1		650-900	700	200-610	100-200*	0.0048
[3] Laclavere	70*	10-28	1		650-900	700	200-610	100-200*	0.0067
[4] Mott Snowfield	70*	10-28	1		650-900	700	200-610	100-200*	0.0028
[5] Orleans*	150	10-35	3		750-800	500-800	550-800	100-300	0.0019
[6] Biscoe	170	23-70	1		450-500	300-450	600-800	200-350*	-0.0007
[7] Biscoe South (Adelaide)*	180	15-30	1		450-500	450-600	450-550	300-350	0.00005
[8] Anvers-Hugo Island	240	15-30	3		400-430	300-800	500-1400*	200-350	-0.0036 (outer: -0.0018)
[9] Smith*	190*	5-22	1		800	400-900	200-800	300-400	0.0003
[10] Marguerite	445	6-80	2	10,000-100,000	500-600	500-600	1000-1600	400-500	-0.0007 (outer: -0.0009)
[11] Latady	510	up to 80	1		400	600-800	600-1000	400-500	0.0001
[12] Belgica	490(EB) 540 (RE)	75-150	2	217,000-256,000	600-680	560-700	500-1200	400-500	-0.0009 (EB) -0.0003(RE)
[13] Pine Island	450	50-95	2	330,000	480-540	490-640	1000-1700	400-500	-0.0012 (west) -0.0008 (east) (outer: 0.015) ²
[14] Getz-Dotson	290	17-65	3		500	600	1100-1600	350-450*	-0.0015
[15] Wrigley Gulf*	145	50-70	1		500-600	600-800	600-1000	200-450	-0.0015
[16] Sulzberger*	130	25	1		500	500-1300	600-900	200-400	-0.0033 (outer: -0.0089)
[17] Drygalski (1)	560*	45-65	1		500	600	800-1000	250	-0.0003
[18] JOIDES-Central (2)	470*	45-65	1	1.6 million & 265,000	450-550	500-620	800-1000	250	-0.0001
[19] Pennell (3)	400	100	1		500-600	600-700	600-800	500	-0.0006
[20] Eastern Basin (4)	300*	150-240	1		500-600	600-700	600-800	500	-0.0003
[21] Eastern Basin (5)	240*	100-200	1		500-600	600-700	600-800	500	-0.0001
[22] Eastern Basin (6)	200*	125	1		500-600	600-700	600-800	500	-0.0008
[23] Mertz	≤280	50-100	1		450-500	450-500	450-1000	<400	-0.0004
[24] Mertz-Ninnes	≤160	50	1		450-500	450-500	450-1000	<400	-0.0027
[25] Astrolabe-Français	230	40-80	1		300	600-850	600-1100	200-350	-0.0014
[26] Dibble	130	50-80	1		450-550	400-1000	300-500	200-350	0.0016
[27] Pennell Coast*	≤70	10-15	2		350	400-1200	600-1100	200-300	-0.0082
[28] Prydz Channel	220-350	150	1		500-600	600-800	700-800	100-400	-0.0015
[29] Amery	>450	150	2	1.48 million (present)	500-600	600-800	800-2200	100-400	-0.003
[30] Nielsen	≤140	30-40	1		250-350*	550-800*	600-1200	<200	-0.0053
[31] Iceberg Alley	103*	15*	1		300*	450-550	450-500	<150	0.0003
[32] Crary ⁴	≤460	120- 170*	1		630	550-800	650-1140	350-400*	-0.0017

[33] Ronne	≤300	50-140*	1	400-500*	400-600	500-600	350-400*	-0.0006^3
[34] Robertson	310	25-100	5	450	400-550	500-1200	300-400	-0.001 (PG) 0.0004 (R)
[35] North Prince Gustav-Vega	≤300	5-25*	2	300-400*	400-500	350-1240	300	-0.0026
[36] Jason*	≤220	20-120	1	750-800	550-900	450-600	300-400	0.0013

Table 3: Geomorphic features observed at the beds of Antarctic marine palaeo-ice streams.

Landform	Defining characteristics	Palaeo-ice streams
Mega-scale glacial lineations	>10:1 elongation, parallel bedform sets formed in the acoustically	All palaeo-ice streams except Smith Trough and
(MSGL)/'bundle structures'	transparent seismic unit.	Sulzberger Bay Trough
Drumlinoid bedforms	Lobate/teardrop/ovoid-shaped bedforms formed either wholly or	Anver-Hugo Island Trough, Bakutis Coast, Belgica
	partially in bedrock and occasionally with overdeepenings around	Trough, Biscoe South Trough, Bransfield Basin,
	their upstream heads.	Central Ross Sea, Gerlache-Boyd Strait, Getz-Dotson
		Trough, Marguerite Trough, Pine Island Trough,
		Robertson Trough, Sulzberger Bay Trough, Vega
		Trough
Crudely streamlined and grooved bedrock	Elongate grooves/ridges formed in bedrock.	Anver-Hugo Island Trough, Belgica Trough, Biscoe
		Trough, Getz Ice Shelf, Getz-Dotson, Marguerite
		Trough, Pennell Coast, Pine Island Trough, Robertson
		Trough, Smith Trough, Sulzberger Bay Trough
Crag-and-tails	Large bedrock heads with tails aligned in a downflow direction.	Getz-Dotson Trough, Marguerite Bay
Subglacial meltwater channel systems	Straight to sinuous channels with undulating long-axis thalwegs	Anvers-Hugo Island Trough, Central Ross Sea, Getz-
	and abrupt initiation and termination points.	Dotson, Marguerite Trough, Pine Island Bay,
GZW (Grounding Zone Wedges)	Steep sea-floor ramps with shallow backslopes and wedge-like	Anvers-Hugo Island Trough, Belgica Trough, Gerlache-
	profiles. Formed within till and often associated with lineations,	Boyd Strait, Getz-Dotson, Iceberg Alley, Laclavere
	which frequently terminate at the wedge crests.	Trough, Lafond Trough, Marguerite Trough, Mertz
		Trough, Nielsen Trough, Pine Island Trough, Prydz
		Channel; Robertson Trough, Ross Sea troughs, Vega
		Trough
Transverse moraines	Transverse ridges, 1-10 m high with spacings of a few tens to	Eastern Ross Sea, JOIDES-Central Basin, Prydz
	hundreds of metres. Straight to sinuous in plan-form.	Channel
TMF (Trough Mouth Fan)	Seaward bulging bathymetric contours, large glacigenic debris-	Belgica Trough, Crary Trough, Prydz Channel, western
	flow deposits and prominent shelf progradation (prograding	Ross Sea troughs
	sequences in seismic profiles).	
Gully/channel systems	Straight or slightly sinuous erosional features on the continental	Anvers-Hugo Island Trough, Belgica Trough, Biscoe
	slope, which occasionally incise back into the shelf edge. The	Trough, Biscoe Trough South, Bransfield Basin,
	gully networks on the upper slope show a progressive	Gerlache-Boyd Strait, Marguerite Trough, Pine Island
	organisation into larger and fewer channels down-slope.	Trough, Robertson Trough, Smith Trough, Weddell Sea
		trough, western Ross Sea troughs
Iceberg scours	Straight to sinuous furrows, uniform scour depths, cross-cutting	All palaeo-ice streams
	and seemingly random orientation.	

Table 4: Compiled uncorrected and calibrated marine radiocarbon ages representing minimum estimates of glacial retreat.

 $A strolobe \hbox{-} Fr = A strolabe \hbox{-} Français Trough$

 $^{\rm e}$ R = reservoir correction (Δ R = 400 – R for CALIB program). For all carbonate samples, a marine reservoir correction of 1300 (\pm 100) years was applied (Berkman & Forman, 1996). For AIO samples we used the reported core-top ages. DO samples in the Getz-Dotson Trough were corrected by 1300 (\pm 100) years (Berkman & Forman, 1996) as discussed in Hillenbrand et al. 2010b.

^fCalibrated using the CALIB program v 6.0 (Stuiver et al. 2005), reported in calendar years before present (cal. yr BP). Ages rounded to the nearest ten years. Dates in bold are inferred to be the most reliable minimum ages constraining initial palaeo-ice stream retreat.

Reference	Core	Location	^a Map	^b Dist.	^c Sediment Facies	dCarbon	Conventional	Error	eR	Corrected age	^f Median cal.	1 σ	2 σ
			No.	(%)		Source	¹⁴ C age	(± years)	(yrs)	(yrs)	age (yrs)	error	error
Domack et al. (2001)	ODP-1098C	Anvers	1	27.6	TGM	AIO	12250	60	1260	10990	12850	120	207
Pudsey et al. (1994)	GC51	Anvers	2	72.4	TGM	AIO	12730	130	4020	8710	9860	219	371
Pudsey et al. (1994)	GC49	Anvers	3	65.1	TGM	AIO	13110	120	4020	9090	10340	153	365
Yoon et al. (2002)	GC-02	Anvers	4	60.3	GM (above till)	AIO	12840	85	3000	9840	11250	115	320
Nishimura et al. (1999)	GC1702	Anvers	5	68.5	GM	AIO	14320	50	2340	11980	13810	78	179
Heroy & Anderson (2007)	PC-24	Anvers	6	83.6	TGM	F(m)	14020	110	1300	12720	15030	334	775
Heroy & Anderson (2007)	PC-25	Anvers	7	94.0	IT	F(m)	14450	120	1300	13150	15960	449	732
Heroy & Anderson (2007)	KC-26	Anvers	8	84.9	TGM	F(m)	14880	200	1300	13580	<u>16620</u>	330	803
Heroy & Anderson (2007)	PC-23	Anvers	9	59.9	TGM	Shell	11168	81	1300	9868	11320	146	429
Pudsey et al. (1994)	GC47	Anvers	10	56.5	TGM	AIO	12280	150	1870	10410	12140	373	730
Domack et al. (1991)	302	Astrolabe-Fr	11	26.5	DO	AIO	5515	132	1300	4215	4840	234	434
Crosta et al. (2007)	MD03-2601	Astrolabe-Fr	12	42.2	DO	AIO	10855	45	2350	8505	<u>9600</u>	154	331
Hillenbrand et al. (2010a)	JR104-GC358	Belgica	13	34.8	GM	AIO	21433	168	5131	16302	19450	163	488
Hillenbrand et al. (2010a)	JR104-GC359	Belgica	14	34.8	GM	AIO	11736	120	5131	6605	7500	114	241
Hillenbrand et al. (2010a)	JR104-GC360	Belgica	15	33.3	GM	AIO	8415	95	4450	3965	4520	167	309
Hillenbrand et al. (2010a)	JR104-GC366	Belgica	16	23.3	GM	AIO	16193	196	3914	12279	14320	384	659
Hillenbrand et al. (2010a)	JR104-GC357	Belgica	17	55.2	GM	AIO	12140	191	5810	6330	7230	210	419
Hillenbrand et al. (2010a)	JR104-GC368	Belgica	18	54.1	GM	AIO	25240	565	5484	19756	23560	668	1342
Hillenbrand et al. (2010a)	JR104-GC371	Belgica	19	79.3	IT	AIO	22507	436	2464	20043	23910	536	1033
Hillenbrand et al. (2010a)	JR104-GC372	Belgica	20	87.2	GM	AIO	27900	797	1731	26169	30710	618	1451
Hillenbrand et al. (2010a)	JR104-GC374	Belgica	21	89.6	GM	AIO	27512	721	2464	25048	29830	714	1316
Heroy & Anderson (2007)	PC-55	Biscoe	22	90.4	TGM	AIO	18420	130	2999	15421	<u>18660</u>	120	224
Heroy & Anderson (2007)	PC-57	Biscoe	23	62.2	TGM	AIO	19132	87	4913	14219	17300	203	371
Pope & Anderson (1992)	PD88-42	Biscoe	24	14.8	TGM	F(m)	13120	100	1300	11820	13630	150	289
Heroy & Anderson (2007)	PC-30	Biscoe S	25	73.9	TGM	AIO	17660	110	6300	11360	13220	118	283
Finocchiaro et al. (2005)	ANTA02-CH41	Cape Hallett	26	N/A	DO (varved)	AIO	10920	50	1790	9130	10380	110	194

^aFor core locations see Fig. 7.

^bDist. (%) = (Distance of core along palaeo-ice stream flow line/Total length of ice stream) x 100.

^cTGM = transitional glaciomarine ; IT = iceberg turbate; DO = diatomaceous ooze; GM = glaciomarine.

 $^{^{}d}AIO = acid insoluble organic carbon; F = foraminifera; (m) = mixed benthic and planktic; (b) = benthics; Geomag. = geomagnetic palaeointensity.$

Licht & Andrews (2002)	NBP9501-18tc	Central Ross Sea	27	17.7	GM	AIO	20490	260	3735	16755	19920	297	565
Licht & Andrews (2002) Licht & Andrews (2002)	NBP9501-18pc	Central Ross Sea	28	17.7	GM	AIO	17760	115	3735	14025	17090	170	337
Licht & Andrews (2002) Licht & Andrews (2002)	NBP9501-11	Central Ross Sea	29	51.7	TGM	AIO	25870	245	3735	22135	26600	406	830
Licht & Andrews (2002) Licht & Andrews (2002)	NBP9501-24	Central Ross Sea	30	79.0	TGM	AIO	30635	445	3735	26900	31280	270	768
` '	NBP9401-36	Central Ross Sea	31	56.0	TGM	AIO	30220	420	3735	26485	31010	274	562
Licht & Andrews (2002)								70					
Anderson & Andrews (1999)	IWSOE70_2-19-1	Crary Trough	32	90.0	IT	F(b)	16190		1300	14890	<u>18188</u>	114	381
Elverhøi (1981)	212	Crary Trough	33	N/A	IT?	Shell	31290	1700	1300	29990	34460	1831	3461
Domack et al. (1999)	NBP95-01_PC26	Drygalski	34	21.8	DO	AIO	7690	65	2210	5480	6300	87	191
Domack et al. (1999)	NBP95-01_PC29*	Drygalski	35	21.4	DO	AIO	5770	75	2210	3560	3960	128	263
Domack et al. (1999)	NBP95-01_KC31	Drygalski	36	41.3	DO	AIO	12280	95	2430	9850	11270	136	339
Licht et al. (1996)	DF80-102	Drygalski	37	52.9	GM	AIO	12640	80	1270	11370	13230	81	163
Licht et al. (1996)	DF80-108	Drygalski	38	53.9	GM	AIO	11545	95	1270	10275	12020	201	394
Licht et al. (1996)	DF80-132	Drygalski	39	44.3	GM	AIO	10730	80	1270	9460	10790	154	259
Domack et al. (1999)	NBP95-01_KC37	Dryglaski	40	68.0	DO	AIO	13840	95	2780	11060	12930	138	239
Licht et al. (1996)	DF80-57	Dryglaski	41	10.5	GM	Bivalve	7830	60	1300	6530	7440	105	209
Frignani et al. (1998)	ANTA91-28	Dryglaski	42	64.6	TGM	AIO	17490	930	5090	12400	<u>14790</u>	1780	3430
Frignani et al. (1998)	ANTA91-29	Dryglaski	43	50.7	TGM	AIO	17370	60	6710	10660	12530	173	395
McKay et al. (2008)	DF80-189	Dryglaski	44	10.4	GM	AIO	11331	45	2470	8861	10060	126	268
Finocchiaro et al. (2007)	ANTA99-CD38	Dryglaski	45	37.1	DO	AIO	12270	40	3000	9270	10530	50	127
Mosola & Anderson (2006)	NBP99-02_PC15	Eastern Ross Sea	46	91.7	TGM	AIO	30620	400	4590	26030	30730	297	565
Mosola & Anderson (2006)	NBP99-02_PC04	Eastern Ross Sea	47	0.4	TGM	AIO	23950	230	3663	20287	24200	287	640
Mosola & Anderson (2006)	NBP99-02_PC13	Eastern Ross Sea	48	90.0	TGM	AIO	28520	300	4613	23907	28740	390	699
Mosola & Anderson (2006)	NBP9902_PC06	Eastern Ross Sea	49	42.1	TGM	AIO	27330	290	3704	23626	28380	349	705
Mosola & Anderson (2006)	NBP99-02_TC05	Eastern Ross Sea	50	42.1	TGM	AIO	27000	260	3663	23337	28120	266	580
Anderson & Andrews (1999)	IWSOE70 3-7-1	SE Weddell Sea	51	N/A	TGM	F	26660	490	1300	25360	30140	482	898
Anderson & Andrews (1999)	IWSOE70_3-17-1	SE Weddell Sea	52	N/A	TGM	F	23870	160	1300	22570	27260	338	624
Elverhøi (1981)	234	SE Weddell Sea	53	N/A	TGM	Bryozoan	21240	760	1300	19940	23790	834	1915
Michalchuk et al. (2009)	NBP0602-8B	Firth of Tay	54		TGM	Shell	8700	40	1300	7400	8260	107	228
Harden et al. (1992)	DF86-83	Gerlache	55	2.6	TGM	AIO	10240	250	2760	7480	8390	383	751
Willmott et al. (2007)	JPC-33	Gerlache	56	73.8	GM	N/A					8500		
Smith et al. (in press)	VC408	Getz-Dotson	57	14.5	GM	AIO	14646	63	5135	9511	10850	126	253
Smith et al. (in press)	VC415	Getz-Dotson	58	1.7	GM	AIO	13677	57	4723	8954	10200	96	234
Smith et al. (in press)	VC417	Getz-Dotson	59	1.4	GM	AIO	16307	76	6405	9902	11350	124	319
Smith et al. (in press)	VC418	Getz-Dotson	60	7.9	GM	AIO	11469	47	5135	6334	7270	72	132
Smith et al. (in press)	VC419	Getz-Dotson	61	0.7	Gravity flow	Benthics	11237	40	1300	9937	11410	113	307
Hillenbrand et al. (2010b)	VC424	Getz-Dotson	62	20.7	DO	AIO	12183	51	1300	10883	12770	119	201
Hillenbrand et al. (2010b)	VC424 VC425	Getz-Dotson Getz-Dotson	63	10.7	DO	AIO	12868	54	1300	11568	13400	106	246
Smith et al. (in press)	VC423 VC427	Getz-Dotson Getz-Dotson	64	15.2	DO	AIO	12139	55	1300	10839	12730	114	210
Smith et al. (in press)	VC427 VC428	Getz-Dotson Getz-Dotson	65	45.5	GM	AIO	15841	72	3865	11976	13810	112	223
Smith et al. (in press)	VC428 VC430	Getz-Dotson Getz-Dotson	66	89.0	IT	Benthics	10979	40	1300	9679	11040	143	280
Smith et al. (in press)	VC436	Getz-Dotson Getz-Dotson	67	98.3	IT	Benthics	20115	71	1300	18815	22410	150	307
` 1 /	PS69/267-2	Getz-Dotson Getz-Dotson	68	26.2	GM	AIO	15108	66	4124	10984	12850	128	216
Smith et al. (in press)	PS69/273-2	Getz-Dotson Getz-Dotson	69	2.4	DO	AIO	11945	38	1300	10645	12540	71	265
Hillenbrand et al. (2010b)				6.2	DO			38 49				80	
Hillenbrand et al. (2010b)	PS69/274-1	Getz-Dotson	70			AIO	11967		1300	10667	12570		284
Hillenbrand et al. (2010b)	PS69/275-1	Getz-Dotson	71	5.9	DO	AIO	11543	47	1300	10243	11950	233	478
Smith et al. (in press)	PS69/280-1	Getz-Dotson	72	11.0	GM	AIO	17021	80	7019	10002	11520	206	360
Leventer et al. (2006)	JPC43B	Iceberg Alley	73	76.7	DO	AIO	11770	45	1700	10070	<u>11660</u>	335	623
Domack et al. (1999)	NBP95-01_KC39	JOIDES	74	73.6	DO	AIO	14290	95	3140	11150	13010	131	254
Frignani et al. (1998)	ANTA91-14	JOIDES	75	81.1	TGM	AIO	24000	620	3800	20200	24160	1607	3217
Melis & Salvi (2009)	ANTA91-13	JOIDES	76	85.3	TGM	F	21100	75	1300	19800	23640	189	415
Finocchiaro et al. (2000)	ANTA99-8	JOIDES	77	37.2	TGM	AIO	24830	110	3800	21030	25160	794	1634
Finocchiaro et al. (2000)	ANTA96-9	JOIDES	78	43.6	TGM	AIO	10100	60	3800	6300	7150	585	1178
Banfield & Anderson (1995)	DF82-48	Lafond	79	93.3	TGM	F(m)	15665	95	1300	14365	<u>17460</u>	230	414
Shevenell et al. (1996)	GC-01	Lallemand	80	N/A	TGM	Shell	9358	70	1300	8058	9080	169	343
Brachfeld et al. (2003)	KC-23	Larsen-A	81	3.5	TGM	Geomag.	10700	500	n/a	n/a	10700	500	
Domack et al. (2005)	KC-02	Larsen-B	82	15.7	GM	F	10600	55	1300	9300	10571	147	340

D	KC-05	I D	02	20.6	CM	F	9210	45	1200	7010	9957	150	211
Domack et al. (2005) Gingele et al. (1997)	PS2028-4	Larsen-B Lazarev Sea shelf	83 84	28.6 N/A	GM GM	•	9210 9850	45 130	1300 1300	7910 8550	8857 9680	158 211	311 416
£ , ,	PS2226-3	Lazarev Sea shelf	85	N/A N/A	GM	Bryozoan	8430	95	1300	7130	7800	144	290
Gingele et al. (1997) Gingele et al. (1997)	PS2058-1	Lazarev Sea shelf	86	N/A N/A	GM	Bryozoan Bryozoan	6530	95 95	1300	5230	6030	150	300
Ó Cofaigh et al. (2005b)	VC304	Marguerite Bay	87	81.3	TGM	AIO	11670	250	3473	8197	9220	311	664
Harden et al. (1992)	DF86-111	Marguerite Bay	88	22.3	TGM	AIO	10180	170	4260	5920	6790	272	501
Harden et al. (1992)	DF86-112	Marguerite Bay	89	24.6	TGM	AIO	10800	160	4100	6700	7590	204	418
Kilfeather et al. (2010)	GC002	Marguerite Bay	90	50.0	TGM	F	13340	57	1300	12040	13870	117	271
Kilfeather et al. (2010)	GC002 GC005	Marguerite Bay	91	65.6	TGM	F	13390	56	1300	12090	13920	117	314
Pope & Anderson (1992)	PD88-85	Marguerite Bay	92	79.5	TGM	F(m)	13335	105	1300	12035	13870	156	405
Pope & Anderson (1992)	PD88-99	Marguerite Bay	93	63.6	TGM	F(m)	13490	140	1300	12190	14110	240	631
Allen et al. (2010)	JPC-43	Marguerite Bay	94	3.8	TGM	F(m)	9360	50	1300	8060	9080	152	321
Pope & Anderson (1992)	PD88-76	Marguerite Bay	95	93.3	IT	F(m)	12425	110	1300	11125	12990	166	290
Heroy & Anderson (2007)	PC-48	Marguerite Bay	96	17.2	TGM	Shell	9640	60	1300	8340	9400	123	287
Heroy & Anderson (2007)	KC-51	Marguerite Bay	97	49.3	TGM	Shell	9640	n/a	1300	8340	9480		
Heroy & Anderson (2007)	PC-49	Marguerite Bay	98	30.2	TGM	Shell	9126	95	1300	7826	8760	183	351
Heroy & Anderson (2007)	PC-52	Marguerite Bay	99	65.4	TGM	Shell	9320	220	1300	8020	9000	310	558
Kim et al. (1999)	A10-01	Marian Cove	100	N/A	TGM	AIO	13461	98	5200	8261	9310	259	317
Milliken et al. (2009)	NBP0502-1B	Maxwell Bay	101	N/A	TGM	Shell	13100	65	1300	11800	13620	132	248
McMullen et al. (2006)	KC-1	Mertz	102	73.2	DO	Molluscs	5755	35	1300	4455	5140	145	280
McMullen et al. (2006)	KC-2	Mertz	103	76.4	DO	AIO	6240	50	3410	2830	3050	140	260
McMullen et al. (2006)	KC-13	Mertz	104	69.3	DO	AIO	5980	40	3410	2570	2750	106	243
McMullen et al. (2006)	KC-12	Mertz	105	70.4	DO	AIO	6110	40	3410	2700	2890	109	211
Domack et al. (1991)	DF79-12	Mertz-Ninnes	106	66.3	DO	AIO	7350	80	5020	2330	2450	327	668
Maddison et al. (2006)	JPC10	Mertz-Ninnes	107	72.5	DO	AIO	13550	50	2340	11210	13100	71	192
Harris et al. (2001)	26PC12	Mertz-Ninnes	108	75.0	GM	AIO	15469	70	2241	13228	16100	366	731
Harris et al. (2001)	17PC02	Mertz-Ninnes	109	69.4	GM	AIO	7294	60	2431	4863	5620	298	618
Harris et al. (2001)	24PC10	Mertz-Ninnes	110	73.8	GM	AIO	16807	80	2700	14107	<u>17190</u>	149	387
Harris et al. (2001)	27PC13	Mertz-Ninnes	111	66.9	GM	AIO	11148	60	2453	8695	9840	210	342
Harris & O'Brien (1998)	149/12/GC12	Nielsen	112	75.0	GM	AIO	17150	280	2170	14980	18150	472	961
Mackintosh et al. (2011)	JPC40	Nielsen	113	68.6	GM	AIO	13895	40	1700	12195	<u>14160</u>	363	694
Heroy et al. (2008)	PC-61	Orleans	114	50.0	TGM	AIO	10859	53	2833	8026	9040	139	287
Salvi et al. (2006)	ANTA96-5BIS	Pennell Trough	115	72.8	TGM	AIO	37000	1400	3820	33180	37940	2037	4087
Licht & Andrews (2002)	NBP9501-7	Pennell Trough	116	84.5	TGM or IT	F	14970	135	1300	13670	<u>16790</u>	175	516
Anderson et al. (2002)	NBP9801-22	Pennell Coast	117	67.1	GM	Algae	9260	70	1300	7960	8930	185	343
Anderson et al. (2002)	NBP9801-17	Pennell Coast	118	74.3	GM (above till)	Algae	8200	90	1300	6900	7770	129	254
Anderson et al. (2002)	NBP9801-19	Pennell Coast	119	80.0	GM (above till)	Bryozoan	13260	80	1300	11960	13780	147	291
Anderson et al. (2002)	NBP9801-26	Pennell Coast	120	94.4	GM	F	15645	95	1300	14345	17440	227	415
Lowe & Anderson (2002)	NBP9902 PC39	Pine Island	121	51.8	GM	F	15800	3900	1300	14500	17150	4789	9422
Lowe & Anderson (2002)	NBP9902_PC41	Pine Island	122	42.2	GM	F	10150	370	1300	8850	10030	460	962
	_												
Domack et al. (1998)	KROCK 24	Prydz Channel	123	77.3	GM	AIO	12680	110	2510	10170	<u>11790</u>	233	495
Leventer et al. (2006)	JPC25	Prydz Channel	124	10.9	TGM	Scaphopod	10625	35	1300	9325	10600	137	308
Barbara et al. (2010)	JPC24	Prydz Channel	125	12.3	TGM	Shell	10315	35	1300	9015	10280	117	254
Domack et al. (1991)	740A-3R1	Prydz Channel	126	9.4	GM	AIO	11140	75	2510	8630	9750	155	287
Hemer & Harris (2003)	AM02	Prydz Channel	127	0.0	DO	AIO	21680	160	6548	15132	18290	285	567
Taylor & McMinn (2002)	GC29	Prydz Channel	128	10.3	GM	AIO	14140	120	2493	11647	13500	209	426
Pudsey et al. (2006)	VC242	Robertson	129	20.0	TGM	AIO	20300	160	6000	14300	17410	312	562
Pudsey & Evans (2001)	VC244	Robertson	130	17.1	TGM	AIO	17450	60	6550	10900	12770	96	73
•	VC244 VC275		130	30.0	TGM	AIO	14810	50	6450	8360	9430	60	126
Pudsey & Evans (2001)		Robertson											
Pudsey et al. (2006)	VC238	Robertson	132	11.3	GM	AIO	16700	120	6000	10700	12570	250	523
Pudsey & Evans (2001)	VC236	Robertson	133	16.1	TGM	AIO	15660	50	6030	9630	11010	114	214
Pudsey et al. (2006)	VC243	Robertson	134	15.2	GM	AIO	12450	40	6000	6450	7370	82	168

Pudsey et al. (2006)	VC237	Robertson	135	13.9	GM	AIO	15330	80	6000	9330	10630	197	393
Pudsey et al. (2006)	VC277	Robertson	136	27.1	GM	AIO	17714	96	6000	11714	13550	163	313
Pudsey et al. (2006)	VC276	Robertson	137	22.6	GM	AIO	18006	98	6000	12006	13840	196	432
Yoon et al.(2002)	GC-03	Smith	138	88.9	TGM	AIO	14210	90	3000	11210	13080	127	251
Heroy & Anderson (2007)	PC-20	Smith	139	64.2	TGM	F(b)	10870	270	1300	9570	10930	354	772
Heroy & Anderson (2007)	PC-22	Smith	140	93.2	TGM	F(m)	15680	200	1300	14380	<u>17490</u>	298	538
Nishimura et al. (1999)	GC1705	Smith	141	68.4	TGM	AIO	16110	60	3000	13110	15880	389	645
Heroy & Anderson (2007)	PC-04	Vega	142	80.5	TGM	AIO	21170	140	6000	15170	18300	104	314
Heroy & Anderson (2007)	PC-05	Vega	143	87.4	IT	F(b)	11121	67	1300	9821	11240	161	416
Heroy & Anderson (2007)	PC-06	Vega	144	90.2	TGM	F(m)	16340	120	1300	15040	<u>18260</u>	157	364
Anderson et al. (2002)	NBP9902-23	Wrigley Gulf	145	44.1	GM	Bryozoan	13873	86	1300	12573	<u>14710</u>	312	553
Anderson et al. (2002)	NBP9902-22	WrigleyGulf	146	44.1	GM	Shell	13576	74	1300	12276	14250	284	547
Anderson et al. (2002)	NBP9902-26	Wrigley Gulf	147	4.8	GM	Shell	14194	82	1300	12894	16750	141	365
Domack et al. (1989)	4	Adelie Bank	148	N/A	Sand	Benthics	14260	140	1300	12960	<u>15630</u>	416	800

Table 5: Mean retreat rates of palaeo-ice stream grounding lines.

Palaeo-ice stream	Mean retreat rate along the whole trough (Range in mean retreat rates)	Deglaciation chronology (and reference)	Reference for retreat rate
Anvers Trough	~24 m yr ⁻¹ (7-54 m yr ⁻¹)	Carbonate and AIO ¹⁴ C dates (Pudsey et al. 1994; Nishimura et al. 1999; Heroy & Anderson 2007)	This paper
Belgica Trough	~15 m yr ⁻¹ (7-55 m yr ⁻¹)	AIO ¹⁴ C dates (Hillenbrand et al., 2010a)	This paper (Hillenbrand et al., 2010a)
Drygalski Basin	~76 m yr ⁻¹ (23-317 m yr ⁻¹) ~50 m yr ⁻¹ to Ross Island ~140 m yr ⁻¹ to current grounding line position from Ross Island	Carbonate and AIO ¹⁴ C dates (Licht et al. 1996; Frignani et al. 1998; Domack et al. 1999; Finocchiaro et al. 2007; McKay et al. 2008)	This paper Shipp et al. (1999)
Getz-Dotson Trough	(18-70 m yr ⁻¹)	Carbonate and AIO ¹⁴ C dates, palaeomagntic intensity dating (Hillenbrand et al. 2010b; Smith et al. in press)	Smith et al. (in press)
JOIDES Basin	(40-100 m yr ⁻¹)	Annual De Geer moraine	Shipp et al. (2002)
Marguerite Trough	~80 m yr ⁻¹ (36-150 m yr ⁻¹)	Carbonate and AIO ¹⁴ C dates (Harden et al. 1992; Pope & Anderson 1992; Ó Cofaigh et al. 2005b; Heroy & Anderson 2007; Kilfeather et al. 2010)	This paper

Table 6: Inferred retreat styles of Antarctic marine palaeo-ice streams since the LGM based on available geomorphic and chronological evidence.

Mode of Retreat	Palaeo-ice stream	Evidence	Defining characteristics of palaeo-ice stream
Rapid	[3/4] Central Bransfield Basin (Laclavere & Mott Snowfield)	Lineations that are not overprinted by GZWs or moraines (Canals et al. 2002).	Small troughs and drainage basin area. Normal slope and well defined, deeply incised U-shaped troughs and shallow banks.
	[7] Biscoe Trough	Lineations that are not overprinted by GZWs or moraine (Amblas et al. 2006).	Small glacial system, shallow outer trough.
	[10] Marguerite Trough	Dates suggest a catastrophic retreat (over a distance of >140 km) from the outer shelf followed by a pause and then further rapid retreat (Ó Cofaigh et al. 2005b; Kilfeather et al. 2010). The outer shelf is characterised by pristine MSGL. Mean retreat rates are ~80 m yr ⁻¹ , although during rapid collapse of the outer and inner shelf they must have been significantly greater (i.e. within the error of the radiocarbon dates).	Deep, rugged inner shelf with well-developed meltwater network; drainage area: 10,000-100,000 km ² .
	[16] Sulzberger Bay Trough	Erosional grooves that are not overprinted. Thin deglacial sediment.	Small trough and drainage basin. Steep reverse slope.
Episodic (fast then slow)	[34] Robertson Trough	Inner and mid-shelf – lineations overprinted by GZWs (up to 20 m thick). 3-4 m of deglacial sediment and pelletized facies. Four generations of cross-cutting lineations on the outer shelf.	Large, shallow and wide outer trough which splits into a series of tributary troughs on the inner-shelf.
Episodic (slow then fast)	[1] Gerlache-Boyd Strait	Thick layer of deglacial sediment (7-60 m) on the outer shelf. Thick morainal wedge south of sill at end of Gerlache Strait. <2 m deglacial sediment in the bedrock scoured inner shelf.	Narrow inner shelf trough with large changes in relief. Small drainage basin.
	[13] Pine Island Trough	Five GZWs on mid and outer shelf associated with changes in subglacial bed gradient (Graham et al. 2010). The inner shelf is dominated by bedrock with a thin carapace (<2.5 m) of deglacial sediment.	Drainage area ~330,000 km². Rugged, bedrock dominated inner shelf with a major meltwater drainage network.
	[14] Getz-Dotson Trough	Deglacial dates suggest that initial retreat from the outer to the mid shelf was extremely slow (about 18 m yr ⁻¹). Further retreat back into the three tributary troughs was characterised by faster rates of retreat (54 m yr ⁻¹ on average & up to 70 m yr ⁻¹).	Small tributary troughs with very deep inner basins and a high reverse slope.
	[17] Drygalski Basin	Dates suggest a mean retreat rate of 76 m yr ⁻¹ (based on dates from McKay et al. (2008)). Similar calculations by Shipp et al. (1999) gave a retreat rate of ~50 m yr ⁻¹ . Further rates of retreat to the current grounding line position (900 km further inshore) may have been considerably faster 89-140 m yr ⁻¹ , whilst grounding line retreat from Drygalski Ice Tongue to Ross Island was also thought to be rapid (317 m yr ⁻¹). Large GZW on the outer shelf and MSGL preserved along entire length of mapped trough (Shipp et al. 1999).	Long, narrow trough with shallow banks. Fed by ice from East Antarctica and floored predominantly by unconsolidated strata.
Episodic	[2] Lafond Trough	Three morainal ridges on the mid-shelf (Bentley & Anderson, 1998).	Small trough and drainage basin area. Normal slope and well defined, deeply incised U-shaped trough and shallow banks.

	[19] Central Ross Sea	One GZW on inner shelf (25 m) & one on outer shelf (50 m). Series of back-stepping ridges on outer shelf (Shipp et al. 1999).	Narrow trough.
	[20] Central Ross Sea	One GZW on inner shelf (c. 50 m thick), one on mid-shelf (40 m) & two on outer shelf (50 m & 70 m).	Large trough with deep banks.
	[21] Eastern Ross Sea	Three GZWs on inner (50 m), mid & outer shelves (180 m). Some moraine ridges.	Large trough with deep banks. Predominantly unconsolidated strata.
	[22] Eastern Ross Sea	Two GZWs on inner shelf (both 100 m); one on outer shelf (50-100 m).	Large trough with deep banks. Predominantly unconsolidated strata.
	[23] Mertz Trough	Up to 7 m of deglacial sediment and two prominent GZWs on the outer shelf (up to 80 m high).	Broad (50-100 km) trough.
	[28] Prydz Channel	Multiple GZWs and small transverse ridges on the mid and inner shelf (O'Brien et al. 1999). >3 m of deglacial and sub-ice shelf sediments (Domack et al. 1998).	Convergent flow with Amery palaeo-ice stream, which has a large drainage basin (currently drains ~20% of ice from East Antarctica) and deep inner shelf (>1,000 m). Ice only reached mid-shelf at LGM.
Slow	[8] Anvers-Hugo Island Trough	Very slow retreat, with mean retreat rates on the outer and mid-shelf of 2-15 m yr ⁻¹ . However, the inner-most shelf was subject to slightly faster rates (~47 m yr ⁻¹), with Gerlache Strait ice free by ~8.4 cal. ka BP. GZW and up to 12 m of deglacial sediment on the outer shelf is consistent with a slow overall rate of retreat (Larter & Vanneste, 1995; Vanneste & Larter, 1995).	Small trough with a very deep inner basin (Palmers Deep: >1400 m). Mid shelf high at ~300 m. Three tributaries.
	[12] Belgica Trough	Mean retreat rate of 7-55 m yr ⁻¹ , with the outer shelf deglaciating slightly faster (~23 m yr ⁻¹) than the inner shelf (Hillenbrand et al. 2010). Multiple small GZWs on the inner shelf. The outer shelf is heavily iceberg scoured so the geomorphic evidence is limited.	Large glacial trough, with drainage area of >200,000 km ² . Seaward dipping middle-outer shelf profile (angle: ~0.08°). Primarily composed of unconsolidated strata.
	[18] JOIDES-Central Basin	GZWs (3-80 m high) & corrugation moraine (De Geer?). De Geer moraine suggests a retreat rate of 40-100 m yr ⁻¹ (Shipp et al. 2002).	Long, quite narrow trough with shallow banks. Nourished by ice from East Antarctica (drainage area: >1.8 million km ² . Predominantly unconsolidated strata.