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Abstract

The effect of the structure of identified nonlinear polynomial models on the
dynamical behaviour of suﬁh models is investigated. In particular, the effects of the
sampling rate, the number of process terms and the order of the models is studied
and input design is also considered. Bifurcation diagrams and Poincaré sections are
used to assess global and local dynamical behaviour of the identified models which
were estimated fromn data gonera.tpd_‘bl_y the Duffing-Ueda equation. In several of the
examples which are provided to illustrate the main points of the paper, the identified
models are compared to the original system over a wide range of parameter values
for which the Duffing-Ueda equation exhibits regular oscillations, period-doubling

cascades, pitchfork bifurcations and chaos.

1 Introduction

Although most real systems are nonlinear, the classical approach to system identification
has been to use linear models defined at specific operating points. Models obtained
in this way are of limited utility because they fail to reproduce dynamical phenomena
caused by nonlinearities such as limit cycles, bifurcations and chaos. Furthermore, in the
case of nonlinear oscillations it is difficult to define an operating point around which the

nonlinearities of the system may be safely neglected.
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The necessity of identifying accurate nonlinear models has encouraged the develop-
ment of techniques which are appropriate for this purpose. The NARMAX (nonlinear
autoregressive moving average model with exogenous inputs) provides a basis for such a
development (Billings and Leontaritis 1981, Leontaritis and Billings 1985). One of the
main advantages of this technique is that if a polynomial expansion of the NARMAX
model is chosen, such a model becomes linear-in-the parameters and various well known

numerical techniques can be used to estimate the parameters.

The number of possible terms for a typical nonlinear polynomial of limited dynamical )

order and nonlinearity is enormous in most practical situations. Thus one of the major
difficulties in the identification of nonlinear systems is how to choose the terms which are
more relevant and which will capture the underlying dynamics adequately. Fortunately,
st;mé algorithms are currently available which select the terms that should be included in
a nonlinear model (Billings et al. 1988, 1989, Haber and Unbehauen 1990)./

Most term selecting procedures sort all the candidate terms in order of importance
according to some particular criterion. This provides an answer to the question of which
are the most important terms but does not indicate how many terms should be included.
Kortmann and Unbehauen (1988) suggested an iterative procedure which uses information
criteria to determine the number of statistically relevant terms in a nonlinear polynomial.

The availability of increasing computational resources and the appearance of model
structures which are very flexible, introduces the danger of including an excessive number
of terms in a model because simulations can be performed fast enough and, besides, ‘large
models seem to fit the data much better’.

It is generally accepted that overparametrization is to be avoided. In linear systems the
consequences of including an excessive number of terms in a model may lead to nonmini-
mal transfer functions and quasi-cancellation of poles and zeros. Although the dynamical
effects of overparametrization in linear systems does not seem to be very drastic, in non-
linear systems, however, such effects are not well documented and may significantly alter
the global and local dynamical behaviour of a model.

One of the purposes of this paper is to investigate the effects of overparametrization in
NARMAX polynomials on the dynamical behaviour of such models. Besides the number of

terms, other aspects are also considered such as the choice of the input, the sampling rate
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and the dynamical order of the model. The relationship between these parameters and the

effect of these on the dynamical behaviour of the identified models is investigated using
the Duffing-Ueda equation. Over the parameter range considered, this equation exhibits
a wiae variety of dynamical regimes, namely period-one and period-three oscillations,
period-doubling cascades, pitchfork bifurcations and chaos.

To assess the quality and dynamical properties of the estimated models, bifurcation
diagrams and Poincaré sections of the chaotic attractors will be used. These tools are
extremely useful in establishing the relationship among several of the parameters which
characterize the structure of a nonlinear polynomial model.

The paper is organised as follows: the next section reviews some techniques for the
identification of NARMAX models. In §3 input design is considered. Section 4 investigates
the relationship between the sampling rate, the number of terms and the order of a
model. Further insight into this relationship can be gained by comparing estimated models
to discretised counterparts, this is done in §5. Section 6 deals with some aspects of

overparametrization. Finally, the main conclusions are summarised in §7.

2 System Identification

In this section the main ideas concerning system identification are reviewed and references
are provided for further reading. The techniques to be reviewed have been developed over
the last ten years and currently compose a well established procedure for the identification

of nonlinear systems (Billings and Chen 1989).

2.1 System representation

One of the most popular structures for linear models is the so-called autoregressive model
with exogenous inputs (ARX)
ny Ty
y(t)==>a;y(t—1i) + > b u(t—1) (1)
i=1 i=1
where {a;};%, € R and {4}, € R are the coefficients of the model, y(t) € R™ and
u(t) € R™ are the output and input vectors, respectively. In what follows only the

monovariable (no = ni = 1) case is reviewed. The multivariable case is well documented
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in the literature (Séderstrom and Stoica 1989) and details of the multivariable nonlinear
case can be found in (Billings et al. 1989).

In the context of system identification and parameter estimation noise terms are usu-
ally required in order to produce unbiased estimates. This gives rise to the following
difference equation

Ty Ty Tle
y(t) == a:iy(t—1) + dobiu(t—1) + Socie(t—1) + e(t) (2)
=1 =1 =1
where {ci}%<; € R and e(t) € R. This model is often referred to as an autoregressive

moving average model with exogenous inputs (ARMAX). Many parameter estimation

'algorithms for linear systems have been developed based on this model (Sédertrom and

Stoica 1989). Similar representations can be derived if the system 1s nonlinear. Thus the

nonlinear autoregressive model with exogenous inputs (NARX) is represented as
y(t) = [y(t B 1)’- cay(t— ny),u(t = O Y 5 yu(t — d—ny+ 1)] (3)

where the delay d€ Z™ has been included and F*[] is some nonlinear function of y(t) and
u(t) with degree of nonlinearity £€ Z*. Note that if /=1 the resulting model is linear.

Leontaritis and Billings (1985a and b) have rigorously proved that a nonlinear discrete
system can always be represented as a NARX model around an equilibrium point if 1) the
response function of the system is finitely realizable and if ii) a linearized model of the
system exists around the equilibrium point.

As for the linear case, in parameter estimation problems noise terms are usually re-
quired to avoid bias in the parameters, thus the nonlinear autoregressive moving average

model with exogenous inputs (NARMAX) (Billings and Leontaritis 1981) is considered

y(t) = F{y(t = 1),...,y(t —ny) u(t —d), ... ,u(t—d—nu+1)et),...
) e(t - TL,) ] (4)
where e(t) accounts for uncertainties, possible noise, unmodelled dynamics, etc.

Clearly, many options are possible for F¢[]. In this work F‘[-] is assumed to be

a polynomial function of y(t), u(t) and e(t). For a theoretical justification for using

polynomial NARMAX models see (Chen and Billings 1989).
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2.2 Parameter estimation

Equation (4) can be expressed in polynomial form as

[29 y(t —1) +Z€n¥+, t——z)+228,,yt—z (t—17)

=1 =1 =1 j5=1

Ty Ty
+ Zzgi,nyﬂ y(t—u(t—7) + Zzgng‘+3ny+J u(t —)u(t — j)

=1 3=1 1=17=1
+ higher order terms up to degree £ ]

Ty TNe _
+ [Zzei.ﬂ,jy(t_z t"] T 22601n+3 t—t)e(t_])
1=1 7=0 1=1 =0

Ty Ty  Te

SN S Baga ult —d)ult — 5)e(t — k)

=1 3=1 k=0

all possible combinations of y(t), u(t) and e(t) up to degree £ ]

[Zeae(t—z izzau t-’l (£ —7)

1=0 1=0 j=0

-+

+ + o+

higher order terms up to degree £ | (5)

which can be rewritten as
y(t) . @z‘.‘u(t - 1)91"“ T ‘I‘yTuc(t)gyue £ \I,E‘(t)ee (6)

where the superscript T denotes transposition and \IJ .(t — 1) includes all the output

and input terms as well as all possible combinations up to degree £ and time t-1. The

parameters of such terms are in the vector #,,. The other entries are defined likewise.
Equation (6) is unsuitable for estiméting the pa.ra.rﬁeter vector 8 =[6,, 0,.. 6.] because

the terms e(t —1) 1 =0,1,...,n. are not known. To overcome this difficulty equation (6)

can be written in the predictor error (PE) form

9(t) = Vi (t— Dby + Vie(t = Dbiue + T7(t =10 + £(2) (7)
where £(t) is the residual at time ¢ and is defined as

§(t) = y(t) — 9(t) (8)

Finally, equation (7) can be expressed in the concise form




by
§(t) = [PRe-1) VTt —1) 9Tt -1)] | b | + €1
¢
i) = CT(t-1)8 + &) (9)

Billings and Voon (1984) have investigated three alternative algorithms to estimate

the parameter vector .

2.3 Orthogonal parameter estimation

One of the major difficulties in solving equation (9) is that such a set of equations is typi-
cally ill-conditioned, especially if the number of terms is large. To circumvent this problem
orthogonal techniques may be used (Billings et al. 1988, Korenberg and Paarmann 1991).
Consider a linear-in-the-parameters polynomial
ng
y(t) =360 pi(t) + &) (10)
=1
where the {p;}2, represent the different terms in the polynomial. It is noted that this
equation is analogous to equation (9).
As a first step, equation (10) is transformed into the following equivalent auxiliary

model
y(t) = zg wi(t) + €(t) BT

where the {g;}72, are constant coefficients and the {w;}?, are constructed to be orthog-

onal over the data records such that

where the over-bar indicates time averaging.

The second step consists in estimating the coefficients {g;}7%, and transform them

=1l
back to the system parameters {6;}*%,. The parameters of the auxiliary model can be

estimated by (Billings et al. 1988, 1989, Korenberg et al. 1988)

) Dwi(t)
gi_—_ﬂ.):tf_g_.). 321,2,...,716 (13)
wi(t)




provided that w?(t) # 0. The coefficients of the original equation can be obtained from

{gi}i2 according to the formula

=1
- ﬂ‘
Bmzzgivi m=1,...ng (14)
where
U =1
. | (15)
Yy = — 2y Ori Uy r=m+1,...,n4
wy t (1 i . p
aij=—%i(—)- = lieeni=E F=0.. 00 (16)
wi(t) AT

o . N
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2.4 Structure selection {j‘{‘w} - b

e
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Polynomial models have-a-simple s‘tru:et:ure}]laic;_\f_iidqfa._.clo_s_ed form for the model and can

v

be used to represent a large class of nonlinear systems. Moreover, it has been said that
polynomial models Vl;avéréo.od interpolation properties and that such models outperform
other mathematical representations (Casdagli 1989). ‘Polynomials are a good representa-
tion because the parameters can be linearly fit to miﬁimize least-squares deviations, and
because they arise naturally in Taylor expansions’ (Farmer and Sidorowich 1988). A clear
disadvantage however is the enormous number of terms a general nonlinear polynomial

may have. In particular, the number of terms in the NARMAX model of equation (5) is
given by

where

4
M = Zﬂ,.,;
=1

i (ny +ny+n.+1—1)
1

Ny =

ng =1 (18)

This illustrates how the number of terms in a polynomial grows very rapidly even for
relatively low values of £, Ty, N, and n.. Such an explosion of terms has been pointed

out by several authors as the major disadvantage in using polynomials as mathematical
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models for nonlinear dynamical systems (Farmer and Sidorowich 1988, Casdagli 1989,
Grassberger et al. 1991, Giona et al. 1991).

Nevertheless, effective and elegant solutions to handle this problem are available, see
(Billings et al. 1988) and the survey paper by Haber and Unbehauen (1990). One solution
is the error reduction ratio (ERR) test (Billings et al. 1988, 1989, Korenberg et al. 1988).
Consider the auxiliary model of equation (11). Multiplying this by itself and taking the
time average gives

y2(t) = D 9f wi(t) + £(t) (19)

=1

It is assumed that £(t) is a zero mean white sequence which is uncorrelated with the
input and output data records and that the orthogonal property of equation (12) holds.

The maximum mean squared prediction error is achieved when no terms are included
in the model, that is ny =0, and in this case equals yz_(t) Thus from equation (19) the
reduction in the mean squared error due to the inclusion of the ith term, g; wi(t), in the
auxiliary model of equation (11) is g7 w2(t). Expressing this reduction as a percentage of
the total mean squared error gives
g7 wi(t)

b = vi(t)

x 100 i=1,2,...,n (20)

The quantity [ERR)]; provides an indication of which terms to include in the model.
Two advantages of this approach are i) it does not require the estimation of a complete
model to determine the significance of a candidate term and its contribution to the output,
and ii) the ERR test is derived as a by-product of the orthogonal estimation algorithm.
For details see (Billings et al. 1988, 1989, Korenberg et al. 1988).

Other structure selection methods such as the stepwise regression algorithm and the log

determinant ratio test can be found in the literature (Billings and Voon 1986b, Leontaritis

and Billings 1988).

2.5 Model validation

Once a model is estimated it should be submitted to a number of tests which should check

if the model is adequate and, hopefully, will also provide a measure of goodness for the
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model. Billings and Voon (1983; 1986a) have introduced high-order correlation functions
to detect the presence of unmodelled terms in the residuals of discrete models. Thus if a

model of a system is adequate the following conditions should hold

Bee(r) = E[E(t—7)E()] = 6(0)

B.(r) = Efu(t—1)(t)] = 0, V7

{ Be(r) = B[(P(t—1)—u¥(t))E(t)] = 0, YT (21)
B op(r) = El(vP(t—1)—u?())E2(t)] = 0, vr

Been)(T) = El()é(t—-1-7hu(t—1-7)] =0, 720

where £(t) are the residuals defined in equation (8), u(t) is the input, the over-bar signifies
mean value and E|:| denotes mathematical expectation.

In what foliows the influence of the input and of the model structure on the quality of
the final model will be of concern. In order to better assess this information, bifurcation
diagra.fns and Poincaré sections will be used.

Bifurcation diagrams are well suited for validation purposes because they portray the
bifurcation pattern of a system and clearly indicate the variety of dynamical regimes
the model exhibits over the range of parameters being considered. Further, It has been
shown that such diagrams are more sensitive to certain model variations than other tools
developed for nonlinear dynamics such as Poincaré maps, Lyapunov exponents and fractal
dimensions (Aguirre and Billings 1993). For details concerning bifurcation diagrams and
Poincaré maps see (Hénon 1982, Guckenheimer and Holmes 1983, Parker and Chua 1989).

In order to facilitate the comparison of similar bifurcation diagrams, the following
quality index will be used

Ny

Jb = E(A._ — a,-)zw,- (22)

where A; € IR are the values of the control parameter A for which the system bifurcates.
The a;'s are defined likewise for the model being validated and w = [w; w; ... wy,] is 2
vector of weights which can be chosen to reflect the particular needs of the problem. In

this paper {w; f-\_if’l =1 and the summation is taken over all the (N,) bifurcation points of

interest.




2.6 The original nonlinear system

Conside; the well known Duffing-Ueda equation (Ueda 1980)
§+ky+y° =u(t) (23)

This equation was originally proposed as a model for nonlinear oscillators and has become
a bench test for the study of nonlinear dynamics. It has also been considered as a simple
paradigm for chaotic dynamics in electrical science (Moon 1987). One of the main reasons
for this is that in spite of being simple this model can produce a variety of dynamical
regimes.

To obtain the bifurcation diagrams and Poincaré sections shown in this paper, the

input was chosen to be of the form

u(t) = A cos(wt) (24)

where the maximum input amplitude A was used as the control parameter and the -

Poincaré sections correspond to the input at phase zero.

The bifurcation diagram shown in figure la was obtained by taking k=0.1, w=1rad/s

and simulating equation (23) digitally using a fourth-order Runge-Kutta algorithm with

an integration interval equal to 7 /3000 s. In the figure, the horizontal axis corresponds to

the control parameter. As can be seen, varying this parameter in the range 4.5< A <12
drives the system into a number of different dynamical regimes.

Beginning at A =~ 4.86 the system undergoes a period doubling (flip) bifurcation.
This happens again at A= 5.41 and characterizes the well known period doubling route
to chaos (Feigenbaum 1983). Another similar cascade begins at A = 9.67 preceding a
different chaotic regime. Two chaotic windows can be distinguished at approximately
5.55< A<5.82 and 9.94 < A<11.64. At A=6.61 the system undergoes a supercritical
pitchfork bifurcation and at A = 9.67 it undergoes a subecritical pitchfork bifurcation.
The bifurcation diagram begins and ends with period-1 regimes and displays period-3
dynamics for 5.82< A <9.67.

Figure 1b shows a Poincaré section of the attractor for A = 11. This figure clearly

reveals the fractal structure of the chaotic (strange) attractor obtained for this input.
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3 Input Design

The identification of non-autonomous systems includes choosing an appropriate input.
Optimal input design is not a simple task for linear systems and for nonlinear systems
the difficulties are considerably greater. Leontaritis and Billings (1987) have shown that
certa.in. inpﬁts which pe.rform very well for linear systems could lead to the loss of identi-
fiability for nonlinear systems.

Although there seems to be no definite rule for designing inputs for nonlinear system
identification, it is recognized that the input should fully excite the system nonlinear
characterisf,ics, or in other words, the input should be persistently exciting. In particular,
independent gaussian and uniformly distributed sequences have been suggested (Leon-
taritis and Billings 1987). Haynes (1989) has suggested the use of composite inputs which
can be obtained by superimposing a deterministic signal (usually a square wave) and a
gaussian random variable of zero mean and variance ¢°.

In this section the influence of the input on estimated models will be investigated.

Bifurcation diagrams will be used to assess the quality of the models estimated using the -

techniques reviewed in section 2.

3.1 Sinusoidal input

A characteristic feature of nonlinear systems is that energy may be transferred between
different frequencies. Thus although the input may have frequencies over a limited range,
the output could display a wide spectrum. This is particularly true for non-autonomous
chaotic systems where a single sinusoidal input can drive the system into chaos which
is characterized by a wide spectrum of frequencies. This means that an input with a
relatively poor frequency content may excite all the modes of interest and consequently
be considered persistently exciting in nonlinear applications.

For the Duffing-Ueda equation, the input u;(t) = 5.8cos(t) drives the system into
chaos and so does the input us(t) = 1lcos(t). Figure 2 shows the input/output data for
uy(t) sampled at T, =7/60 s. These data were used to estimate a third-order NARMAX
model with cubic nonlinearities and eight process terms which were chosen among 83

candidate terms using the ERR test described in section 2.4.
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The bifurcation diagram and the Poincaré section of the attractor at A=11 are shown
in figures 3a and 3c, respectively. Despite the bifurcation diagram of the estimated model
being very accurate, J, =0.0124, the attractor is rather distorted.

Adding a zero-mean gaussian distributed noise with variance ¢*=10"° to the output
time series of figure 2, which has a variance of 3.4, a slightly different model was estimated
with the same dynamical order and with the same number of terms as before, although
some terms were different. The bifurcation diagram and Poincaré section for this model
are shown in figures 3b and 3d, respectively. Although the bifurcation behaviour has
slightly deteriorated, J, = 0.0158, the shape of the attractor at A =11 improved signif-
icantly. It should be noted that the bifurcation diagram conveys information about the
global dynamical behaviour of the system over a range of values of the control parameter
while the Poincaré section is a local portrait of the attractor for a fixed value of such a
parameter.

This example illustrates that i) even the presence of negligible noise in the data can
affect the performance of the structure selection algorithm, ii) the structure of the model
influences the dynamical behaviour, and iii) bifurcation diagrams and Poincaré sections
are useful in detecting this influence. It is noted that this information is not recognisable
from standard criteria such as predictions and the variance of residuals. Indeed, the
variance for the latter model was about 10° times the variance of the residuals produced

by the model with the distorted attractor.

3.2 Square wave plus gaussian sequence inputs

This type of input has been suggested by Haynes (1989) who has also shown that such
an input is more adequate than a pure gaussian sequence.

In the following example a square wave of amplitude +10 and frequency equal to
1 rad/s was superimposed to a gaussian-distributed random variable of zero mean and
variance o?=9.1. Each value of the random variable was maintained during three sam-
pling periods. This can be viewed as a rough presampling filtering of the input signal.
The output data were generated by digitally simulating the differential equation (23) us-

lng a fourth-order Runge-Kutta algorithm with integration interval equal to /3000 s.
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Subsequently these data were sampled at T,=7/30 s. The input/output data are shown
in figure 4. 7

Taking £ =3, ny =ny =3 and n. =20 several NARMAX polynomial models with
increasing number of terms were estimated. Bifurcation diagrams were computed for
each model. The bifurcation points are shown in figure 5. The horizontal axis indicates
the number of terms in the model. The vertical axis corresponds to the input amplitude.
The dashed lines represent the bifurcation points of the original system and have been
labelled B1 to B9 for convenience. Thus B1—B2—B3 is the first period-doubling cascade,
and so forth. In this diagram the observed bifurcation points of the identified models are
indicated by symbols which also appear at the right side of the figure for reference. Hence
bifurcation points corresponding to Bl are marked ‘o', those corresponding to B2 are
marked ‘4’ and so on. If a model does not exhibit a particular bifurcation for the range
of amplitudes considered, such a bifurcation point is omitted in the figure. On the other
hand, if a model has spurious bifurcations which are not present in the original bifurcation
diagram shown in figure 1, then an asterisk is placed at the bottom of the figure.

This figure shows that none of the estimated models exhibit all the nine bifurcations
and, in addition, most models present spurious dynamical regimes. Moreover, the bifur-

cation points which are reproduced by the estimated models are severely misplaced.

3.3 Square wave with increasing amplitude plus gaussian se-

quence input

This type of input is similar to the previous one, the main difference is that the amplitude
of the square wave in this case is gradually increased. In this example, the square wave
amplitude was varied in the range £0.5 to =13 and the gaussian component had variance
o2 =2.0. The amplitude limits of the square wave were chosen to span over the range of
values for which the control parameter was varied in the bifurcation diagrams.

The input/output data for this case are shown in figure 6 and the bifurcation structure
of the estimated models are presented in figure 7.

As can be seen, the input/output data of figure 6 has made possible the identification

of a family of models which are far better than those represented in figure 5.
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3.4 Discussion

For nonlinear systems, as opposed to linear systeme, the frequency contents of the output
and input signals may be totally different. Thus, a single frequency input may produce an

output with wide frequency content in some nonlinear systems. However, some difficulties

may arise in a practical situation when a single frequency input is used to excite a nonlinear

system. A certain input may not drive the system into chaos or any other regime for which '

the frequency spectrum of the output is wide enough Consequently such inputs would
notﬁ be persmtently exc1t1ng Moreover ‘ever if ‘the output is chaotic for a certain input,
persistent excitation cannot be guaranteed. For instance, the sinusoidal input u,(t) drives
the system into chaos but the output in this case has a rather poor frequency content.
This can be explained by noticing that the largest Lyapunov ezponent ! of this attractor
is smaller than the one for the attractor oi)taiped with the sinusoidal input u,(¢).

It is noted that the frequency spectra of the inputs shown in figures 5 and 7 are virtually

identical. Nonetheless the latter input produces results which are clearly better than

those obtained with the former input. It is interesting to note that the output in figure -

6 clearly displays a wider variety of dynamical regimes than the output in figure 4. This
illustrates that in designing an input for the identification of nonlinear systems amplitude
considerations have also to be taken into account. This contrasts with the approach
followed for linear systems where the frequency content of the input is of fundamental
importance as opposed to considerations regarding the amplitude. This is unsurprising
because linear systems do not transfer energy between two dxfferent frequenmes and 1n
rea.l a.pp11ca.t10ns the mput amphtude is usually requlred to be low in-order not to excite
the nonlinearities of the system undergoing experimentation.

For nonlinear systems, however, the requirements on the frequency content of the input
may be somewhat relaxed due to the ability of such systems to transfer energy between
different frequencies and actually create new frequencies at the output. On the other
hand, greater attention must be paid to the amplitude profile of the input as illustrated
in figures 5 and 7.

'Lyapunov exponents measure the average divergence of nearby trajectories along certain directions
in state space (Wolf 19086). As the largest Lyapunov exponent is increased the more chaotic the attractor

becomes and as a consequence the output signal will have a richer frequency content.
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In what follows the noise-free input/output data shown i figure 6 will be employed

using different sampling rates.

4 Influence of Model Structure

The influence of the model structure on the quality of the identified models is investigated
in this section. In particular, three aspects of the model structure will be of concern,
namely the sampling period, T, the total number of process terms in the model, n,, and
the maximum lag considered for the process model, n,. It is assumed that the structure of
the noise model is adequate and thus the process model is unbiased. This can be readily
verified in practice by applying the correlation tests of equation (21). For the sake of
simplicity it is further assumed that n, =n,.

In order to investigate how T}, n, and n, =n, influence the dynamical properties of the
estimated models, these parameters were varied within limited ranges and for each com-
bination a model was identified using the techniques reviewed in section 2. Three values
for T, were considered, namely 7/30, 7/60 and 7/100 s. The other two parameters were
varied over the ranges 2 <n, <6 and 4 <n, <14. Subsequently, for each identified model
a bifurcation diagram was obtained and the bifurcation quality index of equation (22)

was also computed. The best models for T, = 7 /30, /60 and 7/100 s respectively are

y(t) = 2.0503y(t — 1) — 1.1103y(¢ — 2) + 0.056964y(¢t — 3)
+ 0.29799 x 107 %y(t — 4) + 0.48803 x 107 %y(t — 1)y(t — 2)y(t — 4)
— 0.21922 x 107 y(z — 1)® 4 0.73520 x 10~ 2u(t — 2)
+ 0.26938 x 107 2u(t — 1) + 0.23293 x 107 y(t — 1)%y(¢t — 2)
— 0.031055y(t — 1)y(t — 2)y(t — 3) + 0.022597y(t — 1)y(t — 3)?

— 0.79855 x 107 %y(t — 1)y(t — 3)y(t —4) + 0.12640 x 10~3u(t — 3) (25)

y(t) = 2.1579y(t — 1) — 1.3203y(t — 2) + 0.16239y(t — 3)
+ 0.22480 x 1073y(t — 3)* — 0.48196 x 107 2y(t — 1)
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4+ 0.19463 x 107 2u(t — 2) + 0.34160 x 10™%u(t — 1)
0.35230 x 10™%y(t — 1)*y(t — 2)

— 0.12162 x 107%y(t — 1)y(t — 2)y(t = 3) (26)

y(t) = 1.9969y(t — 1) — 0.99697y(t — 2) — 0.98014 x 10™°y(t — 1)
+ 0.97769 x 107%u(t — 2) - (27)

As can be seen, for the model of equation (25), n, =13, n, =n, =4, for the model of
equation (26), n, =9, n, =n, =3 and for the model of equation (27), n, =4, ny =n.=2.
The bifurcation quality index for these models were respectively 0.023, 0.012 and 0.180.

Nearly seventy models were estimated corresponding to several combinations of the
maximum lag n,, the number of process model terms n, and the sampling period T;. It
should be noted that the model of equation (25) was the only model estimated from data
sampled at T, =7/30 s which had a complete bifurcation diagram in the sense that the
model exhibited all of the bifurcation points of the original model and had no spurious
bifurcations although a chaotic window is beginning to develop for 8.65 < A <8.95. This
spurious regime will be fully established as the number of terms in the model increases.
This phenomenon will be discussed in section 5.

The model of equation (27) was the only model identified from data sariipled at
T.=m/100 s. After including the fourth term, the structure selection algorithm reached
the limit 5" ERR; = 1 and therefore stopped the term-selection procedure.

Twenty nine models were estimated from the data sampled at T = 7 /60 s. Fifteen
of these models had complete and non-spurious bifurcation diagrams. Thus these results
favour the use of sampling periods around Ts=7/60 s for identification purposes.

In figure 8 n, = n, and n, are plotted against T, for the models of equations (25)-
(27). This figure reveals that, for the systems and inputs considered in the present study,
as the sampling time is increased the best models tend to have more terms and require
extra degrees of freedom to adequately capture the underlying dynamics. Similar tenden-
cies have also been verified for inaccurate models with comparable bifurcation patterns.

To illustrate this point, consider the bifurcation diagrams of the models obtained with
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T,=7/30s, ny=n,=3, np=11 and T,=7/60 s, n,=n,=3, n,=T which are shown iﬁ
figures 9a and 9b, respectively. Clearly the overall bifurcation behaviour is very similar”
but the model estimated from the data which has been sampled faster has fewer terms.

Since the models of equations (25)-(27) have comparable bifurcation behaviours and
from the analysis of figure 8, it seems appropriate to infer that the loss of accuracy due
to slower sampling may, to some extent, be compensated by an increase in the number of
terms in the model, n,, and/or by an increase in the maximum lags considered, ny =n,,
which is the number of degrees of freedom of the model. It is noted that in practice the
increase in n, = n, usually implies a larger number of terms in models of comparable
performance.

It is worth pointing out that these results may also be interpreted from another point
of view. Hence it also seems appropriate to conclude that if the data are deliberately
oversampled the complexity of the estimated models may be somewhat reduced. However,
if the data are sampled too fast, successive measurements tend to be highly correlated
and a number of practical problems arise such as ill-conditioning and lack of sufficient
computational resorces for recording and processing the data.

Analogous ideas have been described in the study of the relationship among the sam-
pling time, the number of degrees of freedom and an information redundancy function of
attracting sets (Fraser 1989). In this reference it has been reported that a certain char-
acteristic (the redundancy function) of a strange attractor may be increased (decreased)
in two different and independent ways, namely 1) by decreasing (increasing) the sampling
period, or ii) by increasing (decreasing) the embedding dimension ? which is analogous to

the maximum lag n,.

2Consider a time series z(t), t € Z¥. The vector xm(t)=[z(t) z(t = 1) ... z(t = m—1)]T can be
represented as a point in an IR™ pseudo-state-space where m is the embedding dimension. The sequence
Xm(t) Xm(t — 1) ... 1is a reconstruction of z(t) in such a space. It has been proved that if m>2n+1
qualitative and quantitative dynamical properties of the nth-order system which generated z(t) can be

recovered from the reconstructed sequence (Packard et al. 1980, Takens 1981)
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5 Estimated and discretised models

Discrete models estimated from sampled. input/output data of continuous systems are
obviously approximate representations of the original system. Roughly, there are two
rﬁé.in sources of errors involved in the identification. Firstly, a discrete model is being
fitted to data which was generated by a system which, in principle, is continuous in time.
Secondly, the estimated model is obtained from a finite amount of finite precision data
and with no a priori knowledge of the parameters Ty, np, ny = n,, best input type, etc.

% s |

which influence the results. S OSDnt D 2 ser g S ansi BV B
obtained from the original equation by analytical discretisation. In this case the first
source of errors is eliminated since discrete models are compared to discrete models with
identical sampling periods. The implicit Euler or backward difference approximation de-
fined as

: . k) —y(k-1 :
y(k)=gl,‘£“uy( ) ;( ) s %

(28)

can be used to obtain discretised modelé direlctly from equation (23).

Figures 10a, 10c and 10e are the bifurcation diagrams of the discretised models with
T.=7/100, T,=7/60 and T, =7 /30 s. Figures 10b, 10d and 10f correspond to the models
estimated from data sampled also at such rates, see equations (27), (26) and (25). Figures
10g, 101, 10k and 10h, 10j and 10! are the respective Poincaré sections.

From these figures it is clear that the increase in T, tends to deteriorate the dynamics of
the discretised models, as would be expected from equation (28) and that such degradation
is best revealed by the Poincaré sections. Increasing T, also has the effect of shifting the
bifurcation points to the left. Thus the discretised models with larger T, will tend to
bifurcate at lower values of the control parameter A.

On the other hand, the identification procedure tends to compensate for the increase in
T, by including more terms in the model and reestimating the parameters. Consequently
the estimated models are less sensitive to variations in T than the discretised counterparts
(this can be better appreciated by comparing the Poincaré sections). This indicates

that different criteria should be used to chose suitable values for T, in identification and
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discretization applications. Furthermore, classical tools such as predictions, correlation
functions, variance of residuals, power spectra, etc. are rather insensitive to variations of
T, (Aguirre and Billings 1992).

Figure 11 summarizes many features of figures 10a-1. For each model in the latter
figures a quality index was calculated taking into account both the bifurcation diagram
structure and the shape of the strange attractor for A = 11. Models discretised with
T,=/300 and T;=7/15 s have also been included in figure 11.

This figure illustrates that over a certain range of values of T, the estimated models
are more accurate than the discrete counterparts. Such an improvement is achieved due
to the additional flexibility attained by incorporating some more terms and reestimating
the parameters.

Nevertheless, tl_l_ere are lower and upper bounds on 7 beyond which the discretised
models are always better than tiue estimated ones. Thus if T is decreased beyond the

P e

lower bound the discretised models will gradually tend to the continuous system since the

a.;:;f;;ci}ﬁgfiﬁﬁ in equation (28) becomes more accurate as T; — 0. Besides, for oversam-
ﬁled data a number of numerical problems may arise in the parameter estimation.

An example of this is the model estimated from data sampled at T, =7 /100 s. Due
to numerical problems only four terms were included. Deterioration in the bifurcation
diagram can be verified by noticing that the chaotic window at A= 5.8 is much narrower
than the original one, compare figures 10a-b.

On the other hand, if T, 1s irncr,ea_sgd_beyond the upper bound, because of the sam-
pling theorem, the ofiginal frequency content and consequently the information in the
data about the originaﬂ dynamics is lost and therefore cannot be retrieved by the esti-
mation algorithm. In th.i-s caéé the estimated models will also tend to be worse than the

discretised counterparts. It is noted that none of the models estimated from data sampled

at Ty;=7/15 s had complete bifurcation diagrams.

6 Model Overparametrization

A major difficulty in the identification of nonlinear systems is the huge number of terms

and parameters required to model relatively simple nonlinearities. This is the chief dis-
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advantage of classical methods. For instance, the identification via Wiener’'s method of
a simple system containing a second-order nonlinearity would require the evaluation of,
typically, 10'° coefficients (Billings 1980). Even for polynomials the number of terms may
become impractically large even for moderate values of ¢, n,, n, and n., see equation (18).

The structure selection algorithm described briefly in §2.4 and many other algorithms
available in the literature aim at enabling the experimentalist to choose systematically
the terms which are more important and therefore estimate parsimonious models.

Unfortunately, there is a tendency to allow more terms than necessary in a model.
Possible reasons for this are i) inability to adequately choose the truly important terms,
ii) some structure selection algorithms may be too time-consuming, ii1) the variance of the
residuals usually decreases monotonically as the number of terms in a model is gradually
increased, iv) large models are more flexible and consequently tend to fit the estimation
data better. It should be noted that flexible models which fit the data better do not
necessarily capture the underlying dynamics appropriately. Consequently items iii and iv
are misleading and may well be dangerous.

Recently, alternative model structures have been investigated such as neural networks
and radial basis functions. Such models are typically very flexible and this usually enables
a very good fit to the data. However, these models can become too complex very easily
and therefore the reasons listed above are likely to be verified in such cases.

This section investigates the consequences of overparametrization in NARMAX poly-

nomial models. It is believed that the conclusions also apply to different model structures.

6.1 Minimum and maximum number of terms

The minimum number of terms which should be included in a model can be roughly
thought of as the minimum number of terms required such that the estimated model passes
some validity test. In other words the minimum number of terms is directly associated
with the size of the simplest valid model.

In practice, this number can be found by gradually allowing extra terms in a model
and verifying if the final model is valid or not using, for instance, the correlation tests of

equation (21). Such terms could be selected based on a criterion such as ERR described
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in §2.4 When the estimated model is nonlinear, it is usually difficult to determine the best
size for a model and more terms than strictly necessary are often included.

If the data were generated by a discrete map, the number of terms and the order of
such a system would determine the ‘correct’ structure of the model to be identified. How-
ever in practice the data usually proceed from continuous systems whose mathematical
representations are unknown. Thus it seems that no maximum number of terms can be
confidently assumed a priori. What is clear however is that such a number depends on the
sampling period (note that this only applies for data generated by continuous systems).

In order to further investigate this point, consider the family of models estimated from
data similar to those of figure 6. The only difference is that in this case the data were
sampled at T, =7 /60 s. Fixing the maximum lags allowed as n, = n,=3, a number of
models with different numbers of terms were estimated from the data. The bifurcation
points of these models are shown in figure 12.

Comparing figures 7 and 12 reveals that T; =7 /60 s is a better choice for the sampling
period in this example. A clear difference between these figures is that all of the models
represented in figure 12 exhibit all the bifurcation points.

It is worth pointing out that the models with six, seven, twelve, thirteen and fourteen
terms have spurious bifurcation points, see asterisks at the bottom line of figure 12.
The evident displacement of the bifurcation points of the models with six and seven
terms would certainly prevent such models from being considered adequate. By contrast,
the models with twelve, thirteen and fourteen terms exhibit very accurate bifuraction
behaviour but such models also present spurious or ghost bifurcations which indicate
dynamical regimes which are qualitatively different from the original system.

Based on figure 12 it is clear that for the chosen values of T, and the maximum lag
ny=n,, the minimum and maximum number of terms are eight and eleven, respectively.
This figure illustrates that a model which is unnecessarily complex may induce spurious
dynamical regimes and this has important implications for model structure selection.

Figure 13 shows the bifurcation quality index, J,, of the models identified from the
same data as the models of figure 12 for different values of maximum lag n, = n, and
total number of process model terms n,. It is noted that only models with complete and

non-spurious bifurcation diagrams were considered in this figure.
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This reveals that i) fixing the order of the system, n, = n,, there is an optimum
number of terms beyond which the bifurcation diagram begins to deteriorate, and ii)
there seems to be an optimum value for n, = n, beyond which the bifurcation diagram
also deteriorates.

Figures 12 and 13 indicate that there is a minimum number of terms to be included in
the model in order to be able to capture the system dynamics, that there is a maximum
number of terms beyond which spurious dynamical regimes are induced in the model and

3 number of terms.

that in between these limits lies an optimum

Figures 14a—c and 15a-c show the bifurcation diagrams and Poincaré sections of the
models estimated with T, =7/30 s, ny, =n, =4, n, =14 and T, =7/60 s, ny =n, =3,
n, =14, respectively. In the bifurcation diagram of figure 14a, spurious supercritical and
subcritical flip bifurcations occur at A=~ 7.2 and A = 7.6, respectively. Furthermore, a
spurious chaotic window is observed at approximately 8.65 < A < 8.95. Figure 14c shows
the Poincaré section of the attractor at A=8.85. This clearly reveals that a well developed
spurious chaotic regime has been induced as a consequence of overparametrization. It
should be noted that this chaotic regime has been observed for all of the estimated models
with T, =7/30 s, n, =n, =4 and 14 <n, <17. The spurious flip bifurcations have been
observed for models with n,=12, 14 and 15.

A similar situation has also been verified for models estimated from data sampled at
T,=7/60 s. The respective diagrams are presented in figures 15a-c.

Figures 14 and 15 also illustrate that the Poincaré section of the attractor at A=11
is rather insensitive to overparametrization. Thus although the extra terms included in
these models have induced spurious bifurcations many of the original dynamical regimes
remain very much the same. In other words, the behaviour of the identified model can
be quite different to the behaviour of the underlying system. This highlights the need for
a thorough and systematic validation procedure. In spite of this, validation is sometimes
based solely on how well a model predicts over a different set of data, see for example

Pottmann et al. (1993), Masri et al. (1993) and most papers which use neural networks

3This is not a mathematical assertion but rather an observation inferred from figures 12 and 13 where
the optimum is in terms of the quality index, Jy, defined in equation (22). This optimum is related to

ERR, thus the use of different criteria to select the terms may lead to different optima.
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to model systems. But prédictive model performance does not give any indication about
how adequate the structuﬁe of the identified model is. An additional validation step
would be to check for correlation in the residuals via the set of equations (21). These
tests indicate if the minimum number of terms has been included in order to guarantee
unbiased estimates but do not reveal if a model is overparameterised or not.

The best way to use such tests therefore is to increase the model complexity untill the
tests are satisfied. But even then some mechanism for deciding the order in which terms
are added to the model is required. Structure detection, or the selection and inclusion of
only significant model terms can therefore be critically important when estimating any
form of model for nonlinear systems. Bifurcation diagrams and Poincaré sections, which
give detailed information concerning local and global dynamical behaviour, are well suited
for validation (Aguirre and Billigns 1993). These two methods are very valuable when
used as tools to measure the quality and sensitivity of model estimation procedures with

respect to all the factors which influence the estimated model.

6.2 True identification versus data fitting

The parameters in a NARMAX model are estimated by minimizing, see equation (9),
Jo=[l y(t)— 2Tt -1)8 | (29)

where the || - || is the Euclidean norm.

Intuitively, the more terms included in a model, the more ‘flexible’ such a model will
be and a better fit to the estimation data will also be possible. This is particularly true
in nonlinear applications because the nonlinearities in the data will require a greater
flexibility from the models to adjust to the records. This is performed by minimizing
J, over the estimation data set. Implicit in this process is the hope that a model which
fits the data well will also capture the underlying dynamics of the true system in some
appropriate manner.

Increasing the number of terms in a polynomial model enhances the ability of the
model to fit the estimation data. Figure 16 shows that the variance of the residuals
decreases monotonically as the number of terms in the model increases. This 1s nor-

. mally all the information that is available to the algorithm during term selection and
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parameter estimation and it is therefore ﬁnderstandable why there is a tendency towards
overparametrization. This is also one of the reasons why the validation should always be
performed using a different data set, a testing set.

To illustrate this point further, consider the model of equation (26). This was the
best estimated model. Using this model to predict over the estimation data yielded the
time series shown in figure 17a. This is a typical scenario for a chaotic system, namely
the short term predictions are very accurate but gradually the model output drifts away
from the measurements as a consequence of the sensitive dependence on initial conditions
caused by local divergence of trajectories in the state space along the directions associated
with the positive Lyapunov exponents.

Allowing four extra terms and reestimating the model parameters gives a thirteen-term
model which predicts the estimation data extremely well, see figure 17b. However this
model, as noted in figure 12, includes spurious bifurcations. Indeed, the thirteen-term
model exhibits spurious chaotic attractors at 8.61 < A < 8.85 and spurious period-one
motions at 8.85 < A <9.10 and at 9.22 < A <9.31. This clearly illustrates that a model
which fits the estimation data better is not necessarily the best model. This i1s a very
important point. In a lot of the literature on estimation and especially neural networks,
the claim is often made that one model produces superior predictions compared with
another and must therefore be better. The prediction over a chaotic data set, see figure
17a, provides a good illustration of the folly of such a conjecture. The true model of
the system is expected to exhibit poor long-term predictions. This is an inherent and
fundamental property of systems which display extreme sensitivity on initial conditions.
| Any model therefore which produces apparently excellent predictions, as in figure 17b,
cannot possibly be representative of the underlying system, it is just a curve fit to one
piece of data.

Recently it has been stated that neural ‘networks with an excess of adjustable param-
eters may be expected to tune to experimental noise, and therefore although the training
set is captured essentially perfectly, the predictions on new data may be poor’ (Adomaitis
et al. 1990). These authors have also reported that ‘pruned’ networks often outperform
the unpruned networks. Similar results concerning the size of neural networks have been

reported by Masri et al. (1993).

24




6.3 Information criteria

It is clear that the number of terms in a model should b:; trade-off with the goodness
of fit attained with such a model. Four information criteria are listed below which are
composed of two terms. The first term measures how well the model fits the estimation
data and the second term penalises models with a large number of terms. The criteria

considered were

(a) The final prediction error (FPE) (Akaike 1974)

FPE = Nin[o(n,)] + Nin Y " (30)
—
(b) Akaike’s information criterion (AIC) (Akaike 1974)
AIC(a)= Nlin [Jg(np)] + an, a>0 (31)

(¢) Khundrin's law of iterated logarithm criterion (LILC) (Hannan and Quinn 1979)
AIC(a) = Nin [0*(n,)| + 2n,ln InN (32)
(d) The Bayesian information criterion (BIC) (Kashyap 1977)
AIC(a) = Nin[0%(n,)] + nplnN . (33)

where N is the number of data points and o2(n,) is the variance of the residuals associated
to the n,-term model. These and other crii;:;;i';z‘a.ve been reviewed in (Gooijer et al. 1985)
and have been suggested as a means of selecting the best number of terms in nonlinear
polynomial models by Kortmann and Unbehauen (1988).

Tables 1 and 2 show the values of the four information criteria when applied to the
families of models obtained for T, =7/30 s, n, =4, 7<n, <18 and T, =7/60 s, ny = 3,
6 <n,<14. For the first family N =900 and for the second N =1800. It should be noted

that, based on bifurcation information, the best individuals of these families were found

to be the models of equations (25) and (26) respectively.
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Table 1. Information criteria for T, =7/30 s, n, =4

n, | FPE | AIC(4) | LILC | BIC
7 | -8523 | -8509 | -8510 | -8489
8 |-10021 | -10005 | -10007 | -9983
9 |-10361 | -10343 | -10345 | -10318
10 | -10538 | -10518 | -10520 | -10490
11 | -10645 | -10623 | -10625 | -10592
12 | 10895 | -10871 |-10873 | -10837
13 | -10896 | -10870 | 410872 | -10833 )
14 | -10914 | -10886 | -10889 | -10847
15 | -10922 | -10892 | -10895 | -10850
16 | -10029 | -10897 | -10899 [-10852 |
17 | -10033 | -10899 | -10902 | -10851 |
18 | -10967 | -10931 | -10935 | -10881

In the first case, AIC(4), LILC and BIC indicated that the correct structure was
that of the model with twelve terms. Though the bifurcation diagram of this model is

similar to the diagram of the best model, it presents two spurious bifurcations, namely a

supercritical flip at A= 7.28 and a subcritical flip at A=T7.52.

The information criteria were originally proposed and applied in the context of linear
systéms. The correct structure would then be indicated by the value of n, for which the
criteria reached a minimum value (Gooijer et al. 1985). As can be seen from Table 1,
AIC(4), LILC and BIC have a local minimum at n, =12 which is clearly not the global
minimum. Besides, The FPE criterion does not have a minimum in the considered range

although its first derivative is nearly null for n, = 12 and the BIC has another local

minimum at n,=16.
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Table 2. Information criteria for T, =7/60 s, n, =3

n, | FPE | AIC(4) | LILC | BIC
6 | -24897 | -24885 | -24885 | 24864
7 | -26196 | -26182 | -26182 | -26158
8 | -27019 | -27003 | -27003 | -26975
9 |-27109)| 127001, |-27001 |i-27059'
10 ||-27108 | t27088 || 127088 | 127053 |
11 | -27647 | -27625 | -27624 | -27586
12 | 27993 | -27969 | -27968 | -27927
13 | -28014 | -27988 | -27088 | -27943
14 | 28228 | -28200 | -28199 | -28151

A similar situation can be observed in Table 2 where the four criteria have a local
minimum at n, =9 which was exactly the best model obtained from bifurcation analysis.

Again, no global minimum was observed within the considered range.

6.4 The model structure space (MSS)

Consider an n, =n,th-order NARX model with n, process terms which has been estimated
from data sampled at T, s. The structure of this model can be characterised, to some
extent, by the numbers T, n, and n, =n, and, hence, can be represented as a point in
an IR x IN? space which will be called the model structure space (MSS). Clearly, different
model sets may result in the same selected structure and can therefore be represented as
a single point in the MSS.

From the preceding sections it is clear that there are lower and upper bounds
on the parameters which determine the model structure. Thus Timin < Te < Tsmazs
Rpmin S Tip S Tgmas 800 Nymin < Ny < Nymas.  Such bounds e}&ist due to different rea-
sons such as i) theoretical, Ts.ma- is limited by the sampling theorem, ii) numerical,
if T, « Tymin the problem may become numerically ill-conditioned, iii) dynamical,
if n, < npmin the model may not capture the dynamics of the original system and if

Tip > My mar spurious dynamical regimes may be induced, and so on.
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For the examples presented earlier, the following practical values can be attributed
to the limits: Tsmin = 7/100 s, Tymaz = /30 8, Nymin = 2, Nymaz = I, Npmin = 4 and
Tp.maz = 13.

These limits define a polyhedron in the MSS, see figure 18, where the best models
estimated for T, = /30, /60 and 7/100 s were represented by black dots. The circles
or white dots represent the inaccurate models corresponding to figures 9, 14 and 15. The
oval dots are the projections of the model structures on the planes T, X7y, T, xn, and
Rp X Ty

One of the principal results reported so far is that the limit values of n, and ny,=n,
depend on T, as illustrated in figure 8. Specifically, npmaz 2a0d Nymar decrease as T
is made smaller. Taking this into account a subregion Q of the MSS can be expected
to contain the best estimated models (equations (25)-(27)). This has can be verified
from figure 18. Moreover, the best models presented in figure 13 are also in @ and the
projections fall on the shaded regions on the projection planes.

Figure 18 might give the impression that the subspace Q has a rather constant
transversal section for n, > 4. This is because Q is only defined for integer values of
n, and n, and, in the scales used, it would be difficult to represent the narrowing of Q
along the n, direction. This can be better appreciated in figure 13 by noticing that the
bifurcation characteristics of the models deteriorate for n, > 4.

Because the best models are confined to Q, it would be helpful to have rough estimates
for the limit values of T, n, and n,. This is discussed in the following.

T, mae: This is limited by the sampling theorem as T,,,m; <1/2fn s, where fn, is the
highest frequency of interest in the data.

T, .min: If T, is taken too small, consecutive samples in the data will be highly corre-
lated. The choice of T, min can be based on the first zero-crossing of the autocorrelation
function of the data or on information theory (Fraser and Swinney 1986). T min can, of
course, be also determined based on fnm, say, as Tsmin > 1/20f s.

Tiymin: The minimum number of degrees of freedom required to characterize the dy-

namics underlying the data can be obtained from estimates of the fractal dimension Dy %,

4There are several kinds of fractal dimensions such as the information dimension, the correlation

dimension, etc. (Grassberger 1986). It should be noted that Dy characterizes the attracting set (data)
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If the system which produced the data has dynamical order n, then Dy <n (Moon 1987).
Methods for the direct determination of the minimum embedding dimension are available
in the literature (Broomhead et al. 1987, Aleksi¢ 1991, Kennel et al. 1992). If known,
the order of the discretised model can be used.

Nymaez: Apparently there is no way of determining an a prior: value for this limit.
A theorem due to Takens (1981) states that the reconstructed attractor will retain the
original characteristics if the embedding dimension ° is greater than or equal to 2D+
1. Although this provides a sufficient lower bound, in practice it has been found that
this value may often be larger than is required (Broomhead et al. 1987, Marteau and
Abarbanel 1991, Kennel et al. 1992) and therefore could be used as an upper bound.

Tipmin: Lhis limit should mark the minimum number of terms for which some valida-
tion criterion is satisfied, for instance the correlation functions of equation (21). If known,
the number of terms of the discretised model can be used.

Npmaz: Lhere seems to be no way of determining an a prior: value for this upper
bound. Consequently, in a practical situation the searching subspace would be as shown
in figure 19 where this subspace may extend along the n, axis for thousands of units.
This emphasizes the need for efficient and reliable algorithms for term selection. Thus
in practice information criteria may be computed as the search advances along the n,
direction (note that in this direction, due to the properties of the term selection algorithm
of §2.4, the structures are organised in a hierarchical or nested way) and the search may
be halted not immediately but shortly after any of the criteria reaches a minimum.

These considerations help to reduce the search space. This is very desirable in practice
since term selection is usually very time consuming. Different model structures, such as
neural networks, would be difficult to represent in the MSS. However it is believed that
for neural networks the ‘subspace’ in which good models are likely to be estimated is also
limited.

It is noted that figure 18 is just a qualitative representation of some of the results
described in the paper. No attempt has been made to define or quantify the shape and

dimensions of the subspace Q. Nevertheless, this figure helps to illustrate the following

and not necessarily the system which produced the data.

5See footnote 2
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ideas

(a) The parameters n, and n, depend on Ty, in such a way that the former tend to de-
crease as the sampling period is shortened (this tendency is contrary to a widespread

belief that n, increases as T is made smaller).

(b) The subspace Q is thicker in the middle part corresponding to an optimal range of

sampling periods. This is analogous to the information in figure 11.

(c) The lower end of Q coincides with the discretization subspace D for small values of

T,. This is consistent with the fact that the discretised models are more accurate

as Ty — 0.

(d) The upper end of Q is limited by the sampling theorem but good models tend to be
found for sampling periods which are shorter than the upper limit imposed by this

theorem.

(e) The shape and dimensions of Q are not as important as the fact that this subspace is
limited. This is in accordance to experimental results which show that valid models
tend to be found in a bounded region of the MSS, and that increasing n, and/or n,

beyond certain limits deteriorates the quality of the identified models.

7 Conclusions

This paper has been concerned with the effect of some aspects of the identification of
nonlinear systems on the dynamical characteristics of the estimated models.

The first aspect which has been investigated was input design. In linear systems the
choice of the input signal is almost invariably specified based on frequency considerations
in such a way as to guarantee that the signal is persistently ezciting. For nonlinear systems
not only the frequency content but also the amplitude profile of the input should be
carefully chosen. Because of the energy transfer among different frequencies in nonlinear
systems, the requirements on the frequency content of the input may be somewhat relaxed.

On the other hand, because different dynamical regimes may be induced by simply altering
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;;he amplitude of a sinusoidal input, additional excitation can be attained by specifying a
particular amplitude profile. This has been shown by way of an example.

This paper has also investigated how several parameters which characterize the struc-
ture of a nonlinear polynomial affect the dynamical behaviour of this model. The pa-
rameters considered were the sampling rate, the number of process terms and the order
or maximum lag of the model. Furthermore, comparing models with roughly the same
quality, it was possible to verify how these parameters affect each other. It has been
shown that a decrease in the sampling period is associated with a decrease in the number
of terms and in the dynamical order of the model. This leads to the conclusion that using
slightly oversampled data enables the estimation of models with simpler structure.

In order to gain further insight into the dependence of the various parameters char-
acterizing the structure, the estimated models have been compared to the discretised
counterparts obtained analytically from the original system. This has revealed that the
process of including terms in a model may be viewed, to a certain extent, as a compen-
sation for the accuracy lost in the sampling and digital representation of the data. The
quality of this compensation is directly related to the sampling period and to the abil-
ity of choosing the best terms to include in the model. Furthermore, results have been
reported which suggest that there is a limited range of sampling periods for which this
compensation is possible.

Regarding model complexity, it has been argued that if a nonlinear model is unnec-
essarily complex, that is if the model has more terms or if it 1s ‘of higher order than the
optimum, such a model is prone to induce spurious dynamical regimes. This deleterious
aspect of model overparametrization is in contrast to the enhanced predictive ability that
such models exhibit over the estimation data. Examples have been provided to illustrate
that models which fit the estimation data better are not necessarily the models which
capture the underlying dynamics adequately. This is highly relevant because as a conse-
quence of the ever increasing computational power available, there seems to be a natural
tendency to overparameterise nonlinear models.

The performance of four information criteria (FPE, AIC(4), LILC and BIC) in se-
lecting the best model from within a family has also been investigated. In one case the

four criteria indicated a model which was also found to be the best based on bifurcation
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a.ne;lysis. In another example, however, three criteria indicated a twelve-term model as the
optiinum. Bifurcation analysis revealed that the thirteen-term model was the most accu-
rate and that the twelve-term model exhibited spurious dynamical regimes. In both cases,
these criteria only had local minima within the considered range as opposed to the global
minimum usually verified in linear systems. Apparently a good choice (not necessarily
the best, as one of the examples has revealed) would be the model corresponding to the
first local minimum. This was found to be in accordance with the results of (Kortmann
and Unbehauen 1988).

An additional pitfall is that most of the harmful effects of overparametrization are not
revealed by classical tools used in signal processing. In this paper bifurcation diagrams
and Poincaré sections have been used for this purpose. It is interesting to note that the
former diagrams were particularly useful in revealing the dependence of the dynamics on
the number of terms and the order of the models while Poincaré sections were found to
be important in disclosing how the sampling rate affects the dynamics.

Finally, some of the estimated models considered in the paper have been mapped
in what has been called the model structure space (MSS). In this space each different
model structure can be represented by a point. This has been done only for NARMAX
polynomial models though similar spaces could be defined for some different structures.

Although the definition of the MSS was made on empirical grounds, representing the
models in such a space has been useful for illustrating many of the aspects investigated

in the paper. Some aspects are

(a) The relationship among the sampling period, the number of process terms and the

dynamical order of the models
(b) The structure of the discretised models appear as a limit subspace in the MSS

(c) Considerations on the bounds which limit the search subspace in the MSS illustrate
the need for algorithms which, in a viable time, should be able to select the most

important terms to be included in a model

(d) The subspace of the MSS where valid models are likely to be found is limited, thus

highlighting the dangers of overparametrization
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The field of nonlinear dynamics has experienced a great deal of excitement in the
last few years a;é a consequence of the chaos advent. The main reason for this was that
very complicated dynamics, even unpredictable motions, could be produced and therefore
modelled by simple deterministic equations. If on the one hand the chaos revolution
was disclosing the fact that apparently random dynamical regimes could be characterised
without resorting to stochastic theory, on the other hand it was reminding practitioners
that simple models would be enough to model complicated dynamics. Thus it seems
paradoxical that when identifying nonlinear (perhaps chaotic) systems large models and

networks tend to be used almost as a default.
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Captions

Figure 1. (a) bifurcation diagram and (b) Poincaré section of the attractor at A=11 for

the Duffing-Ueda equation.
Figure 2. Input/output data for u,(t)=11cos(t).

Figure 3. () bifurcation diagram and (c) Poincaré section for the model estimated from
the data of figure 2. (b) bifurcation diagram and (d) Poincaré section for the model
estimated from the data of figure 2 when corrupted by very low variance gaussian

noise.

Figure 4. Input/output data when the input is a square wave superimposed on top of a

gausslan component.
Figure 5. Bifurcation pattern of a family of models estimated from the data of figure 4.

Figure 6. Input/output data when the input is a square wave of increasing amplitude

superimposed on top of a gaussian component.
Figure 7. Bifurcation pattern of a family of models estimated from the data of figure 6.

Figure 8. Dependence of the number of process terms, n,, and the model order, n,, on
the sampling period. Each pair (0,*) represents the best model estimated from data

sampled at the respective sampling rate.

Figure 9. Inaccurate bifurcation diagrams of comparable characteristics for the models

(a) Ty=7/30s,n,=3,n,=11 and (b) T, =7/60 s, ny, =3, n,=T.
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Figure 10. Bifurcation diagrams for the models discretised with (a) Ts=7/100 s, (c)
T,=7/60s, and (e) T.=7/30s. Bifurcation diagrams for the models estimated
from data sampled at (b) T, =7/100 s, equation (27), (d) T, =7/60 s, equation (26),
and (f) T,=7/30 s, equation (25). Poincaré sections of the attractor at A=11 for
the models discretised with (g) T,=7/100s, (i) T,=7/60s, and (k) T,=7/30s.
Poincaré sections of the attractor at 4 = 11 for the models estimated from data
sampled at (h) T, =7/100 s, equation (27), (j) T,=7/60 s, equation (26), and (1)
T,=m/30 s, equation (25).

Figure 11. Comparison of the performance of the discretised and estimated models of

figure 10. (*) discretised models, (+) estimated models.

Figure 12. Bifurcation pattern of a family of models estimated from the data of figure 6

sampled at T, =7/60 s.
Figure 13. Bifurcation quality, J,, for models with different number of terms and order.

Figure 14. Effects of overparametrization on a model estimated from data sampled at
T.=/30 s (a) bifurcation diagram, Poincaré sections of the attractors at (b) A=11
and (c) A=8.85. The latter attractor is spurious.

Figure 15. Effects of overparametrization on a model estimated from data sampled at
T,=7/60 s (a) bifurcation diagram, Poincaré sections of the attractors at (b) A=11

and (c) A=8.85. The latter attractor is spurious.
Figure 16. Variance of residuals for models with increasing numbers of terms.

Figure 17. (- -) measured output and (—) predicted output using (a) the best model

estimated, equation (26), and (b) the overparameterised thirteen-term model.

Figure 18. Representation of some models in the model structure space (MSS). The three
black dots are the best models for the respective sampling rate, equations (25)-(27).
The white dots are some of the reported inaccurate models. The ovals are the
projections and the shaded regions is where the accurate models of figure 13 were

found.

Figure 19. Search subspace represented in the model structure space (MSS).
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