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Abstract

This paper investigates the effectiveness of several criteria for validating models
which exhibit chaotic dynamics. Trajectories in the pseudo-phase-plane, Poincaré
sections, bifurcation diagrams, the largest Lyapunov exponent and correlation di-
mension are considered. The Duffing-Ueda equation and four identified models are
used as examples. The results show that models with similar invariants such as
Poincaré sections, the largest Lyapunov exponent and correlation dimension may
have very different bifurcation behaviors. This suggests that the requirement that
an identified model should reproduce the bifurcation pattern of the original system

is a very exacting criterion which is well suited for validation purposes.

1 Introduction

One of the great challenges in science is that of inferring qualitative and quantitative
information from time series and this often involves determining a mathematical model
of a system when the only information available is a set of measured data. This i1s the
so-called system identification problem [S6destrém and Stoica, 1988].

Irrespective of the approach used to solve the identification problem and regardless
of the structure of the final model, the last step in any identification procedure should
be the validation of the estimated model. The main objectives of validation are to seek
answers to questions such as, is the identified model adequate, and under what conditions
is the model adequate or representative of the system.

A trivial way of trying to answer such questions is to simulate both system and model

under similar conditions and compare the respective responses. Besides being subjective,



this procedure lacks consistency when the model being validated is sensitive to initial
conditions. Clearly, more sophisticated criteria are needed to accomplish this task.

The need for more general criteria has motivated researchers to investigate geometrical
and statistical invariants which would provide a means of characterizing nonlinear systems
possessing low-dimensional chaotic dynamics. Thus trajectories in the pseudo-phase-plane
[Broomhead and King, 1986; Moon, 1987, Poincaré sections [Crutchfield and McNamara,
1987], bifurcation diagrams [Haynes and Billings, 1992], Lyapunov exponents [Wolf et
al., 1985; Abarbanel et al., 1989, 1990] and the correlation dimension [Grassberger and
Procaccia, 1983; Wolf and Bessoir, 1991] have been used to characterize and compare
reconstructed attractors and identified models.

These criteria provide some answers to the questions posed above, but how effective are
such criteria in validating mathematical models of chaotic systems? The main objective
of this paper is totry to answer this question.

Several examples are provided which considerthe Duffing-Ueda equation and four dif-
ferent identified models. Although the main focus is on non-autonomous chaotic models
it is believed that most of the results are also valid for autonomous chaotic and even
non-chaotic nonlinear systems.

The next section provides a brief summary of the criteria under investigation. Section
3 presents the numerical results obtained for the models considered and the results are

discussed in detail in Sec. 4. Finally, the main conclusions are reported in Sec. 5.

2 Brief Description of Some Criteria

2.1 Predictions

One of the most peculiar features of a chaotic system is the sensitive dependence on initial
conditions. This makes nearby orbits diverge locally in state-space. Consequently, it is
impossible to make accurate long-term predictions using a chaotic model.

The statistics which quantify the average local divergence of nearby trajectories along
certain directions on the attractor are the Lyapunov exponent.s. It is known that the

period during which accurate predictions can be made is proportional to the accuracy with



which the initial state was measured and invers;ely proportional to the largest Lyapunov
exponent. In practice, no measurement can be performed with infinite accuracy and
therefore no matter how good an identified model is, the predictions will eventually drift
away from the original data. Indeed, if the identified model is to capture the qualitative
behavior of the underlying system, these characteristics should be evident and if they are
not the model is just a fit to one window of data and is not representative of the system.
Consequently, the predictions will not be of much help in validating identified models if
these are sef{sitive to initial conditions. In spite of this deficiency the use of predictions

for chaotic model validation has been considered by some authors [Kargupta and Smith,

1991].

2.2 Correlation tests

Billings and Voon [1983; 1986] have introduced high-order correlation functions to detect
the presence of unmodelled terms in the residuals of discrete models. Thus if a model of

a system is adequate the following conditions should hold

Be(r) = Bl —)EW)] = 60) (12)
D.(T) = Elu(t—=7)¢é(1)] = 0, Vr (1.b)
Bune(r) = El((t—1) - PO = 0, vr (19
Splr) = Bl =) =] = 0, Vr (14)
Ben(r) = B@EE—1-rult—1—7)] = 0, 720 (10

where £(t) are the residuals, defined as the difference between the actual measured
output and the one-step-ahead predicted output, u(t) is the input, the over-bar signifies
mean value and E[-] denotes mathematical expectation.

These correlation functions were originally derived for non-autonomous models. In
many practical situations however, no inputs are considered and the final models are
obtained from time series instead of input-output pairs. In such cases the correlations

functions which should be tested are different [Billings and Tao, 1991].



2.3 Pseudo-phase-space plots

One technique used in the analysis of nonlinear dynamical systems is to plot the steady-
state trajectory of the system in the phase-space. For a system with one degree of freedom
this can be achieved by plotting y(t) against y(t). For low-order systems this procedure
can be used to distinguish between different dynamical regimes.

In many practical situations only one variable is measured. In these cases an alter-
native proce}iure is to plot y(t — T}) against y(t). These variables define the so-called
pseudo-phase plane which is motivated by the fact that y(t —T3) is related to y(t). Con-
sequently this plane should have properties similar to those of the phase plane [Moon,
1987].

A further advantage of this technique is that it enables the comparison of trajectories
computed from continuous systems where y(t) is usually available, and from discrete
models where g(t) is not often available and would have to be estimated.

The choice of T, is not very critical and plotting a trajectory onto the pseudo-phase
plane for varying values of T, may give some insight regarding the information flow on.
the attractor [Fraser and Swinney, 1986].

Phase and pseudo-phase portraits have been used not only as a means of distinguishing
different dynamical regimes, but also to demonstrate qualitative relationships between
original and reconstructed attractors [Packard et al., 1980; Broomhead and King, 1986;
Adomaitis et al. 1991].

2.4 Poincaré sections

Consider a periodic orbit 4 of some flow ¢, in JR™ arising from a nonlinear vector field.
Let £ C R™ be a hypersurface of dimension n—1 which is transverse to the flow ¢,. Thus
the first return or Poincaré map P = ¥ — I is defined for a point g€ X by

P(q) = ¢-(q) (2)

where T is the time taken for the orbit ¢:(q) based at ¢ to first return to Z.
This map is very useful in the analysis of nonlinear systems since it takes place in a

space which is of lower dimension than the actual system. It is therefore easy to see that



a fixed point of P éorresponds to a periodic orbit of period 27 /w for the flow. Similarly,
a subharmonic of périod k x 27w will appear as k fixed points of P. Quasiperiodic and
chaotic regimes can also be readily recognized using Poincaré maps. For instance, the
first-return map of a chaotic solution is formed by a well-defined and finely-structured
set of points for noise-free dissipative systems. Such maps have been used extensively in
the validation of identified models and reconstructed attractors [Van Buskirk and Jeffries,
1985; Broomhead and King, 1986; Crutchfield and McNamara, 1987; Casdagli, 1989;
Giona et a.I.,f1991; Gottwald et al., 1992).

From the above definition it is clear that if a system has n > 3, the Poincaré map
would require more than two dimensions for a graphical presentation. In order to restrict
the plots to 2-dimensional figures, y(t — T;) is plotted against y(¢) at a constant period.
For periodically driven systems the input period is a natural choice and the resulting plot
is called a Poincaré section.

This procedure amounts to defining the Poincaré plane I, in the pseudo-phase-space
and then sampling the orbit represented in such a space. The choice of T}, is not critical
but it should not be chosen to be too small nor too large compared to the correiation'
time of the trajectory. Otherwise the geometry and fine structure of the attractor would
not be well represented.

Besides simplification in cases where n >3, this procedure has two additional benefits,
namely i) it allows Poincaré sections of models of different dimensioné to be compared, and
ii) simnilar sections can be obtained for continuous and discrete models. Thus comparison
is again facilitated. The 'quafita.tive information conveyed by both Poincaré maps and
sections are equivalent.

It is noted that if two Poincaré sections are to be compared, the Poincaré plane X,
should be the same for both sections. This could pose some problems in the case of discrete
models since it is required that the models produce an output at the Poincaré sampling
instants which may not agree with the model sampling rate. In the case of continuous

systems which are integrated digitally this difficulty has been overcome [Hénon, 1982].



2.5 Bifurcation diagrams

Another useful tool for assessing the characteristics of the steady-state solutions of a
system over a range of parameter values is the bifurcation diagram.

A point r of a bifurcation diagram of the kind considered in this work is defined as
r = {(v,4) € RxI|y=y(k), A= Ao t; = K,, x 27 fw} (3)

where I is the interval I =[A;A;]C R and K,, is a constant. This means that the point r
{ . : .

is chosen by simulating the system for a sufficiently long time K,, X 27 /w with A = A to

ensure that transients have died out before plotting y(K,, X 27 /w) against Ao. In practice

for each value of the parameter A, n;, points are taken at the instants
t‘ = (K;s+ i) X 27"/{#‘ 'I:=0,1,...,le—1 (4)

A bifurcation diagram will therefore reveal at which values of the parameter A € I
the solution of the system bifurcates and how it bifurcates. When studying chaos such
diagrams are also useful in detecting parameter ranges for which the system behavior is
chaotic.

Similar diagrams as the one defined by Egs. (3) and (4) have been suggested as a
means of global analysis and qualitative validation of identified nonlinear models [Haynes
and Billings, 1991]. In order to facilitate the comparison of similar bifurcation diagrams,

the following quality index will be used

Ny
Iy = Z(Aa — a;)’w; ()

where A; € R are the values of the parameter A for which the system bifurcates. The a;’s
are defined likewise for the model being validated and w = [w; w; ... wy,] is a weighting
vector. The summation is taken over all the (N,) bifurcation points of interest.

Further details of bifurcations and Poincaré maps can be found in the literature [Guck-

enheimer and Holmes, 1983].

2.6 Lyapunov exponents

Lyapunov exponents measure the average divergence of nearby trajectories along cer-

tain directions in state space. A chaotic attracting set has at least one positive Lyapunov
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exponent and no Lyapunov exponent of a non-chaotic attracting set can be positive. Con-
sequently such exponents have been used as a criterion to determine if a given attracting
set is or is not chaotic [Wolf, 1986].

The Lyapunov exponents of an attracting set of length N can be defined as 1
.1 . :
A= J\Irl-ilga}\]’_ log. ji(N) =12 .un (6)
where the {j;(IN)}7, are the absolute values of the eigenvalues of
{
[T ()]l (yw-1)]--- [T (1)) (7)

where J(y;) € R™*™ is the jacobian matrix of the n-dimensional differential equation (or
discrete map) evaluated at y;, and {yx}l_, is a trajectory on the attractor. Note that n
is the dynamical order of the system.

When reconstructing attractors from time series, it is common practice to embed the
data in an m-dimensional state space where m is usually referred to as the embedding
dimension. A famous theorem due to Takens [1980] (see also the paper by Packard et al.
[1980]) states that if m>2n +1 then the embedded attractor will retain metric properties-
of the original attractor, such as Lyapunov exponents, dimensions and entropies.

A similar situation occurs in system identification where usually the order of the
identified model is also larger than n. Consequently the identified model will have more
Lyapunov exponents than the original system. These ‘extra’ exponents are called spurious
Lyapunov ezponents.

The estimation of Lyapunov exponents is known to be a nontrivial task. The simplest
algorithms [Wolf et al., 1985; Moon, 1987] can only reliably estimate the largest Lya-
punov exponent. Eétimating the entire spectrum is a typically ill-conditioned problem
and requires sophisticated algorithms [Wolf et al., 1985; Parker and Chua, 1989]. Further
problems arise when it comes to deciding which of the estimated exponents are true and
which are spurious [Parlitz, 1992].

In view of such difficulties and the fact that the largest Lyapunov exponent, Aigrgest,

is in many cases the only positive exponent ? and that this gives an indication of how

1Many authors use log; in this definition
2Tn this case the Morgeat 2 h, where h is the Kolmogorov-Sinai or metric entropy. Note that for

dissipative systems (chaotic and non-chaotic) E?___l ); < 0 [Eckmann and Ruelle, 1985; Wolf, 1986).



far into the future accurate predictions can be made, it seems appropriate to use Ajarges:
to characterize a chaotic attracting set. Indeed, the largest Lyapunov exponent has been

used in this way and to compare several identified models [Abarbanel et al., 1989; 1990].

2.7 Correlation dimension

Another quantitative measure of an attracting set is the fractal dimension. In theory,
the fractal dimension of a chaotic (non-chaotic) attracting set is non-integer (integer).
Therefore, like the largest Lyapunov exponent, the fractal dimension can be used not
only to diagnose chaos but also to provide some further dynamical information regarding
the attracting set under consideration [Grassberger et al., 1991).

The fractal dimension is related to the amount of information required to characterize
a certain trajectory. If the fractal dimension of an attracting set is D= d+6, where 0<6<1,
then the smallest number of first-order differential equations required to describe the data
is d+1. |

There are several types of fractal dimension but for many strange attractors such
measures give roughly the same value [Moon, 1987; Parker and Chua, 1989]. In this work
the correlation dimension ® [Grassberger and Procaccia, 1983] is used to compare the
original attracting set to similar sets generated using the identified models.

A time series {y;}), can be embedded in the phase space where it is represented as a
sequence of m -dimensional points y; = [y; ¥;-1 - Yj—m+1)- Suppose the distance between

two such points is * Si; =| y: —y; | then a correlation function is defined as [Grassberger

and Procaccia, 1983]
(lle) = ]}im —Jl\?(number of pairs (1,7) with Si; < €) (8)

The correlation dimension is then defined as

D, = lim loge C(e) (9)
e~ log, €

3This measure can be seen as a generalized dimension and is considered to be the easiest to estimate
reliably [Grassberger, 1986]

4Several norms can be used here, e.g. Buclidean, £;, etc.



For many attractors D, will be (roughly) constant for values of € within a certain
range. The choice of m does influence the final value of D., thus in practice several
estimates of the correlation dimension are obtained for increasing values of m. If the data
were produced by a low-dimensional system, such estimates would converge after m has

attained a critical value .

3 Vali:dation Results

In this section the criteria described in Sec. 2 will be investigated in the context of model
validation. This is the last step in any identification procedure and is of paramount
importance since it is in this step that a model is declared valid or not.

In what follows, the well known Duffing-Ueda equation [Ueda, 1980]
§+ky+y° =u(t) (10)

with k = 0.1, was used to produce the original data by means of digital simulation. A
fourth-order Runge-Kutta algorithm with an integration interval of 7 /3000 was used to.
simulate the response of the system to a specified input. Both, the input, u(t), and the
output, y(t), were uniformly sampled at periods of T = 7 /60 s, this gives 120 points per
orbit. These values have been chosen after a detailed study [Aguirre and Billings, 1993].
The resulting time sequences, with 1900 data points each, are shown in Fig. 1. These

data were subsequently used to identify the following discrete polynomial models

Model A

y(t)

2.1261y(t — 1) — 1.2579y(t — 2) + 0.13155y(t — 3)
0.15881 x 10~3y(t — 3)® — 0.24897 x 107 %y(t — 1)

+ o+

0.20041 x 107%u(t — 2) + 0.34772 x 10™>u(t — 1) (11)

Model B

Il

y(1) 2.1951y(t — 1) — 1.5112y(¢ — 2) + 0.44472y(t — 3)
— 0.13619y(t — 4) +0.73697 x 10~ %y(t — 6) 4 0.35045 x 10~>u(t — 1)

— 0.23964 x 1072y(t — 1)® + 0.20541 x 107 u(t — 2) (12)



Model C

y() = 2.1850y(t—1)—1.3957y(t-2)+0.2313%y(t—3)
— 0.20770 x 107 y(t — 4) + 0.33579 x 10~ 3u(t — 1)
— 0.33823 x 1072y(t — 1)* + 0.19267 x 10~ 2u(t — 2)
+ 0.11426 x 1072y(t — 1)*y(t - 2) (13)

Model D y

y(1)

2.1579y(t — 1) — 1.3203y(t — 2) + 0.16239y(t — 3)
0.22480 x 1073y(t — 3)* — 0.48196 x 107 %y(t —1)°
0.19463 x 10~ %u(t — 2) + 0.34160 x 107 3u(t — 1)

+ 4+ +

0.35230 x 1072y (¢ — 1)*y(t —2)

— 0.12162 x 102y (t — 1)y(t — 2)y(t — 3) (14)

The chief objective of this section is to compute the mathematical tools described in
last section for the identified models and the original system, to see how they comparel
and to assess the real benefits of using these as practical criteria for model validation of
real systems.

Predictions. As stated before, predictions are not very adequate for model validation
specially if the models under consideration are chaotic. A typical scenario is shown in Fig.
2, where model D was used to predict the output of the system when excited by the input
of Fig. 1. These time series were obtained by means of Runge-Kutta simulation for the
continuous model and by recursive computation for the discrete model. Clearly, initial
predictions are very accurate but they (unsurprisingly) diverge from the original time
series for longer prediction times. This divergence is not necessarily due to inaccuracies in
the model since it could be a consequence of the sensitive dependence on initial conditions.

Correlation tests. Figures 3a~d show the correlation functions for the identified models
A-D, respectively. These were obtained using models A—-D, a set of data similar to the
one of Fig. 1 and Egs. la-le. .

Trajectories. Figures 4a—d show the trajectories of the identified models A—D when
they were driven by the input u(¢) = Acos(wt) with A =11 and w =1 rad/s. The

10



trajectory obtained from the original system is shown in Fig. 4e. Here T, = 4 X 7r/60
for models A-D and T, = 200 x 7/3000 for the continuous system. These trajectories’
correspond to twenty five forcing periods.

Poincaré sections. Figures 5a—d show the Poincaré sections of models A—D for the
same input as above and T, = 4 x 7/60. The corresponding plot for the original system is
displayed in Fig. 5e, where T, = 200 x 7/3000. Figures 7a—c show the Poincaré sections
of models C, D and Eq. (10) for u(t) = 5.75cos(t). These figures have 10000 points each.

Bifurcatt{m diagrams. The bifurcation diagrams of the identified models are depicted
in Figs. 6a—d. The varying parameter, sometimes called the control parameter, was the
amplitude of the sinusoidal input which was varied in the range 4.5 <A <12. 750 equidis-
tant values‘ within this range were taken with K,, = 400 and n; = 20. The bifurcation
diagram of the original system is shown in Fig. 6e. The quality index defined in Eq. (5)
has been calculated for models C and D only because models A and B do not have all of
the bifurcation points of the original system. The computed values are shown in Table 1.

Largest Lyapunov ezponent. The Largest Lyapunov exponents were calculated using
the standard algorithm, see for instance Moon [1987], with a time series corresponding
to 7500 forcing periods (N = 7500 x 120 = 9x10°) and a Lyapunov interval of 30. The
value of Ajargest estimated for the system is in excellent agreement with those obtained by
Moon [1987] and Ueda [1979]. The estimated values of Aizrgest are shown in Table 1 for
two different attractors (at A=5.75 and A=11).

It is noted that in all the cases investigated, the mathematical models were available
and consequently the jacobian matrices were derived analytically. This greatly facilitated
the computation of the Lyapunov exponents.

Correlation dimension. The correlation dimension has been estimated using data series
of 10000 points. The distances S;; were computed using 200 randomly chosen points (in
state-space) which were uncorrelated with the data, see Packard and Chua [1989] for
details. The embedding dimension was varied in the range 3 <m < 7. For all models D.
had converged for m =7. The estimated values of D, with m =7 for the two attractors
aforementioned are provided in Table 1.

The Lyapunov dimension, Dky, of the original system obtained via the Kaplan-Yorke
conjecture [Kaplan and Yorke, 1979] for the attractors at A=5.75 and A=11 was 2.53 and

11



2.50, respectively. These results seem consistent since it is known that Dxy is an upper

bound for the correlation dimension [Grassberger and Procaccia, 1983].

Table 1. Ajgrgest, D, and J, for the models considered
A=11 A=5.75
Model | Alargest B Alargest B Jp
i Orig. | 0.111 | 2.19 +£0.02 | 0.099 | 2.10 £ 0.05 | 0.000
0.102 | 2.26 £ 0.04 — — —_
0.109 | 2.19 £ 0.04 —_ —_ —_—
0.114 | 2.46 £ 0.06 | 0.049 | 1.80 £ 0.02 | 0.295
0.115 | 2.34 £ 0.05 | 0.093 | 2.05 + 0.04 | 0.012

g Qo »

4 Discussion

The main difficulty in using predictions in model validation is that there seems to be
no way to distinguish between discrepancies due to model inaccuracies and those due to
sensitive dependence on initial conditions. It is noted that even short-term predictions
are hampered if the data are noisy no matter how good the model is.

On the other hand, if the data are very clean the predictions could only usefully give a
first impression of the behavior of the models being validated. This information, however,
is very rough and rather abstract and would be of little help in vaiida.ting models with no
evident problems.

The correlation tests indicate the need for extra terms in the model. In cases where
noise-free data are used, correlation in the residuals may be dominated by numerical errors
such as roundoff errors. This calls for caution when interpreting such results.

The correlation functions of models A and B suggest that they are biased. On the
other hand, the correlation plots of models C and D are quite acceptable. In a real
situation, due to some amount of noise in the data, all of the correlation functions for the

latter would certainly fall into the 95% confidence bands.
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The correlation functions were not devised as quality indices and therefore it would
be impossible to choose between models C and D based on these functions alone.

The trajectories in Figs. 4a-d should be compared to the one obtained from the
original system and shown in Fig. 4e. Clearly, the overall shape and the location of
the attractor in the pseudo- phase plane are very similar in all cases. This limits the
usefulness of this technique in model validation. The main difference among the plots is
the density of trajectories in some regions of the plane. This information, interesting as
it might be,*is not very useful since it is rather subjective. Further, these figures were
obtained by plotting the trajectories over a few (twenty five) forcing periods only. Thus
a region which was less visited during the period considered, could have had many more
trajectories crossing into it if a longer simulation had been performed.

The Poincaré sections displayed in Figs. 5a—e were obtained after simulation over ten
thousand input periods. This ensures that a region which was not visited would be very
unlikely to be visited if the system had been simulated for a longer time. As can be seen,
all the sections are very similar. It is noted that the use of Poincaré sections seems to be a
very popular criterion for comparing models despite the limitations which are shown —
[Van Buskirk and Jeffries, 1985; Broomhead and King, 1986; Crutchfield and McNamara,
1987; Casdagli, 1989; Giona et al., 1991; Gottwald et al., 1992].

The bifurcation diagram for the system of Eq. (10) is shown in Fig. 6e. This diagram
gives a precise indication of how the system bifurcates as the inputr amplitude is varied.
Beginning at A ~ 4.86 the system undergoes a period doubling (flip) bifurcation. This
happens again at A~ 5.41 and characterizes the well known period doubling route to chaos
[Feigenbaum, 1983]. Another similar cascade begins at A ~ 9.67 preceding a different
chaotic regime. Two chaotic windows can be distinguished at approximately 5.55 <
A <582 and 9.94 < A <11.64. At A = 6.61 the system undergoes a supercritical
pitchfork bifurcation and at A ~ 9.67 it undergoes a subcritical pitchfork bifurcation.
The bifurcation diagram begins and ends with period-1 regimes and displays period-3
dynamics for 5.82 < A <9.67.

A rapid view of the bifurcation diagrams reveals that the dynamical bifurcation pattern
of model D is the closest to the original system. Models A and B lack the pitchfork

bifurcations, the first chaotic window and display extra chaotic regimes which are not
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present in the original system.

On the other hand, models C and D have all the bifurcations in the considered range
of parameter values. However, some deficiencies can be pointed out in the diagram of
model C, namely the displacement of the pitchfork bifurcations and the width of the low-
amplitude chaotic window (a detailed bifurcation diagram showed that model C is chaotic
in the range 5.74 < A <5.82). These differences can be quantified using the bifurcation
quality index defined in Eq. (5) where {w;}}_, =1 was chosen. The calculated index
is shown in ‘Table 1 together with the largest Lyapunov exponent and the correlation
dimension.

In the examples above, the invariants of the original system were obtained directly
from the model, Eq. (10). However, in a real application the model of the system would
obviously not be known a priori and therefore it 1s natural to enquire if the use of the
criteria investigated in this paper would be viable since the invariants would have to be
obtained directly from the system.

The correlation functions [Billings and Voon, 1983; 1986] can be easily obtained from
the identified model. It is known, however, that it is very difficult and sometimes irnpossi-.
ble to measure long stationary time series from certain systems [Grassberger et al., 1991]
and thus stationarity may only be guaranteed over short periods of time in a real exper-
iment. Because the reliable calculation of Lyapunov exponents and fractal dimensions
usually requires long stationary data series the use of such statistics in model validation
coﬁld be difficult to implement in practice.

Regarding the signiﬁcance' of using Lyapunov exponents in the context of model vali-
dation, it has been noted that “calculations of orbital divergence rates necessarily charac-
terize the properties of the given data set, and not necessarily the underlying dynamical
system... in general it is not possible to independently confirm exponents determined
from experimental data” [Wolf, 1986 p. 280]. Further, in the case of noisy data, it has
been argued that the Lyapunov exponents are not rigorously defined [Wolf, 1986).

For a good account regarding the difficulties of estimating Lyapunov exponents and
fractal dimensions from real data, see the paper by Wolf and Bessoir [1991]. Grassberger et
al. [1991] also discuss similar issues concerning the estimation of the correlation dimension

from real time series.
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By contrast, pseudo-phase plots, Poincaré sections and bifurcation diagrams have
been satisfactorily obtained directly from the original system in a number of practical
situations [Arecchi and Califano, 1984; Vallée et al., 1984; Van Buskirk and Jeffries, 1985;
Moon, 1987; Molteno and Tufillaro, 1990; Murali and Lakshmanaan, 1991; Gottwald et al.,
1992] and appear to be better suited for model validation. Casdagli [1989] has suggested
a procedure to identify Poincaré sections and bifurcation diagrams from data obtained
from the original system.

During the course of the present investigation, about one hundred models have been
considered. Very few models presented a complete bifurcation diagram (as those of models
C and D). However, most of the models had Poincaré sections similar to the original one,
see Fig. 5e. Thus to identify models which reproduce the original bifurcation pattern has
proved to be far more difficult than to obtain models with acceptable Poincaré sections.
This is a consequence of the bifurcation diagram being a global invariant in the sense that
it is valid over a range of parameter values. By contrast, the Poincaré sections and all
other criteria considered in this paper are local invariants of the data which is usually
obtained from the system operating at a single point in the parameter space. This global‘
property can be further verified by noting that for A=5.75 the invariants of model D (see
Poincaré sections of Figs. Ta—c and Table 1, it is noted that models A and B present
regular motion for this input) are still close to those of the original model whereas the
invariants of models A, B and C clearly reveal that they are inadeqﬁa.te for such a range
of values of A.

Tt is worth emphasising however that when validating a model it is very important to
consider the final application which is intended. In certain applications a model might
be required which is accurate over a narrow range of parameter values and therefore local
invariants may prove more helpful in such situations. But since the range of parameter
values over which a model is required to be accurate can be easily taken into account by
choosing different weights in Eq. (5), the bifurcation diagrams in conjunction with the
respective quality indices still seem more appropriate for validation purposes.

Finally, it is noted that the bifurcation diagrams appear to be more sensitive to pa-
rameter variations than Poincaré sections. Investigating the Duffing-Holmes equation,

Holmes and Rand [1976 p. 252] have noted: “... an arbitrarily small perturbation of
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Duffing’s equation in the space of all three or four parameter families could destroy the

qualitative nature of the bifurcation set”.

5 Conclusions

The validation of nonlinear models which possess chaotic dynamics has been studied in
detail by comparying the properties of several identified models with a bench test exam-
ple based orf the Duffing-Ueda equation. The following criteria have been investigated:
i) predictions, ii) correlation tests, iii) pseudo-phase plots, iv) Poincaré sections, v) bi-
furcation diagrams, vi) largest Lyapunov exponent and vii) correlation dimension. The
central objective has been to assess the real benefit of using such criteria as measures of
the quality of the identified model. One of the main results that has been reported is
that models with considerably different bifurcation behavior may exhibit similar Poincaré
sections within chaotic windows. This is an important result because Poincaré sections
have been widely used in model validation problems. Although the focus of the current
study was chaotic models, most of the reported results are also valid for regular nonlinear

systems.
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Captions

Fig. 1. Typical input and ou-tput data used in the identification

Fig. 2. (- -) Measured output, and (—) typical predicted output for a chaotic model

Fig. 3. Correlation functions for models (a) A, (b) B, (c) C and (d) D

Fig. 4. Trajectories in the pseudo-phase plane for models (a) A, (b) B, (c) C, (d) D and (e) Eq.

(10)

é

Fig. 5. Poincaré sections for the input u = 11cos(t) for models (a) A, (b) B, (c) C, (d) D and (e)
Eq. (10)

Fig. 6. Bifurcation diagrams for models (a) A, (b) B, (c) C, (d) D and (e) Eq. (10)

Fig. 7. Poincaré sections for the input u = 5.75cos(t) for models (a) C, (b) D and (c) Eq. (10)
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