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Abstract: The higher order phase response functions contain important information about the
behaviour of nonlinear systems. Unfortunately, simply adopting the linear convention of plotting
the phase between 1180 produces higher order phase response functions which are virtually
impossible to interpret. In the present paper two new algorithms are introduced to overcome these
problems by unwrapping the multidimensional nonlinear phase. The unwrapped phase responses
are shown to be much easier to interpret and details of the implementation together with exam-
ples illustrating the new techniques are included.

1. Introduction

Generalised or higher order frequency response functions are defined as the Fourier transform
of the Volterra kernels and represent a natural extension of the linear frequency domain con-
cepts to nonlinear systems. The higher order frequency response functions can be estimated
either using multi-dimensional FFT and windowing based algorithms(e.g., Vinh et al, 1987,
Kim and Powers, 1988) or by employing the NARMAX parametric approach(Billings and
Tsang,1989a, 1989b; Storer and Tomlinson, 1989). The multidimensional frequency response
functions which are obtained provide insight into the operation of complex nonlinear systems
and phenomena such as harmonics, gain compression/expansion, desensitisation and intermodu-
lation can be studied(Peyton-Jones and Billings, 1990; Zhang and Billings, 1992). Both the
magnitude and phase information is provided but unfortunately the inverse tangent which is
used to compute the phase angle yields the principal value of the phase between —rt and T.

Because of this the multidimensional phase plots often appear to be highly complex and
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discontinuous even when the corresponding gain plot exhibits clearly defined ridges and peaks.

This problem arises because the phase is wrapped in the narrow range of [—m,x].

In many cases it may be preferable to have a smooth continuous phase function rather than a
discontinuous principal value to aid graphical interpretation and to provide an analytical phase

function.

A procedure which produces a continuous phase curve from the principal value was initially
used to compute the complex cepstrum and is known as phase unwrapping(Oppenheim and
Schafer, 1975). Several numerical algorithms have subsequenctly been proposed to unwrap the
phase spectrum for a given signal(Tribolet, 1975; McGowan and Kuc, 1982; Moura and Bag-
geroer, 1988). In the present paper these ideas are extended to the nonlinear case where the
phase responses become multidimensional. Two phase unwrapping algorithms are developed
for the multidimensional phase plots associated with the generalised frequency response func-
tions of nonlinear systems. The unwrapped phase plots which are produced are shown to be far

easier to interpret and several examples are included to illustrate the concepts and ideas.

2. Nonlinear Phase Response and the Principal Value

Consider a single input single output nonlinear system with an input «(f) and output y(f) which

can be described by the Volterra model
N
Y0 =3 yu® ()
n=1

where y,(¢), the nth-order output of the system is defined by

o

Pally= [ - | Beg - - %) ﬁu(:—ri) dt; n>0 @)
e/t =1

]



and h,(Ty, - - - ,T,) is the n-th order Volterra kemel. In the frequency domain the n-th order
generalised frequency response function H,(jw;, - * * jw,) can then be defined as the n-

dimensional Fourier transform of 4,(ty, - - - ,T,,).
HyGor, - yjop) = [ [ by, o 5,) €80T gy g €)

Clearly the linear system case is given by n=1 where hi(T) is the impulse response and
H,(jw) the frequency response function. In polar form, the multivariate complex-valued func-

tion H,(*) is represented as
' PO ¢ —_ e s e’ltbn(mll T 1mn)
Hn(]mlﬂ 'an) = rn(wl’ ,UJ,,) (4)

where, following the convention of the linear case, I',(*) = IH, (jw,, - - - JO)I is called the

magnitude response and
D, (0, - ,@,) = L[Hn(jml, i B Jmn)] (5

is called the phase response. Strictly speaking, ®,(-) is a multi-valued function since any
integral multiple of 2% radians can be added to @, (-) without changing the complex value of
H,(-). In order to avoid ambiquilty @, (-) is usually restricted to lie in the range —7 to 7. The
value in this range is called the principal value. It has been an acceptable convention to plot
the principal value of phase over [, 7). If the computed value exceeds this range a jump of
127 is required to bring the phase back into the range. This problem is also the result of using
the inverse tangent function to compute the phase angle. That is, ordinarily, ®,() is given as
its principal value

m{H, oy, - - - jo,)]

ARG[H,(jo,, * - - jw,)] = tan™ Rel[H,(joy, - - - jo,)]

(6)

Although the use of principal value does not affect H,() at any individual point, many

artificial discontinuities of 27 are introduced and this makes it almost impossible to measure
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the net change in the phase of H,(-) as the frequency variables Wy, - - ,0, go from 0 to = (0
to 27 for discrete-time systems). As a consequence the classical analysis method in which the
phase and magnitude response are decomposed as an addition of functional factors become
difficult to implement. Graphically, plots of the phase functions are often disrupted when the
principal phase value is used. For example, the phase of I Ored ;o simply an analytical func-
tion @ = —(w;+w,) which should be a sloping plane in the two dimensional frequency
domain. But the plot of the principal phase value illustrated in Fig.1 appears to be far more
complicated and is almost impossible to interpret and recognise. Many practical nonlinear sys-
tems contain a pure delay element which will be reflected in the nonlinear transfer functions as

ot < +w,)

a multi-variable exponential multiplier e in each H,("). It is therefore not surpris-

ing that inspection of the phase plots associated with the generalised frequency response func-
tions of many real systems appear to be very complex and intricate. Clearly a new set of pro-

cedures need to be developed to overcome these problems.

3. Phase Unwrapping for Linear Systems

Phase unwrapping will be introduced for linear systems initially and then extended to the non-
linear case. For linear systems the frequency response functions are one dimensional that is

n=1 in eqn.(1) and (3). Given a linear frequency response function H(jw) the phase response

at some frequency ® can be written as

-1 ImH(o)]

arg[ H(jw)] = ta Re[H()]

+ 2n/ @)

where the integer / allows the phase to be continuous function of . Determining the value of /
defines the phase unwrapping process and this can be achieved in two ways. One approach is

to compute the principal value of the phase response using the inverse tangent of H(jw) and



then add or substract 27 at the point where a discountinuity is encountered. This is a very sim-
ple routine for the one dimensional linear case. The algorithm relies on the the detection of
discountinuiuties which is done by computing the difference between the principal values of
the phase at two adjacent frequencies w;_; and w, along the one dimensional frequency axes.
Whenever this difference is greater than a given threshold, a 27 shift is used. In order to dis-
tinguish this method from the analytical approach to be described below, this algorithm will be
called the "2 amending algorithm". This simple approach will yield the correct unwrapped
phase providing the frequency sampling is fine enough and the phase function is relatively
smooth. However, in many cases the sorting between natural variations of the phase and the

discontinuity induced by the modulo 27 operation becomes dubious.

Another less popular approach is to re-define the phase response analytically in terms of
integration of the phase derivative. For a given linear frequency response function H(jw),
although the argument of H(jw) is a multi-valued function, its first derivative, denoted as o’'(),

is still well-defined. For notational convenience define
A . A -
Hp(w) — Re[H(jw)] H,(u)) - Im[H(jw)] (8)

then, by formally computing the first derivative of the inverse tangent function on the right

hand side of egn.(7), the phase derivative is obtained as

#'(@) = 1 d | H(w)
Hi(w) |* do | Hp(w)

+ —

Hp(w)

" Hw)P do [H@) | - @

Hyw) 4 | Hfw) _ Hp(0)H' () - H{(@)H'g(w)
\H(jw)?

based on the standard expression for the derivative of an inverse tangent function



’

A%
1+v2

(arctan v)'= ( ). If Hp(w) and H/(®) are continuous functions and IH(jw)l0, the phase

derivative ¢’(-) will be a continuous function of ®. Thus an unwrapped phase ¢(w) at a par-

ticular frequency  can be unambiquiously defined as the integral of the derivative
w
(@) = ¢(wp) + [ ¢'(n) dn (10)
y

where ¢(wy) is the principal value obtained from the inverse tangent. For linear systems H(jw)
is a rational polynomial so the derivative of ¢() and consequently o(w) itself will be continu-
ous as long as |H(jw)l#). Therefore if the frequency response function is given, either in the
form of data or as an analytical expression the unwrapped phase can be computed easily from

egn.(9) and (10).

In signal processing phase unwrapping is mainly used for finding the continuous phase spec-
trum for a given signal. The signal is normally in the form of a discrete sequence and the
phase spectrum is extracted from the FFT data on a set of uniformly spaced frequencies. Most
existing algorithms therefore are based on the calulation of the phase derivative and then
integration from FFT data. But for the phase response functions estimated by parametric’
methods (eg NARMAX), the problem is much easier because an analytic form of the system
frequency response function is given at the relevant frequencies and hence both the derivative
and the integration can be accurately evaluated. The following example illustrates the the com-

putation involved.

Consider a linear system described by the transfer function

10(s+3)

G(s) = >
S(s4+2) (s7+s5+2)

(11)

The frequency response function G(j®) is given by replacing s with jw. Consider the
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frequency range from 0.1 to 100 Hz. Two derivatives, H’{(") and H'p(-), are obtained by per-

turbing the frequency variable @ with a small deviation, that is

Hp(o+Aw)—-Hp(w) , B H{o+Aw)-H ()
Aw (@) = Aw

H'p(w) =

where Aw=0.001 was used in the present analysis. All the values of Hp(-) and H/(*) are
directly extracted from the complex values of H(jw). The phase derivative can now be com-
puted using eqn.(9) and is shown in Fig.2. The unwrapped phase can then be evaluated at any
given frequency by integrating the derivative. An adaptive recursive Simpson's rule was
used for the numerical integration(Forsy et al,1977). To obtain the unwrapped phase curve on a
given sequence of frequency values W, k=1,2...,N, along the frequency axis, the unwrapped
value at each given W, can be evaluated seperately, all from the initial point . However the

computation can be speeded up by using the following recursive integration

(@) = ¢(ep) + | ¢'(M)dn =12, - - - (12)
with
HAw)
- -1
== [HR((D)

Notice that although the frequencies may be spaced very sparsely, the integration can still be
undertaken accurately between two adjacent frequencies, w,_; and @y, by means of numerical
'routines. Therefore the accuracy of the results does not depend on the frequency distribution
like many existing algorithms which are based on FFT derived estimates. The continuous phase
response unwrapped by the above precedure is given in Fig.3(a). It is seen that the phase
decreases monotonically from —-75 to —270 degrees (—3m/2). In comparison, the principal
value computed by inverse tangent is given in Fig.3(b), where a 2% jump is observed at

1.15 Hz to maintain the phase in the range [—T,7t].
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4. Phase Unwrapping for Nonlinear Systems

As stated earIiex: the frequency response functions for nonlinear systems are multi-dimensional
in nature and therefore so are the phase response functions. For many practical systems, with
moderate nonlinearities, the first two or three higher order frequency response functions in the
series of eqn.(2) and (3) will be sufficient to characterise the major features of the system. Fol-
lowing the basic ideas introduced in last section, two phase unwrapping algorithms are derived
for nonlinear systems by initially considering the second order generalised phase response and

then extending these results to the higher order generalised frequency response functions.

Algorithm 1: Integration Approach

Consider the second order generalised frequency response function H(jw, jw,) in eqn.(3) and
(4). To simplify the notation denote this as H(jw;,je,) = Hp(w;,05) + j H{®w;,w,) so that

the principal value of the phase response function can be computed as

H{w,,0,) :| £

ARG [H(ju)lJcoz)] = tan™!
HR(U)l,(D'z)
which is in the range [-7,7]. Analagous to the linear case a continuous phase response func-
tion can be re-defined in terms of the integration of the partial derivatives

w, W,

oD (V) od(v,m,)
d)(ﬂ)l,mz) - (D((Dlo.,(.l)zo) + ‘[ _"—a\iL—dV + '[ _"av__dv (14)
Wag Wig
where the partial derivatives are given by
0H (@o,V) OH p(w;0,V)
3D(@yy)  R@10V)I 57— ~ H{woV)
= 15
av IH(jw ;)12 ()
and
OH [(V,@,) OH (v, 00,)
ID(V,0y) SR Hy(v,0p)———— "

av IH(jv jw,)?



The initial value ®(w,q,0,;) is computed from the inverse tangént. For a wide class of non-
linear systems, it has been shown (Peyton-Jones and Billings, 1989) that the higher order fre-
quency response functions are rational polynomials of the frequency variables @, - - - 0,
-jml’ _

(e i ,e_jw” for nonlinear discrete-time systems). Therefore the partial derivatives should

be well-defined and consequently so should the unwrapped phase response as long as

H, (-)}=0.

The effects of eqn.(14) can be illustrated using a simple complex function ¢ /@) which is a
basic delay element in the second order transfer function. As noted earlier the phase delay
induced by this element is a linear function given by the two input frequency sum (01+0,).
However, this property can hardly be recognised from the plot of the principal value given in

Fig.1. Now use the new definition:

gHere) _ cos(w;+w,) = j sin(w;+w,) an

Let @;0=,0=0. The partial derivatives in eqn.(15) and (16) are calculated as

a<I)(v,u)2,) ]
Tt —Cos(V+w,)cos(V+w,) — sin(V-+H®,)sin(v+m,) = ~1 (18)

and similarly

0d0.v) _
vl (19)
Using eqn.(14) yields
arg [e“f(‘“'*‘"ﬂ] = ©(0,0)+{~wH0]+{0-0, J=~(0,+,) (20)

which is the desired result.

Implementation of the integration method for the nonlinear case is similar to the linear one. No



matter how complicated the transfer function is the partial derivatives which are used in
eqn.(15) and (16) can always be obtained by perturbation using a small deviation (e.g.
Aw=0.001) on the relevant frequency variable while keeping the other frequencies fixed. The
numerical integrations in eqn.(14) can then be undertaken to give the unwrapped phése
response value ®(w;,w,) at any particular point (©d;,0,). The initial point can be taken as the
origin (0,0) or chosen arbitrarily as (;q,@,). The selection of the initial point may affect the
integration time and probably the relative position of the resulting phase surface. The results
obtained with different initial points may differ from each other by 21 but will have the same

shape.

In order to get a 3D mesh surface for the unwrapped phase response, the two frequency axes
are each sampled to form an NxM grid. The 3D graphical surface can then be obtained by
computing the unwrapped phase value at every point on the frequency grid. All the integrations
are evaluated seperately from each other. This is the most straightforward implementation of
the algorithm but it will take a long time to complete, even for a very simple example. For-
tunately a fast algorithm can be derived based on recursive computation. Assume the two
dimensional frequency domain is a NxM grid and an arbitrary point on the grid is denoted as
[w,(D), wy(k)] with i=1,...N and k=1,....M. Denote the two integrations in eqn.(14) as /; and
I,, respectively, so that they are re-expressed as

(k)

oP(w;0,V)
Llo®] = | '_av]_o_dv @1
(i)
oD (v,w-(k))
Lo, (D),0,(0)] = J TW (22)

Clearly /; is independent of @; while /, depends on both @) and . So /; can be computed

recursively along the @, axis by implementing a single loop

= 10=



8 30(w,0,v)

I[wy(K)] = Lw,(k-1)] + > (23)
Wy(k~1) '
for k=2,....M and
(1)
0D(w;4,V)
Lo, = [ —==—dv (24)

1)

For a given w,(k) with k fixed, I, can also be recursively computed along the m; axis by an

inner loop within the /; loop. That is, for any given integer k

“”j@ AD(V,w,(k))

15[0,(D,02(k)] = L, (i-1),w4(k)] + 3v

av i=2,.N (25
@, (i-1)

The first value for /, should be computed as the initial value before starting the inner loop, that
is, for any given &

w (1)

oD (v,w,(k))
BloMe®) = [ —=F—av 26)

After going through every point on the NxM grid, /; and /, are calculated individually through
two inlaid loops. Then the unwrapped phase is calculated at every point on the frequency grid

by summing the two integrations and the initial value
D[, (1),0,(k)] = Dlw;0,w40] + Ii[an (k)] + Lo, (D),0,(k)] i=1,.N; k=1,..M(27)

The initial point can be chosen as the first point in the input domain, i.e., let ;9 = wy(1) and
(g0 = Wy(1). Then the unwrapped phase surface will always overlap with the conventional
wrapped one at the begining. By using the recursive implementation, a great deal of time is
saved. The examples in the next section indicated that the recursive implementation is almost

ten times faster than the basic approach.

This approach can also be extended to the more general case for n>2 in eqn.(1) and (2). The
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derivation of the unwrapped phase for these more complex cases is given in Appendix L

Algorithm 2: 21 amending approach

Similar to the linear case this algorithm computes the principal value of the phase response
using the inverse tangent associated with H,(-), and then unwraps by appropriately processing
the principal value data. For the second order case, the data matrix of principal values will be
an NxM array with all values within the range [—7,7]. The unwrapping procedure involves the
application of two one dimensional phase unwrappings on the two axes followed by a two

dimensional point-to-point unwrapping over the remainder of the matrix.

The algorithm proceeds as follows. First, the principal phase values along the two frequency
axes, ®[w;(k),w,0] and D[w;g,w,(#)] with k=1,...M and i=1,...,N are unwrapped by simply
indexing k and i, and adding or substracting 21t whenever a phase discontinuity is encountered,
Following these one dimensional unwrappings on the axes, the ren.lainder of the phase matrix
is scanned in the manner indicated in Fig.4. Suppose for example that the "present point" is at
(n,m) (boxed lattice point). The differences between the “present” phase value and the three
"previously” unwrapped neighbouring phase values at (n—=1,m=1), (n—1,m) and (nm-1),
respectively (lattice points marked with ’X’ in Fig.4) are each calculated. If a discontinuity is
encountered, the multiple of 27 required to remove the discontinuity at that point is added (or
substracted) to the phase. Then the operation moves to the next point, until the whole phase

array is processed. Notice that the first row and first column (in the shadowed box) have been

unwrapped by one dimensional algorithm beforehand.

This algorithm can also be used to unwrap the higher order (n>3) phase responses provided

the corresponding principal value data is available for processing. The procedure still consists
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of n one dimensional phase unwrappings on the n frequency axes and an n-dimensional point

checking over the remainder by comparing the 'present point” with the 'previous’ points. In the

nth order case, the number of 'previous points’ will be n = n_(nzﬁ)_

An obvious advantage of the 21 amending algorithm is that it is simple, fast and numerically
reliable since there is not much numerical computation involved. In comparison, the integration
method takes much longer to complete (even with recursive implementation) and may fail for
some functions due to purely numerical problems. However the integration method gives an
independent evaluation of the re-defined continuous phase for a given complex-valued function,
regardless of the sclection of the frequency sampling, function characteristcs etc and these are
significant advantage because the 27 amending algorithm requires that the natural variations
between the adjacent points are relatively small to ensure the discontinuities are sorted out une-

quivacally.

5. Examples

The first example is a NARMAX model given by
y(k) = 0.5y(k=1) + u(k-2) + 0.1u%(k=1) (28)

The first and second order transfer functions can be derived as(Peyton-Jone and Billings,1989)

_ —2jw o 0.1 e—j(m1+0>z)
17"1(100)—1—_E_j—m and H,(jojw,) = 10,57 @) =2

The second order phase response based on principal values is shown in Fig.5(a). In com-
parison, the unwrapped phase response computed by the integration method is given in

Fig.5(b) which shows that the jump from —% to 7 along fi+f>=0 has been united to form a

o 1 .



smooth surface. The same result was also obtained by using the 2 amending algorithm.

If the output time data generated from eqn.(28) is now shifted back three steps with respect to
the input data and a new model is estimated a model with a pure delay factor will be obtained

and the second order transfer function will then become

0. 16‘4]"(031"'“32)

Hi(joyjay) = e YO0y, Gy, o) = (30)

1-0.5¢7/(@re2)
The wrapped second order phase response for this delayed system is given in Fig.6(a). Due to
the presence of the pure delay many pleats are observed in the phase response plot which
becomes very difficult to intepret. Using the integration or the 27 amending algorithm the
phase response can be fully unwrapped to reveal a smoothly sloping surface as shown in
Fig.6(b). A comparison with to Fig.5(b) shows the phase response of the delayed data system
maintains the same basic shape but has a larger slope. This is because an extra phase lag which
increases linearly with the frequency sum (w+w,) is added to the phase response due to the

delay. The unwrapped phase response is clearly much easier to intepret

The time domain model for the second example is
yk) = O.Sy(k——l)‘ + 0.5u(k=1) + 0.2u(k~1)y(k-1) (31

from which the first and second order phase response functions are derived as

_ 5670 o 0.2[H (o, W+ H, (jeo) e 7 (@rtea)
HI(](D) = -'0_5§T" and Hz(](l)l,j(l)ﬂ = . : 1. (32)
1-0.8¢7¢ 1-0.8¢7@res)

The second order phase response is shown by principal value in Fig.7. Although the time
domain model is superticially no more complicated than the previous example, eqn.(28), the
phase response is very different. In Fig.7, several cuts can be observed and it is difficult to tell

which is caused by the 2 modulo effect and which are inherent variations of the function
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itself. The unwrapped phase is computed using the integration algorithm and is shown in Fig.8.
A comparison with the wrapped phase response in Fig.7 shows that thé unwrapped phase is

neat and easy to interpret. In fact, Fig.8 can be decomposed as an addition of the phases of

1

three elemental factors: H(jw,)+H;(jw,), e V%) 404 the denominator ——
i} 1-0.5¢7/(@rto)

which are illustrated in Figs.9(a), (b) and (c), respectively. The basic pattemn of the phase
response plot is contributed by H;(jw,HH;(jo,) while the inclination of the whole surface
indicates the presence of an exponential factor e (@ @) Tpe effect of the denominator is
relatively tiny, this just bends the graph slightly. The difference between the unwrapped phase
response and the original principal value is illustrated in Fig.10. It is seen that a number of 27
values are used in some area to amend the wrapped phase response while the physical

significance is not affected.

6. Conclusions

The phase unwrapping problem for nonlinear Systems has been studied and two algorithms
have been developed to unwrap the higher order generalised phase response functions. Algo-
rithms based on integrating the partial derivatives of the phase and using multiples of 27 to
amend the principal value were derived. The implementation of the algorithms has been illus-
trated by examples and it has been shown that the unwrapped phase responses are much easier
to interpret. The use of unwrapped phase also allows the entire phase response to be calculated
by superposing the phase of the various factors and this together with the parametric estimation
approach for the generalised frequency response functions provides a very powerful toolkit for

the analysis of nonlinear systems in the frequency domain.
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8. Appdendix I: Unwrapped Phase For Higher Order Frequency Response Functions
For general case, given a nth order frequency response function
Hn(jﬂ)l,...J(Dn) = HR(G)I""’(DH) + J H{(CDI,...,CD") (A-1)

denote the unwrapped phase as D(wy,...,,). Then

)y

od(v,,m,,...,m,)
J' > avy = O(w},w,,...,0,) — ®0,0,,....0,)
0 Vi

2 30(0,v,,...,0,)

| dvy = O(0,m,...,0,) — ®(0,0,....0,)

" 0D (0.,...,0,Vj, Wy 1. ®,)
J‘ de = (I)(O""’O’(Dk’wk+l""?(Dn) - (D(O""’O!O?mk-i-l""’mn)
0 av,

®,

3d(0,....0,v,)

g——ar—-dvn = (0,...,0,0,) - @(0....,0,0)

Therefore the nth order unwrapped phase response can be defined as

m’!

09(0....,0,v,)
(g, 0,) = (0,...0) + | dv, + ...
i av,
% 3D(0,....0,v,.0 w,) BV, @s,...,00. )
+_[ LT R RN e dvk+...+j s i dv, (A-2)

The partial derivative is given by

0D(@y,.... V..., 0,)
avk -

HR(G)I,...,Vk,...,(Dn)H'[(Q)l,...,Vk,...,ﬁ)n) - Hf(('ol"“"Vk""’mn)H,R(ml""’Vk""’mn)

(HGW ../ V...j, )2

(A-3)
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where H'p(*) and H’{(*) can always be obtained by perturbation on the relevant frequency variable.
Notice that for the above during derivation the initial point has been chosen as (0,...,0) for notational

simplicity. This can be replaced by an arbitrary point (@yq,...,0,0) if required.
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Fig.1 Principal value plot for ¢~ (®1r*®2,

Fig.2 Derivative of phase response function for the linear system example.

Fig.3 The phase response function for the linear system example:

(a) Unwrapped phase response; (b) Principal value
Fig.4 Tlustration of the 21 amending algorithm for the second order case.

Fig.5 Second order phase response before shifting

(a) principal value;  (b) unwrapped

Fig.5 Second order phase response after shifting

(a) principal value;  (b) unwrapped
Fig.7 Principal value for second nonlinear example.
Fig.8 Unwrapped phase response for second nonlinear example.
Fig.9 The phase plots of the factors:

(@) H,(jo)+H (j ,);
(b) e/ e,

(©) 1/1-0.8¢ 7 (@r+®)
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