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Abstract:

New higher order carrelation tests which use model residuals combined wirh System
inputs and OUIDULS are presented ro check the validity of a seneral cluss of nonlinear moc-
els. The new method s Mlustrared by testing both simple ane complex nonlineqy System
maodels.

1.0 Introduction

and efficient approximations to a wide range of linear systemsg they fail to adequately
describe nonlinear Systems. Nonlinear models are therefore increasingly used to approxi-
mate a wide variety of Systems with complex dynamics. Mode] validation can g]5g be
divided into two majn areas, linear model validation and nonlinear mode] validation,

A number of methods have been developed for linear model validation, Correlation based
validation involves computing correlation functions composed of mode] residuals and Sys-
tem inputs and testing if these lie within preset confidence intervals. Bohiin(1971), Box
and Jenkins (1976) and Soderstrom and Stoica (1990) studied the duto-correlation func-
tion (ACF) of the residuals and the cross-correlation function (CCF) between inputs and
residuals and Pearson (1900), Bohlin (1971), and Baglivo, Olivier and Pagano (1992)
investigated Chi-Squared (x°) tests. Recently Cressje and Read (1989) reviewed the ljter-
ature on goodness of fi testing using the X° test. Model comparison based validation
involves applying statistical tests to compare models pairwise and 1o select the best mode]
with the minimum or Maximum statistic value. Representative dpproaches are the F test
(Wadsworth and Bryan 1974) and the Akaike Information Criterion (AIC) (Akaike 1974).

Billings (1987) introduced higher order correlation functions and ap €xtension to the >
tests to overcome some of these problems, e




Correlation based model validity tests have an advantage compared with model compari-
son based methods because it is possible to diagnose directly if an identified model is ade-
quate or not without testing all the possible model sets. Model comparison methods
however may involve testing over the vast combinations of models which are possible
when the system is nonlinear and complex. But traditional correlation based model valid-
ity tests can sometimes exhibit reduced diagnosis power.

In the present study new tests designed to enhance the power of correlation based tests
while simplifying the computations for nonlinear models are derived based on higher
order correlation functions composed of residuals, inputs and particularly outputs are
introduced. The characteristics of the new tests and the relationship to previous tests are

investigated and the application of the tests to both simple and complex nonlinear system
models is demonstrated.

2.0 Correlation tests using residuals and inputs

In order to understand the development of correlation based model validity tests and the
derivation of new tests, linear model validation is considered initially and then progres-
sively nonlinear model validation issues are introduced. One of the new tests is presented
based on two higher order correlation functions, a higher order residual auto-correlation
function and a higher order cross-correlation function between the residuals and input.

A SISO (Single Input and Single Output) linear discrete time model can be expressed as

y() =0 LW e e ()

(2.1)
where ¢ (r=1, 2, ...) is a time index and
Yl =y -1, Ly (t=1)]
'l = lu(t=1), .,u(t=r)]
el =le(r=1), .., e(t-1)]
(2.2)

are output, input and residual vectors respectively with delayed elements from 1 to rfi()

is a linear function which satisfies superposition and homogeneity
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(2.3)

A typical parametric realization of eqn (2.2) is the ARMAX (AutoRegressive Moving
Average with eXogenous input) model




y(0 = X Loy (=) +Bu(t=j) +he(t=j) ] +e (1)
i=1
2.4)

Ideally the residual (¢) should be reduced to an uncorrelated sequence denoted by e(r)
with zero mean and finite variance. Therefore correlation based model validity tests are
used to check if

e(r) =e(r)

(2.5)

This can be done by testing if all the correlation functions are within the preset confidence
intervals. When eqgn (2.5) is true Bohlin's test (1971) shows that

N-1
D (e(n) -8 (e(t-1) - &)
q)se(I):r: N
D (e() -9
=1
I, t=0

0, otherwise

N-1
(u(r) —u) (e(r—1) —€)
i

0, (0) = = =0, V1

N -1 b -2
J(Z (2 (1) —u)'MZ (e (1) —8)']
=il

=1

(2.6)

where ¢ge(T) and ¢,,(7) are the normalised residual auto-correlation function and Cross
correlation function between the input and residuals respectively. The overbar denotes the
time average operation to give

(2.7)




For large N the correlation function estimates given in eqn (2.6) are asymptotically normal
with zero mean and finite variance, the standard deviations are 7/NN and the 95% confi-
dence limits are therefore approximately /.95/ YN. To illustrate the method consider
three typical residuals from an ARMAX model as examples

e (1) =e(t=1) +e(r)
&, (1) =u(t=1) +e(r)
g, (1) =y(t=1) +e(r)
(2.8)

where the input u(t) is an uncorrelated persistently exciting sequence with zero mean and
finite variance and the noise e(z) is defined above. $ec(T) can be used to check for delayed
noise terms like e(t-j) in g(1). Similarly ¢,.(t) can be used to check for u(t-j) terms in g(z).
When the residuals include delayed outputs like Y(t-j) both ¢¢e(T) and 9,¢(T) will give an
indication that £(z) is correlated because y(r-1) is auto-correlated and cross-correlated with
the input.

Using simple algebraic operations, the first example in eqn (2.8) to gives
,Lt=0
¢, (1) = {p,‘r= 1

171
0, otherwise

¢, (1) =0,V1
I
(2.9)
where 0 < | p | < 1is a constant. For the second example
0, (0= ("0
€.E, ~ 10, otherwise
p,T=1
T)i=
qJ”E:( ) 0, otherwise
(2.10)

In summary Bohlin’s and Box and Jenkins® approach is to determine whether there is evi-
dence of an inadequate model and also to suggest ways in which the model may be modi-
fied or improved.

For nonlinear models the validity tests are not as sunple as in the linear case because non-
linear terms can exist in the residuals. Consider a SISO nonlinear discrete model

y() =£,07d e e ()

(2113
where the output, input and residual vectors have been defined in eqn (2.2). However the

nonlinear function f,(.) will not in general satisfy the superposition and homogeneity prin-
ciple. A typical parametric expression for eqn (2.11) is the polynomial NARMAX (Non-
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linear AutoRegressive Moving Average with eXogenous input) mode! (Leontaritis and
Billings 1985)

N
y(0) = 3 op (1) +e(1)
j=1

(2.12)

where p(r) denotes nonlinear terms such as pi(t)=y(t-1)u(t-1), p-(t)=u?(t)e(r-1) and
ps(t)=€(1-3).

Simple nonlinear residuals may take the form of terms such as

g, (1) =e(r=2)e(t-5) +e(s)

ez(r) =u(r=10u(r=3)+e(1)
83([) =u(r=1)e(t=2)+e (1)
g,(0) =y(t=1)e(t=2) +e (1)

(2.13)
and so on.

The simple ACF and CCF tests are now no longer sufficient (Billings and Voon 1983) and
new tests have to be developed. One approach would be to use multidimensional correla-
tion functions such as Ggee(T;,T5) 0.ue(T1T2) and ¢,6:(T;,T2) to check for g,(1), €->(t), and
€;() respectively in eqn (2.13). This approach however involves two dimensional correla-
tions and this causes an enormous increase in the computations. This could be extended to
a 3-D correlation function Qgeee(T;,T5,T;) for the case

e(t) =e(t=1)e(t=2)e(r-5) +e (1)

(2.14)

but this is clearly unrealistic in practice. Alternatively an n dimensional correlation func-
tion can be projected into a single index higher order correlation function with 5 points.
This approach leads to the introduction of two higher order correlation functions

N-1
> (1) —€?) (e (t-1) —€2)
q)E:E:(T) = L N %
D (e(n) —€h)”
=1




Z 0 -u)(E (t— )—;2)

q’uzez(T) = {\.."= N —
J[E (1) - 1) ](Z(e-’-(r)—sz) ]
= 1 =1

(2.15)
where

(2.16)

(1:) can be used to detect delayed nonlinear noise terms like e(t-2)e’(t-5) and q),, . ()
can be used to detect delayed nonlinear input terms like w(r-1)u(r-2). Both (]) (1) and
o, ¢-(T) should detect other terms such as u(z-1)e(t- 1), y(t-1)u(t-1) and so on in the residu-
als. When the residuals g(r) are reduced to a sequence which is uncorrelated with all linear
and nonlinear combinations of past inputs and outputs then ideally

l,t=1
0,.(1) ={

35 0, otherwise

0 2 (1) =0,V1

(2:17)
This follows because for large N and assuming ergodicity
D (1) = E[e¥ ()7 (1-1))
gD =E [ (1) e? (1-1)]
(2.18)

where E[.] is the expectation operator and
20 = e (1) —E[e"(n)] :
JEL[2 () —E[e2(0]]7]
u* (t) - E [u2 ()]

JELLE () —EL (0113

W (f) =




(2.19)

are normalized. When g(t)=e¢(t) these tests yield
0,2, (0) = E[e¥ ()e¥ (1-1)]

=E[e¥ (0e¥ (1-1)]

{E[(ez"(r) Vi I T
=L E[ (D]E[e¥ (t-=1)] =0, otherwise

0 ..(t) = E[u® (¥ (t-1)]

g
=E[” (D]1E[¥ (1-1)] =0, V1
(2.20)
To illustrate these tests consider the first two examples in eqn (2.13). For the first case
1,t=0
ppT=2
s s (1) =
(bEIE?( : Py T=35
0, otherwise
q)u?e: (1) =0,V1
(2.21)
where 0 < | p; | < 1and 0 < | p, | < 1 are constants. For the second example
4. (1) 1,7=0
o
€383 0, otherwise
Lit=10
pprT=1
iz L) &
q)u'si( ) Py T= 3
0, otherwise
(2.22)

The tests correctly identify the missing terms in both cases since either §¢>¢?(1)=0, 10 or
0,e”(1)=0, V 1. The two tests can also be used to diagnose omitted linear model terms in
theresiduals Applyingtheteststothefirsttwolinearresidualexamplesofeqn(2.8)gives(EQ 1.1)




I,t=0
¢Ef€|:('f) = {pl,r= 1

0, 0therwise
Q)ﬁ;: (t)y =10 Yt

(1.2}
and for the second example
6 .. (1) I,t=0
22(T) =
E3€) 0, otherwise
p,T=1
¢ (0 ={" _
“Ey 0, otherwise
(1.3)

The disadvantage of these tests is that the higher order correlation functions can some-
times exhibit less power when the noise and input variances are small because the fourth
and higher moments become small. Billings and Voon (1986) used a combination of five
tests to try to increase the discriminatory power. An alternative solution may be to intro-
duce delayed output terms to form more powerful higher order correlation functions while
maintaining the computational simplicity. This is presented in the following section.

3.0 Correlation tests using residuals, inputs and outputs

Two new tests based on higher order cross correlation functions between the output and
residuals and between the output, residuals and input, are presented to enhance the power
of correlation based model validity tests. These two tests are
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(3.1)
where




a(r) =y()e(rn)
— 1 N
0= ye= Nzly(r)e(r)

(3.2)

In the ideal case where the residuals are zero mean and uncorrelated with all linear and
nonlinear combinations of past inputs and outputs these tests yield

(=20

s =4 7

q)“E' 0, otherwise
¢a“2(r) =0, Vrt

(3.3)

Where k- is a constant to be defined in eqn (3.6) and these results can be proved by consid-
ering the output of eqn (2.11)

v =£,0"" et e ve(n)

=5 +e()

(3.4)

which consists of the one step ahead predicted output plus residual. Therefore eqn (3.1)
can be written as

] (T) - ,[CIQ)("?E)E:(T) +k2¢£3€2(1)

oE (ye)e
q)our: (T): q)U’E)H ) - kl(p(_\-’E)u:(‘t) +k2¢u:E:(T)
(3.5)
where
N N —
AjE (_}“’(I)E(!)—ysh Jz fe2 (1) —&%)
o =1 =
hi= T S TH .
ﬁ (> (1)e(r) —yE)° JZ ne(r) —ye)”
=1 =
(3.6)

In the ideal case where the model is unbiased such that g(¢) is reduced to a zero mean
uncorrelated sequence

) (1) =0,V1

(§e) e’

(tr) =0,V1

(ye) u’




(3.7)

and therefore eqn (3.5) becomes
Ooer (1) = kb, (D)
q)aul (1) = k:"q)m:t»:2 (0

(3.8)

which are the same, except for the constant &5, as the correlation functions presented with
only residuals and inputs in eqn (2.15).

If the model is inadequate ¢ge)e*(T) and e, (T) will test the correlation between the one
step ahead predicted output from the identified model and the residual. These enhance the
tests based on residuals and inputs only. It should be noticed that unlike traditional norma-
lised ACF test where ¢¢¢(0) = 1 is not effected by the amplitude of the residual, the new
test Oy,e)e*(0) / &3 is affected by the residual to produce ¢;,,,2(0) / k> = 1 in the ideal case
when the one step ahead prediction and the residual are uncorrelated but can be | §ye1e>(0)
/ ko | < 1 otherwise.

For large N the correlation function estimates given in eqn (3.1) are still asymptotically
normal with zero mean and finite variance from the assumption of the central limit theo-
rem (Bowker and Lieberman 1972) and the standard deviations are //NN and the 95%
confidence limits are therefore approximately /.95/ N,

An associated ¥* test can also be developed. Define

12

g* (] =€

i — 2
JZ (% (1) —€?)

we (1) =

(3.9
and
| N
“l’. = NE&([)W'E(I)
fi=i |
(3.10)
where
G =lo(t=1),0(t=2),..,a(t-5)])7
a(r) =y(r)e(r)
1 N
EZOL?‘([) =2
1=1
(3.11)
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Assuming all odd order moments of the random variable g(t) are zero gives

1 ad 1 ad
Efu.] = NE[Z&(:)WEU)} = 25[3(’”5[%(!)] = 0,,,

(3.12)

From the central limit theorem (Bowker and Liebernan 1972) the random vector is asymp-
totically normal with zero mean and variance given by eqn (3.12). The random vector Ue
can be normalized as

JN

¢ = Tuslsm
(3.13)
which 1s asymptotically zero mean with unit variance. Then the variable
. Nedn,
dE = gEg{-j = r]
(3.14)

is asymptotically ¥* distributed with s degrees of freedom where s is the dimension of the
vector o). This statistic d provides an alternative basis for nonlinear model validation.
The confidence interval of d; is given by

dg <k, (5)

(3.15)

where k. (s) is the critical value of the ¥? distribution with s degrees of freedom and Y is
the significance level for the model acceptance region. Similarly a %2 statistic for the input
test in the residuals can be developed by assuming the worst case where the input is a ran-
dom sequence with odd moments all zero.

d, < ky (5)

(3.16)

where

11



(3.17)

The previous %2 test (Leontaritis and Billings 1985) for nonlinear models suffered from
the necessity to test several possible missing model terms before any confidence that the
model had been properly validated could be established. The new test gives a rule to
choose test terms y(0)e(r), u*(r), *(¢) only.

4.0 Applications

Three simulated systems were selected to demonstrate the new model validity test meth-
ods. Each data sequence was of length /000, and the input for the first two simulated sys-
tems was a uniformly distributed uncorrelated sequence with zero mean and variance /.33
and the noise sequence was an uncorrelated normally distributed sequence with zero mean
and variance 0.36.

Example one
This simulated system consisted of the model
yir) = uwlr=1) Felr=2)e(r=3) +e(r)
(4.1)
Assuming that an inadequate model has been estimated so that the residuals become
e(r) =e(t=2)e(t=5)+e(r)
(4.2)

Figure 1(a) shows that the results obtained from using the simple linear ACF and CCF
tests give a false indication that the model has been properly identified because
dee(1)=0(1) and ¢,(v)=0. Figure 1(b) however shows that the results obtained using the
new tests ¢O,E)£3(‘c) and ¢(_}.€,,,3('C) give a correct indication that the model has been incor-
rectly identified. Close inspection shows that ¢,¢).*(T) is outside the confidence intervals
at two points T=2 and 5.

Example two

Consider the model

y() =u(t=1)+u(t=2)e(r=5)+e (1)

4.3)
and assume a residual of the form

E(r) = u(t=2)e(t=5)+e (1)

(4.4)

12



Once again the linear ACF and CCF tests Figure 2(a) fail to detect the nonlinear residuals.
The new tests O,e)e(t) and e, (T) in Figure 2(b) are plotted to show that ¢ye)e*(T) and
¢(y£)“g(,r) are outside confidence intervals at T = 5, 2 respectively.

Example three
Consider the nonlinear rational model
_y(u-1) +ut-1) +y(t=Du(t=1)+y(t=1e(r=1) i

y (1) 3
1+y“(t=1)+u(t—1)e(r-1)

e (1)

4.5)

which is of a form which often appears in the chemical and related fields (Ford, Tittering-
ton and Kitsos 1989, Dimitrov and Kamenski 1991) and was used by Narendra and
Parthasarathy (1990) to study the approximation of severe nonlinearities using neural net-
works.

Simulated output data were generated using the model of eqn (4.5) with uncorrelated uni-
formly distributed (zero mean and variance of /.0) input sequence and uncorrelated nor-
mally distributed (zero mean and variance of 0.0/) noise sequence. Only the input and
output data were available for identification. The resultant identification using the nonlin-
ear rational model identification algorithm (Zhu and Billings 1993, Billings and Zhu 1993)
which included model term selection and associated parameter estimation produced the
results in Table 1. Figure 3 (a,b,c) show the measured output, the one step ahead model
predictions and residuals respectively and Figure 4 (a,b) show the linear ACF and CCF
tests and the new tests respectively.

Terms Selected Parameters estimated
Numerator
u(t-1) 0.996
y(t-1) 1.016
y(t-1)u(t-1) 0.980
y(t-Le(t-1) 1.015
Denominator
y2(t-1) 0.998
u(e-Te(t-1) 0.925
Noise Variance 0.011
Table 1

5.0 Conclusions

The important problem of validating nonlinear models has been investigated and two new
correlation based tests have been proposed. The new tests are based on correlation func-
tions defined in terms of the system outputs and these appear to provide improved discrim-
inatory performance compared with eurlier tests based purely on residuals and inputs.
Although only simple nonlinear polynomial and rational model examples have been used

13



as illustrations, largely to enable the results to be related back to the omitted model terms,
the new tests should be applicable to a much wider class of nonlinear models including
neural networks.
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