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Abstract

A new system methodology for identifying nonlinear NARMAX models, from noise cor-
rupted data, is introduced based on semi-orthogonal wavelet multiresolution approximations.
An adaptive model sequencing strategy is introduced to infer model complexity from the data
while reducing computational costs. This is used in conjunction with an iterative orthogonal-
forward-regression routine coupled with model validity tests to identify sparse but accurate
wavelet series representations of nonlinear processes. Experimental data from two real systems,
a liquid level system and from a civil engineering structure are used to illustrate the effectiveness
of the new identification procedure.

1 Introduction

Mathematical models are fundamental for the analysis of system behaviour, in controller design
and many scientific and engineering studies. In every case an essential requirement of the model
is an ability to reproduce the dynamical characteristics of the system as closely as possible.

A large class of dynamical systems can be represented with good approximation by linear
models. But linear models cannot reproduce dynamical regimes which result from nonlinear
interactions such as hysteresis, amplitude dependence, bifurcation or chaos. Nonlinear models
will be required to capture these effects and this in turn leads to the complex problem asso-
ciated with identifying accurate nonlinear models from noise corrupted data. If any a priori
information about the system is known, this can be included by priming the algorithm with
known model terms. But often the models are constructed purely from experimental data. This
defines the black box identification problem.

The NARMAX model (Leontaritis and Billings, 1985a) can describe a wide range of non-
linear dynamical behaviours and includes many other nonlinear model types, including the
Volterra, Hammerstein and Wiener models, as special cases (Pearson and Ogunnaike, 1997).
However, identifying the relationship which describes some observed nonlinear interactions 1s
a difficult problem, due to the immense number of possible model terms and combinations of
terms. To overcome this problem many applications make use of methods for decomposing
arbitrary functions into sums of special functions. Such methods of relating unknown functions
or empirically derived variables to a set of fundamental basis functions are particularly useful
in nonlinear system identification (5joberg et al., 1995; Juditski et al., 1995). The identification
problem can then be reduced to a search for a nonlinear parametrisation of the NARMAX model



within a specific family of functions which can provide an exact or approximate representation
of the observed dynamics.

The choice of approximating functions and the efficiency of the algorithm used to select the
model structure are key elements in the identification procedure. Some classes of functions for
example, are not rich enough to guarantee the convergence of the approximation to an arbitrary
function. These can approximate efficiently only certain families of nonlinear input /output
mappings. In principle, the more general the functions that can be approximated the more
flexible the approach. Usually by increasing the approximation power, less parameters are
necessary, hence the model becomes simpler. The drawback is that usually as the flexibility
increases the method becomes more susceptible to errors present in the measurements which
can lead to a false model. Finding the optimal parametrisation can be achieved by performing
the model search successively, within function classes of increasing complexity until the correct
model if found.

The necessary framework for implementing such an adaptive identification approach is
provided by recent mathematical theories dealing with the representation of functions and
distributions by multiresolution wavelet series. At the heart of the method is the concept of
approximating an arbitrary nonlinear function in terms of dilates and translates of a single
function, the 'mother’ wavelet function. Unlike the Fourier basis functions the wavelet basis
functions are localised both in space and frequency and provide an extremely versatile tool for
synthetising the most "nasty” functions, very economically.

Various theoretical studies have proven that wavelet based approximation schemes are
asymptotically near-optimal (DeVore et al., 1992), in the sense that the convergence rates are
equal to the best attainable using general nonlinear approximation schemes, over a wide range
of function spaces. In practice this means that wavelet approximations converge fast, in the
appropriate norm, to any arbitrary function f regardless of the function class.

These properties make wavelets ideal model building blocks in nonlinear system 1dentifi-
cation. The crucial problems are choosing, among many possible wavelet representations, the
best suited for this task and developing efficient wavelet selection algorithms which avoid the
prohibitive computational costs mentioned by other studies (Zhang, 1997).

This paper presents a new approach to identifying NARMAX models from experimental
input/output measurements based on a special class of wavelet multiresolution decompositions.
A previous study has highlighted the efficiency of this method in the analysis of chaotic systems
(Billings and Coca, 1999). The present work aims to demonstrate the applicability of this novel
identification procedure to more general engineering systems. The method involves expanding
the intrinsic nonlinearity in the NARMAX model as a multi-variable multiresolution wavelet
series implemented with B-spline wavelets (Chui and Wang, 1992; Chui, 1992). Essential
elements of this approach are the wavelet selection and model refinement algorithms, which
were designed to minimise the computational cost and to provide a parsimonious representation
of the dynamical process.

Inspired by the projection pursuit algorithm of Friedman and the ASMOD model introduced
by Kavli (1993,1994), a new adaptive model sequencing strategy has been developed which ex-
ploits the hierarchical approximation structure provided by wavelet multiresolution approxima-
tions (Mallat, 1989) and the approximation properties of the B-spline wavelets. Starting with




a simple model form, the structure is refined iteratively until the selection algorithm produces
a suitable model. A fast and efficient selection algorithm, based on the Orthogonal Forward
Regression (OFR) (Chen et al., 1989), is then used to select only the relevant wavelet basis
functions and to include these in the final model. Validation tests are used throughout to guide
the model refinement process. The new procedures are illustrated using two real data sets from
a liquid level system and a civil engineering structure.

2 DMathematical Realisations of Dynamical Systems

A dynamical system is a quadruple & = (7, &,U, ¢) where 7 is a time set X' is a nonempty
set called the state space of I, U is a nonempty set called the input or control space of ¥ and
¢ : Ag — A is a transition map ¥ which is defined on a subset Ay of

{(t7t0a$)u) | to,t € ‘]—1 to < i, z € /'t’i u € uitclt)}i (1)

where U7 = {u|u:T C T — U} is a set of input or control maps.

The dynamical system may evolve continuously (the time set is real 7 = IR, ) or for discrete
instances in time (the time set is integer 7 = Z ).

A dynamical system ¥ can be augmented with a set ) called the measurement or output
space and amap h: 7 x X — Y called the measurement or observation map.

The result is a dynamical system with outputs, which is denoted £ = (7,X,U, ¢, Y, k)
with v € U, z € X', y € J the input, state and output variables respectively.

2.1 The NARMAX Input/Output Realisation

Dynamical systems are often characterised only in terms of the input/output behavior which
illustrates the effects of the system’s inputs v € U7 on the observed outputs y € ). The
assumption is that all the information about the state z should in principle be recoverable from
the measurements y. In many cases it is more advantageous to have a direct characterisation
of the output of the system as a function of the input only.

In system identification the input/output behaviour of a dynamical system is a discrete
set of input and output samples

D' = {(u(k),y(k)) [u(k) € UT, y(k) € ¥, k=1,...,t} (2)

which is often contaminated by noise.

The identification problem consists in determining the input/output equation that relates
explicitly the sampled outputs of the system u' to the sampled inputs y*. Although it is still
possible to identify continuous-time models from this data, the identification of discrete-time
models is usually more convenient. Discrete-time models are widely used both for analysis as
well as in the design of digital control systems.

The class of ARMAX models is a well known input/output representation in linear system
identification ((Eykhoff, 1974; Ljung, 1987; Soderstrom and Stoica, 1989)). These models relate




the input and output sequences by linear difference equations,

y(t) = zylaiy(t—i)Jrizubiu(t—i)-i-{;ae(t — 1)+ e(t) (3)

taking into account the combined effects of measurement noise, modelling errors and unmea-
sured disturbances which in (3) are represented by the variable e(¢). The usefulness of linear
models to describe nonlinear dynamics is however limited. Most nonlinear phenomena can only
be described in terms of nonlinear equations. The best known class of nonlinear discrete-time
models used in identification, is the NARMAX family introduced by Leontaritis and Billings
(1985a,b). These models are similar to the ARMAX representation, except that now the NAR-
MAX model involves a nonlinear expression

y(t) = fly(t—1),...,y(t — ny),u(t — 1), ..., u(t — ny)ye(t —1),...,e(t —n.)) + e(t) (4)

where f is a nonlinear function of n, + n, + n, variables.

In the above equations f : ™ x U™ x E™ — Y is an unknown nonlinear mapping, u € U
an m-dimensional input vector, y € ) an [-dimensional output vector and n, and n, are the
maximum output and input lags. The unobserved stochastic variable e(t) € A') is assumed to
be bounded |e(t)| < § and uncorrelated with the input and 7, is the maximum noise lag. The
random variable e(t) is the prediction error or innovation at time ¢ for the stochastic dynamical
system (4).

2.2 The Realisation Problem for a Nonlinear Function f

The methodology of identifying a NARMAX representation provides for estimating both the
structure and the the parameters of the unknown nonlinear system from the input/output
data. This is quite a formidable task since the number of possible nonlinear realisations of f
is theoretically infinite. Finding f which best agrees with the experimental data according to
some adequacy criterion can be formulated as a nonlinear approximation problem.

Unless some a priori knowledge of the nonlinear equations is available most methods use
nonparametric regression (Juditski et al., 1995; Sjoberg et al., 1995) to estimate the nonlinear
function f from data. This involves searching for the best nonlinear parametrisation of feF

f=Ffolyt=1),nult=1),.. e(t—1),.),0) e F (5)

where ¢ = {g;} is a finite dimensional vector of nonlinear regressors gr € U, and 6 is the
associated parameter vector. The set ¢ consists of a finite number of candidate regressors
sometimes referred to as basis functions since often they form a basts of a functional space.

For example, f can be implemented as a linear expansion in terms of the (basis) functions
of regressors ¢, selected from G such that

f=Y twerF (6)

kEX




minimises a given adequacy criterion relative to the identification data

subject to some additional complexity criterion
Q(Q, ng, fi) (8)

which penalises models with a large number of parameters. Although (6) is a parametric
model, the approach is nonparametric because the number of parameters and the elements of
the regression vector g are not known in advance.

Practical implementations of the candidate regressor set § include polynomial (Billings
and Chen, 1989), radial basis functions (Chen et al., 1990), B-Splines (Kavli, 1993; Kavli and
Weyer, 1994) or radial wavelets (Zhang, 1997). So far none of the existing approaches can be
viewed as universally optimal and the choice of the model implementation is usually dictated
by the application.

3 The Wavelet Model Structure

For years researchers have looked for a means to represent functions and distributions in terms
of elementary basis functions that would characterise better the underlying properties, transi-
tory phenomena or isolated singularities for example, than the Fourier series. Wavelet theory
provides an elegant solution to this problem.

Wavelets provide the means to represent functions or distributions in terms of the trans-
lations and dilations of a unique prototype function, the mother wavelet function. Several
properties, which make wavelet approximations particularly suitable for system identification,
are briefly summarised below.

3.0.1 Approximation Rates

Wavelet-based approximation schemes compare favourably and often outperform many other
approximation methods. This aspect has been emphasised by theoretical studies (DeVore
et al., 1992) which have shown that wavelet approximations are asymptotically near-optimal
in the sense that the convergence rates are equal to the best attainable using general nonlinear
approximation schemes. -

An important feature is that wavelets provide bases for a large variety of function spaces and
are equally effective in each case. If f belongs to a functional space, such as the familiar Sobolev
or Besov spaces for example, the wavelet approximation will converge automatically to fin
the appropriate norm and, most importantly, provides similar rates of approximation in each
case. In addition, wavelets are particularly effective in approximating functions characterised by
sparse singularities or functions that are not uniformly smooth or regular which are notoriously

difficult to approximate by other means (DeVore et al., 1992; Juditski et al., 1995).



3.0.2 Localisation

Unlike the Fourier basis functions wavelets are localised both in space and frequency. As
a result the coefficients of the wavelet series translate precisely the local properties of the
function that is approximated. Few wavelet coefficients are usually sufficient to approximate
accurately a nonlinear function over a smooth interval. More wavelet coefficients are required
only to describe sharp variations or singularities of the nonlinear function. The magnitude
of the wavelet coeflicients will reflect directly the properties of the underlying function which
makes this approximation scheme an excellent singularity detection tool.

It follows that the approximation is spatially adaptive and hence it can be tuned in each
subinterval of the input domain without interfering with the rest of the model. This allows
fitting the isolated features (discontinuities or sharp variations) of the underlying function while
keeping the complexity of the model low, thus reducing the risk of overfitting the data.

The wavelet bases provide approximating structures of arbitrary high order. In practice,
increasing the order leads to better approximation rates. Ideally however the order (i.e. regu-
larity) of the basis functions should closely match the regularity of the underlying function f
to avoid overfitting.

3.0.3 Lacunarity

The ultimate goal of any approximation method is to use the fewest number of expansion
coefficients to represent the nonlinear function f. Wavelets provide one of the most efficient
methods to encode information which explains the large number of image and signal compres-
sion applications that use wavelets. In general the decomposition of regular functions with
sparse singularity (belonging to the inhomogeneous Besov spaces B> for example) is lacunary
in the sense that very few coefficients of its decomposition will be non-negligible. The wavelet
coefficients are significant near singularities and in the regions where f has large variations and
small where the function is regular.

As noted by Meyer (1993), wavelet decompositions with plenty of non-negligible coefficients
are characteristic of pathological functions. The ’normal’ functions correspond to wavelet rep-
resentations which are sparse or lacunary. The problem is deriving an efficient algorithm to
select the essential wavelet basis functions and to provide a parsimonious representation of the
system that has good generalisation properties.

3.1 Multiresolution Analysis

Wavelet multiresolution approximations (MRA) (Mallat, 1989) are constructed as a scale of
nested finite-dimensional subspaces

VcVic..cVcC.. (9)

of a Hilbert space V. Usually V is the space LZ(IR) of square-summable functions.




The subspaces {V;},cz are dense in V
Jv,=v (10)
1=0

which means that any function f € V can be approximated with desired accuracy by its
projection f; = P;f on Vj that is, lim f; = f.
j—o0
The multiscale structure (9) can be associated with suitable detail spaces W; C V; such

that V; = V,_; & W; provide a stable orthogonal split of V; into low and high frequency parts
Vi_1 and W; respectively. Using this two-level decomposition recursively V; can be written as

Vi=VieWnuaeoWed..6W,; (]
where all these subspaces are orthogonal and | € Z. By virtue of (10) and (11) this implies

V=09W, (12)
el
Finding a wavelet basis for V' = L?(IR) involves finding a basis for each subspace W;. The most
attractive bases are obviously orthonormal ones. However, finding a L2-orthonormal wavelet
basis in W; which is also computable is very hard. Therefore, the orthogonality requirement of
the basis in W; is often relaxed whilst maintaining the orthogonality between subspaces W;.
Most commonly, wavelet bases are derived using shift-invariance and dyadic dilation. The
one-dimensional bases are constructed in terms of the dilations and translations of two prototype
functions the scaling ¢(-) and the wavelet 9(-) functions such that V; = {fik}rcz and W; =
{3}z with gia(e) = 2/29(2z — k) and ;(z) = 2924(2z — k).
It follows that any square-summable function f(z) in V can be expressed as a wavelet

SEries expansion

flz) =2 andir(z)+ D0 3 dixvn(e) (13)
k j=I+1 k
where {¢;} and {d;r} are the coefficients of the expansion.
In equation (13) j is an integer parameter representing the scale (or dilation) while k is
the translation parameter, an integer indicating the position of the basis function.
Multi-variable bases can be constructed using the tensor product method. A d-dimensional
multiresolution approximation can be implemented using basis functions {®(z)} and
{@(t)(f)}zzmdq constructed as tensor products of scalar basis functions. Assuming z = (z;,z2)
for example, the multiresolution decomposition can be implemented in terms of the translates
and dilates of the following two-dimensional basis functions

®(z) = ¢(21)¢(z2) VW (z) = ¢(z1)P(z2)
T(z) = p(z1)p(z2) TN (z) = op(z1)9(z2) (14)

The choice of basis functions to implement the MRA is relatively wide and usually is




dictated by the application. The wavelet multiresolution expansion proposed here is defined in
terms of B-spline scaling and wavelet basis functions, originally introduced by Chui and Wang
(1992), which define a class of semi-orthogonal wavelets.

This implementation was chosen because it is particularly suitable in system identification.
Some practical considerations are summarised below.

o B-spline wavelets are piecewise polynomial functions that can be computed easily for data
which are not necessarily spaced uniformly. Some wavelets are only defined on a uniform
grid, see for example Daubechies’s orthonormal wavelets (Daubechies, 1993).

o B-spline wavelets of Chui and Wang have local support (i.e. the basis functions are zero
outside a closed interval B = Supp((z))). These functions also provide near-optimal
time-frequency localisation (Chui, 1992).

o Spline wavelets outperform other wavelet decompositions in terms of approximation rate
(Sweldens and Piessens, 1994). This means that fewer resolution levels are required to
approximate a function with a given degree of accuracy. Since each extra level doubles the
amount of work, the choice of wavelet is clearly important.

3.2 Semi-Orthogonal B-spline wavelet bases

The multiresolution approximation is implemented using as scaling function ¢(z) = ¢™(z) =
B™(z) the m-th order cardinal B-spline function given by the recursive relation (de Boor, 1978)

m — T

Br(z) = ——=B" () + =B (e — 1) (15)

m— 1
where 3'(z) is the indicator function

1 ifze(0,1)
0 otherwise

B(z) = { (16)

Alternatively, each polynomial piece of a B-spline function can be computed separately (de Boor,
1978).

The wavelet function is defined as a linear combination of scaling functions (Chui and
Wang, 1992)

3m-2

()= Y ag™(2z — 1) (17)

=0

with the coefficients given by

q = (Al)ki(m)qs?m(;c—ml), k=0,..3m—2 (18)

Qm—l - J

The cubic B-spline scaling and wavelet functions (m = 4) are illustrated in Figs. (1a,b).




The B-spline wavelet multiresolution approximations are structured as a class indexed by
the order (regularity) parameter m which is related to the order of polynomial pieces (m — 1)
which make up the B-spline wavelets.

3.3 Wavelets in Identification

Practical wavelet model implementations derived in the past in system identification did not
exploit the advantages of the multiresolution structure. The paper of Sjcberg et al proposes an
identification scheme based on orthogonal wavelets introduced by Daubechies (1993). These
wavelets however are defined only on a uniformly spaced grid over the input space and for that
reason the original identification data must be used to generate a synthetic input first. The
synthetic input is used to determine the wavelet coefficients. It is not clear how the resulting
model will be used in practice and how well it performs since the algorithm was introduced
only in principle and no simulation examples were given.

A similar orthogonal wavelet MRA model was suggested by Sureshbabu and Farell (1999).
Again the approach was mainly presented in principle, the only practical implementation sug-
gested using Haar wavelets which are known to have poor frequency localisation and lack
regularity.

The Wavelet Networks introduced by Zhang and Beneviste (1992), Zhang (1997) are a
powerful approximation device. The model implementation involves radial wavelet basis func-
tions which do not generate a multiresolution approximation. The resulting wavelet model
therefore resembles the more familiar RBF networks with the Gaussian or thin-spline functions
replaced by radial wavelet basis functions. The wavelet basis was defined by discretisation of
the continuous wavelet transform using either adaptive or fixed dilation/translation sampling.
This implementation allowed a more systematic approach to selecting the model structure and
determining the parameters associated with it.

The system identification approach introduced in the present study is centered around
a new model implementation within the wavelet multiresolution approximation framework.
Although this paper is not concerned with making a comparison with the existing approaches
some advantages of the model structure advocated here over the wavelet network of Zhang and
Beneviste are summarised below:

e The B-spline wavelet basis defines a hierarchical multiresolution structure with fixed dila-
tion/translation sampling. Thus, the location of each basis function is fixed and does not
have to be optimised by a separate algorithm as in Zhang (1997).

e While the radial wavelets are only ’localised’ i.e. vanish rapidly as ¢ — %co, the B-spline
wavelets are compactly supported. Hence, only the the B-spline wavelets which cover ¢he
data range need to be considered during identification.

e The multi-variable B-spline wavelet basis functions are implemented using the tensor prod-
uct method as opposed to the radial construction used by Zhang. As noted in Sjoberg et al
(1995) the tensor-product construction leads to more versatile multivariable basis functions
as opposed to the radial construction which imposes some directional homogeneity.
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¢ The wavelet model proposed here does not require the inclusion of all the process variables
in every regressor as in the radial construction. This gives more flexibility in selecting the
correct model structure and avoids model overfitting.

o The regularity of the radial wavelets of Zhang and Beneviste is fixed. The resulting
approximation structure is very powerful but prone to overfitting. In contrast, the B-
spline wavelets are structured as a class indexed by the regularity parameter m. This can
be selected adaptively to reduce the risk of overfitting.

The main advantage of the wavelet model proposed by Zhang and Beneviste is that the
radial construction leads to a smaller candidate regressor set compared with the tensor-product
approach. However, the methodology of building wavelet multiresolution models proposed here,
has been designed to deal efficiently with this problem.

3.4 The Wavelet Multiresolution Model

The wavelet model proposed here involves expanding the nonlinear function f(-) in (4) as a
multiresolution wavelet series using B-spline scaling and wavelet functions

y(t) = 2 0:9:(t) + e(t) (19)

where

gi(t) = gj,k(y(t - 1): “'1y(t - ny))u(ﬁ - 1)7 "'vu(t - 'n"w)ﬂ e(t - 1)? By e(t - ne)) (20)

is a multi-variable scaling or wavelet basis function g;x € {$;x,%¥;x} of past outputs, inputs
and noise and § = {6,} is the parameter vector.

The family of nonlinear basis functions (or regressors) is doubly indexed according to scale
and location and for the one-dimensional case can be written as follows

[ 2irg(2r — k) 7 =Jo
gik(z) = { 21’/2¢(Qiz — k) 7> Jo 2

where ¢(z) and 9(z) are the scaling and wavelet functions respectively and jq is an arbitrary
starting scale. The multi-variable basis functions are constructed by tensor products of scalar
basis functions preserving in this way the multiresolution structure in the multidimensional
case

The approximation (19) converges in the standard space L?(IR™*™*"). In practice, f
may not be square-summable in IR™*™+*™, However, the restriction of f on the closed interval
D C R™*™*™ which contains the identification data belongs to L*(D) hence (19) converges
in the L? norm.

As pointed out in Section 3 wavelet multiresolution approximations are just as effective
and converge in the corresponding norm over a wide variety of function spaces including Besov
spaces, Holder and Hardy spaces (see Meyer 1993). This combined with the fact that for each

11




function space wavelet approximations provide approximation rates comparable with the best
attainable by any other approximation scheme, makes the proposed wavelet structure a very
powerful, near-universal implementation in nonlinear system identification.

4 The Identification Algorithm

The model terms in (19) are selected from a set G of candidate wavelet regressors implemented
according to a given model structure M. The model set corresponding to a complete multi-
dimensional wavelet multiresolution approximation structure could contain hundreds or even
thousands of basis functions. As noted earlier only a small fraction of the initial candidate
wavelets are useful to implement the model. Also, the complete multi-dimensional wavelet
multiresolution implementation is far too complex for normal identification tasks since often
the nonlinear function f(-) in (4) can be represented as a superposition of low-dimensional
functions. Hence, building a complete multi-dimensional wavelet basis is not always necessary.
The identification algorithm should be able to perform efficiently three essential tasks:

¢ Formulate a sequence of evolving models /M, and implement in a stepwise manner the
corresponding sets G, of candidate regressors

o At each step search for and select the best model realisation according to the adequacy
criterion and the parsimony principle

e Model testing/validation

The algorithm is stopped when the selected model meets all the identification requirements.

4.1 Model Sequencing Strategy

The model proposed in Section 3.4 can describe virtually any realisable nonlinear input/output
behaviour if the full multi-dimensional (d = n, +n, +n,) wavelet multiresolution approximation
is implemented. However, in order to avoid problems related to dealing with large regression
sets G, an "intelligent” identification algorithm should attempt to approximate f using sim-
pler model structures first and avoid implementing the full multi-dimensional multiresolution
approximation structure when the application does not require this.

The solution is to postulate a sequence of nested model architectures

.-’\/I]_, ...,.’\/{n (22)
of increased complexity which corresponds to a sequence Gy, ..., G, of candidate regressor sets.
Thus, the identification procedure becomes an iterative process of searching for a model within
nested model families of increasing complexity until a suitable representation is found. This
results in a sequence of nonlinear models my, ma, ..., My, the last one being the model sought.

The sequencing strategy proposed here is inspired by the Projection Pursuit Regression
Algorithm developed by Friedman and Stueltze (1981) and used in the ASMOD (Adaptive

12




Spline Modelling of Observational Data) method introduced by Kavli (1994). A variant of this
algorithm is the Matching Pursuit Algorithm proposed by Mallat and Zhang (1993) to perform
adaptive time-frequency decompositions of speech signals. The projection or matching pursuit
philosophy is integrated here into a new identification methodology which exploits the advan-
tages offered by the multiresolution approximation structure and the efficiency of the orthogonal
forward regression algorithm in performing subset selection and parameter estimation.

The simplest structure M; = M;(ny,ny,n.) in the model sequence (22) is defined as a
superposition of one-dimensional submodels

f= _Ti:fi(u(t - 3)) + i fnu-i-i(y(t - 3)) i+ i fnu+ny+i(6(t — ?«)) (23)

In this equation each of the one-dimensional submodels f; is implemented as a one-dimensional
multiresolution expansion

JitN:(4)

iz Gadbintd. > d b (24)
k k

l=3:+1

Ji 1s the initial or starting scale and N,(¢) is the number of approximation scales involved.
Initially N,(z) = 1. The model structure can further be indexed (M1(nw, ny, ne, Ns(2),m)) in
terms of the number of scales N,(z) and order m. The approximation can be refined for each of
the additive submodels by considering additional wavelet subspaces W;, W1, W;ia, .... The
number of wavelet subspaces that can be considered is limited to those for which the support of
the corresponding wavelet basis functions is large enough to cover a minimum number of data
samples.

More complex model structures My are derived by replacing a combination of two or
more submodels with a multi-dimensional tensor product submodel. This accounts for possible
non-additive interactions between the corresponding variables. In each case, the candidate
regressor set 1s revised according to the improved model structure M. Again, G; will include
only the relevant regressors, i.e. the basis functions which cover the interval spanned by the
data samples.

In most practical cases the nonlinear interactions can be modelled using a structure of
moderate complexity. A typical model would be a superposition of low-dimensional submodels,
similar to the ASMOD model introduced by Kavli (1993,1994)

y(t) = iff(”(y(t — 1), ey ult — 1), ...e(t — 1)) (25)

where n; is the number of additive submodels and d(z) is the dimension of each submodel.
Each submodel can include several wavelet subspaces W, in addition to the initial coarse scaling
subspace Vj,. The selected model subset Gn(A) = {956 }iken will contain only a small number
of low-dimensional basis functions selected from the candidate regressor set G,.

13




4.2 The Structure Selection and Parameter Estimation Algorithm

In theory, the wavelet multiresolution approximation is an infinite series expansion. However,
even a finite dimensional wavelet basis is very large although, as pointed out earlier, only a
small number of basis functions are needed to approximate typical nonlinear functions. Finding
these basis functions, also known as structure selection, is a very important task in system
identification. Formally this problem can be stated as follows:

Given a Hilbert space H spanned by a basis {g;};cz, which is not necessarily finite or orthogonal
and the input/output data (u(t), y(t))I,, find the smallest partial set {g1,...gx} of {9;};ez, such
that the input/output equations

y(t) = Z: e;igi(y(t — 1), cyu(t — 1), . e(t — 1), ...) + e(t) (26)

approzimate the input/output behaviour with a given accuracy llell < pe, for some parameters
c; € R, 7 =1, ., .

In practice the basis {g;};cz, needs to be finite which means that any infinite dimensional
basis has to be truncated in some way. A multiresolution wavelet basis G, = {g;} is truncated
for practical reasons by including only wavelet subspaces W; up to a certain scale j < jmax and
only basis functions which cover the data range. The highest resolution or scale is such that
the corresponding wavelets have support which is large enough to include several observations.
Statistical laws of the log log type provide an estimate of the upper bound jumax such that

; s B 2N

which assumes that the data is uniformly distributed on [0, 1]*. Since in practice this is rarely
the case, the estimate provides only a rough indication of the upper scale jmax. A more practical
approach is to select jmax which guarantees a minimum number of observations hit the support
of every basis function ;... » that covers the data range.

A fast and efficient structure selection approach can be implemented using the Orthogonal
Forward Regression algorithm (OFR) (Chen et al., 1989). This is one of the best solutions
next to the optimal algorithm that would require testing all possible combinations and for that
reason is computationally prohibitive. 3

The least-squares based OFR algorithm involves a stepwise orthogonalisation of the re-
gressors and a forward selection of the relevant terms in (26) based on the Error Reductjon
Ratio criterion (ERR) (Billings et al., 1988). The algorithm provides the optimum least-squares
estimate of the parameter vector 6§ = {fi}.

G =g ?il is the candidate regressor set, the orthogonal term selection can be sum-

marised as follows:

e Step 1
L =iy ={L,... M} (28)
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% t)= 7 t ) bi = 2
w(t) = o), b= 2L (29
J o Z; w?wi _
P \Msy ) T e =
0 0 _ w?Ty
Wy =Wy 6= 2070 (31)
1 ™y
@pq =1 (32)

Equation (30) shows that the basis function which achieves the best ERR score i.e. con-
tributes to the largest extent to the reduction in the modelling error, is selected first from
the candidate set.

e Stepjy,7>1

I = I a\{ij1} (33)
= ngg_ 0
wi(t) = gi(t) — > T W (34)
k=1 Wi W

Q; = {arg(w?wi < P)}, I; = L;\Q; (35)

(1€,
l [ B (err;) Viel (36)
. = arg mas: y = arg max (err; 7 ;
! g €l yTy & 1ely :
ol
0 w; Y
’LU? = le’ CJ" = 0-7']1 0 (37)
w: ws:
¥
ongz
1 :
Ak = oT ;: v = 1:.7 =1 (38)
Wy Wy

The basis function candidate terms which are not chosen in the first steps are orthogonalised
with respect to all previously selected basis functions. Because of the orthogonality the jth
basis function can be selected in the same way as the first. In equation (37) w? is the j-th
orthogonal model term selected and c? is the corresponding weight (parameter) associated with
the orthogonalised regressor.

Any numerical il conditioning is avoided by eliminating the candidate basis functions for
which w]w; is less than a predetermined threshold (35).

The procedure is terminated at the M, step when

M,
11— err; < pe (39)

=1

where p, is a desired error toleramnce.
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The wavelet basis parameters are calculated from the following equation:

—1
cl, 1 @z »+- Q1 M, c?
c Lo : e
= . ; (40)
0 : 1 QM —1, M, .
Cla, 0 0 0 1 i,

Further improvements of this algorithm, due to Zhu and Billings (1995), provide significant
reductions in the computation time.

4.3 Some Implementation Issues

The multi-variable multiresolution wavelet basis was defined in Section 3.1 using the tensor-
product implementation. This method of constructing multi-variable basis functions is usually
associated with the so called curse of dimensionality, that is, for large input dimensions the
number of candidate regressors can be quite high. This does not automatically mean that the
final model needs to have more parameters that a polynomial model for example. As noted in
Section 3 the wavelets provide lacunary series expansions for most nonlinear functions. The
key to finding this economical representation is the implementation of a good model sequencing
strategy and the use of an efficient basis selection algorithm.

The main issues that have to be addressed in practice are related to the computational
resources needed to implement and store the candidate regressor set and perform structure
selection.

A solution to reduce the amount of memory used to store the regressors is to permanently
keep in the memory of the computer only the regressors which correspond to the scalar basis
functions. The regressors corresponding to multi-dimensional basis functions can be computed
fast during structure selection using only regressors which are permanently stored.

Assuming for example that in equation (34) g;(u(t —1),y(t — 1)) = ¢(u(t —1))¥(y(t —1)),
it follows that -

will] =t = 3 2 8 (41)
k=1 Wi Wy
can be computed during selection using ¢(u(t — 1)) and ¥(y(t — 1)) so there is no need to
store g;. The computation of the additional tensor product ¢(z)¥(y) during selection has little -
impact on the overall performance of the OFR routine. This however, significantly reduces the
amount of memory required for storing the candidate regressors.

4.4 The Stochastic Model

The stochastic perturbations due to unobserved noise can be modelled as additional input
variables in the NARMAX model (4). Because the stochastic variable e(t) cannot be mea-
sured directly, the unobserved noise sequence has to be estimated during identification using a
prediction error method.
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The sequence e(t) is assumed to be independent, bounded and uncorrelated with the input
w. The following prediction error equations

a

e(t) =y(t) = Fy(t=1), .., u(t — 1), . e(t — 1),...) (42)

provide an estimate of the stochastic variable vector e(¢). Equation (42) defines a stochastic
dynamical system with inputs u and y and outputs the prediction error £(¢). The identification
problem can be formulated in this context as the determination of the nonlinear mapping f
such that e(t) converges to e(t) as t — oo. The prediction error is used during the estimation
to implement an additional regression set which involves the prediction error variable e(t).

4.5 Model Validation

Model validation ensures that the final model is an accurate description of the original nonlinear
system. For example, if the correct model subset and parameters have been estimated, the
predicted noise sequence £(¢) should be unpredictable, that is, uncorrelated with all linear and
nonlinear combinations of past inputs and outputs.

This hypothesis can be tested in practice for SISO nonlinear systems using nonlinear cor-
relation tests (Billings and Voon, 1986a)

S..(r) T#0

®,.(7) V7

(I)a (eu) T) T 2 0 (43)
@uz E(T) VT

(I’uz 52(7') VT

The null hypothesis, that the data was generated by the model, is accepted if the correla-
tion functions are within the 95% confidence intervals, which for large N are approximately
+1.96/v/N. These correlation tests can be extended to validate MIMO nonlinear models
Alternative correlation tests, which exploit the information in the system outputs, were in-
troduced to further enhance the efficiency of the correlation-based validation approach (Billings

and Zhu, 1994b).
d.- (ya)('r) T#0
{ G2 n(7) VT (44)

These new correlation tests have also been extended for MIMO systems (Billings and Zhu,
1994a).

The correlation tests however may not always reflect discrepancies between the observed
dynamical behaviour and the model dynamics. Additional evidence about the adequacy of the
model is provided by simulating the model and comparing the model predicted dynamics with
the data available, especially the data not used in the identification.

The (deterministic) model predicted output of the model is defined as

A

g(t) = F((t = 1), ..., 9(t — ny), u(t — 1), eropg BB Wy Y D s D1 (45)
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This can be used to calculate the model prediction error

é(t) = y(t) — 9(t) (46)
In practice the data set available D is divided into two datasets D; and T, such that

The model is estimated usually using only the first data set D; also known as the estimation
set. The models found to be a best fit for D; are then tested using the second data set D,
known as the validation or test set. The model which performs best with respect to both data
sets 1s selected as the final model. This provides a practical means to test the null hypothesis,
that the entire data

D =D D, (48)

was generated by the model. Note that comparing the model predicted output with the data
provides a much more severe test than the commonly used one-step-ahead predictions which
are computed by replacing §(-) (previous model output) with the actual measurement y(-) on
the right-hand side of equation (45). )

4.6 The Iterative Identification Procedure

This section sumarises the complete iterative procedure for identifying a wavelet multiresolution
model for a linear or nonlinear dynamical system.

e Step 1 Select ny, n, and n.. Because the noise sequence is not available at this stage the
model structure is defined using only the deterministic process variables

{y(t = 1),..,y(t—ny),u(t — 1), ...,u(t — n,)}. (49)
For each process variable initialise the following parameters:

— The order of B-spline wavelet and scaling functions used to implement the model
— The starting resolution (scale) 7

— The number of resolutions (scales) NV,

Usually the model is initialised with m(z) = 2 and N,(¢) = 1 in order to try to keep it as
simple as possible. The model however can subsequently be refined if necessary. Selecting-
the starting resolution level can be simplified if the input/output data is normalised first
to the unit interval [0,1]. In this case the starting resolution j(i) = 0 can be chosen for
all sub-models. If the data is not normalised, j(z) takes into account the range of each
input and output. The initial model structure .\; is a superposition of one-dimensional
sub-models corresponding to each lagged input and output variable.

e Step 2
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Implement the wavelet model set G, corresponding to the current model structure M(ny, ny, n,
For k& = 1, the candidate regressor set consists of scalar basis functions only.

Because the B-spline wavelet and scaling functions are compactly supported only a finite
number of basis functions, that have data points inside their support, have to be considered

G: = {01 1(3) (4(t), u(t)) € Dsuch that gu(y(t), u(t)) # 0} (50)
where D is the data set used in identification.

e Step 3

Select a subset wavelet model f(°) from the current model set G; and compute the initial
one-step-ahead prediction error sequence

e°(t) = y(t) - FO1) (51)

e Step 4

Augment §; with regressors corresponding to the one-step-ahead prediction errors. A new
subset wavelet model is selected from this extended model set and used to generate a fresh
residual sequence. This will be used to update the model iteratively. At the 7th iteration
the subset model f(j)(t) is selected from the extended model set and this gives rise to the

error {&’(t)}.

Without updating the model further, the residual sequence and the parameters are re-
evaluated. Typically 10 iterations are sufficient to achieve convergence of the parameter
estimates.

e Step 5
Apply model validity tests to evaluate the model.

If no valid models are found, the model structure is refined by
* increasing the number of scales N,(z) (resolutions).
e replacing two or more sub-models by a sub-model of higher dimension.

® increasing the order m(z) of the basis functions in the current approximation.

After each refinement, the algorithm is restarted at Step 2.

5 Applications

The 1dentification procedure, outlined in the previous sections has been successfully applied in
the identification of several real life nonlinear dynamical systems. Two practical applications
of the wavelet multiresolution models are presented in the following sections to illustrate the
new algorithm,
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5.1 A Liquid Level System

This system has been previously analysed in a number of papers (Billings and Voon, 1986b;
Chen et al., 1990; Chen and Billings, 1988). The data was sampled from a large pilot scale
liquid level system using a zero mean gaussian signal as input. The system consists of a DC
water pump feeding a conical flask connected to a square tank. The input is the voltage to the
pump motor and the output is the water level in the conical flask. A description of this process

can be found in Billings and Voon (1986).

The data set consisted of 1000 input and output samples which were divided into a esti-
mation set D; consisting of 500 data samples and a test set D; of 500 data samples. The input

and output data used in identification are plotted in Figs 2 and 3.

Basis Functions Estimates [ERR); Std. Dev.
do,—a(u(t — 1)) —0.39508E +0 0.77181E —4 0.73740E + 0
do,—1(u(t — 1)) 0.59043E + 0 0.24418F —3 0.82814F — 1
Po,_s(u(t — 1)) 0.49211E +0 0.46586E —5 0.19835E +0
do, —a(u(t — 2)) ' 1.3291E +0 0.82637E —5 0.34643E 40
o1 (u(t — 2)) —0.17719E + 0 0.19013F —4 0.40267E — 1
o, -a(u(t — 2)) —0.28193E + 0 0.85420F —5 0.77464F — 1
do,—1(y(t — 1)) 2.6426E +0 0.99660E +0 0.17961F +0
o —2(y(t — 1)) —2.0207E +1 0.36509E — 3 0.24980F + 1
1_s(y(t — 1)) 0.39676E — 1 0.19588E — 4 0.22742F — 1
1 _a(y(t — 1)) —0.21376E +0 0.40363E —5 0.85349E — 1
do_a(y(t — 2o _s(y(t —3)) —1.6620E +2 0.18149E —3 0.40623E + 2
do-1(y(t —2))do_1(y(t—3)) —2.0638E + 0 0.20104E —2 0.70047E + 0
bo—s(y(t — 2))do_s(y(t —3))  0.11734E +0 0.27393E —4 0.83137E — 1
bo-a(y(t — 2))o_s(y(t—3))  1.0591E +1 0.78159E —4 0.101305 + 2
o,—3(y(t — 2))do,—a(y(t —3)) —1.767LE+2 0.39549E —5 0.11990F 4 2
o _a(y(t — 2))do—2(y(t —3))  0.62131E +0 0.34950E — 5 0.22855E + 0
o, —3(y(t — 2))bo —a(y(t —3))  5.0889E +0 0.27329E —5 0.63196E +0
Wo.—2(y(t — 2))do,—a(y(t — 3)) 1.4245E +2 0.93664E — 5 0.48995E + 0
o —2(y(t — 2))dooy(y(t — 3)) 2.0710E +2 0.22676E —4 0.14790EF + 1
o —a(y(t — 2))o,2(y(t —3))  6.8221E +2 0.44247E — 5 0.43642F + 1
T2y adilt) . 9.7835E —5* -

Table 5.1

2Combined ERR contribution of the selected noise terms
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The initial parameters for the model were n, = n, =n. =3, m = 5, initial scale j(k) =0
and N,(k) = 1 for all variables. To simplify the implementation of the candidate regressor set G
the data was normalised on the interval [0,1]. Starting with a basic model structure composed
only of one-dimensional additive submodels the iterative identification procedure described in
Section 4.6 led to the identification of the model subset shown in Table 5.1. The final model
structure tested was as follows

y(8) = 2 fi(ult =) + fa(w(t = D)) + F(y(t —2),4(t = 3)) + foise(e(t — 1),...,e(t — 5)) (52)

where fr.:se 15 the noise model.

The model predicted output, the one-step-ahead prediction error and the model prediction
error are shown in Figs 4a,b,c. In Fig. 5 is shown how the model predicted output compares with
the test data set. The correlation tests are shown in Figs.(6a,b,c,d,e). The model performance
1s comparable with that of the RBF model identified by Chen et al (1990) which required
34 parameters (not including the parameters needed to specify the centers). The wavelet
model identified here (the deterministic part) has only 20 parameters. The noise model, which
normally is not used in simulation consisted of 49 additional terms.

5.2 A Civil Engineering Structure

The second example is related to the application of the wavelet identification methodology in
the detection and localisation of defects in civil engineering structures. The system analysed
in this case was a large reinforced concrete beam from a bridge. A persistent excitation was
applied at one end of the structure. The response was recorded using five accelerometers
equally spaced along the beam. The experimental data used here to illustrate the proposed
1dentification method consists of two sets of measurements recorded by two of the accelerometers
mounted on the bridge. 500 data samples of the measured signals, assumed to be the input
and respectively the output of a nonlinear dynamical system, are plotted in Figs. (7) and (8).

The initial parameters for the model were ny = 10, ny = n, = 5, m = 3, initial scale
(k) =0 and N, (k) = 1 for all variables. The initial model structure

y(t) = Eff(U(i —4))+ E i10(U(t = 9)) + froise(e(t = 1), .., e(t — 10)) (53)

led to the identification of a model consisting of 20 basis functions detailed in Table (5.2). An
additional noise model which included 29 terms was also identified. The model was found to
be sufficiently accurate and no further refinements were carried out.

The model predicted output, the one-step-ahead prediction and the model prediction errors
which are plotted in Figs (9a,b,c) show very good agreement between the model and the data.
The model has been simulated using data not used in identification. The model output and
the original data are plotted in Fig. (10a) for comparison. The model predicted error over the
same data interval is shown in Fig. (10b) while the correlation tests are shown in Figs (11).
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Basis Functions FEstimates [ERR); Std. Dev.
bo0(u(t — 1)) 0.1386570 0.13258E —4 0.14369E — 1
doo(u(t — 2)) 0.1987395 0.71995E —3 0.18328E — 1
po-3(u(t —2)) —0.1660639 0.25415E —4 0.26766E — 1
do,—2(u(t —3)) —0.1657839 0.10865E —1 0.15813E —1
do.o(u(t —3)) 0.1176670 0.93189E —4 0.18249E — 1
boo(u(t —4)) 0.2096010 0.74452E —4 0.21499E — 1
¢o,—2(u(t —5)) —0.4773314 0.78793E —3 0.60412E +0
do.0(u(t — 5)) 0.3101863 0.36144F —3 0.17001E — 1
do,~2(u(t — 6)) 0.0537393 0.21384F —4 0.20849E — 1
$o—2(u(t = 7)) 0.1333856 0.35242E —2 0.16553E — 1
$o,1(u(t = 1)) 0.1692944 0.34938E —4 0.21593E — 1
do,—2(u(t —8)) —0.2975717 0.27241E —3 0.18101FE — 1
go,-1(u(t —8)) —0.0986084 0.25339E —4 0.13686E — 1
do,—2(u(t —9)) —0.2060172 0.83471E —3 0.16063F — 1
bo,o(u(t —9)) 0.3650497 0.38811E —3 0.19404E —1
bo.-1(y(t — 1)) 0.4331915 0.68501E —1 0.18041E —1
doo(y(t — 1)) 0.5793608 0.91283E +0 0.51700E — 1
do,—2(y(t —2)) —0.1394088 0.24531E —4 0.19797E — 1
doo(y(t —2)) 0.3105835 0.17448E —4 0.39293E —1
doo(y(t —5)) 0.0478836 0.35880E —4 0.17698E — 1
T2, abi(t) 2.0686F —4° -
Table 5.1

2Combined ERR contribution of the selected noise terms

6 Conclusions

A new identification methodology, which makes use of wavelet multiresolution approximations
to expand the unknown nonlinearity in the NARMAX input/output representation, has been
introduced and applied in the identification of two real life nonlinear systems.

The particular semi-orthogonal wavelet multiresolution approximation structure used in
this study, provides a powerful approximation tool for an extremely wide range of nonlinear
behaviours. This model implementation is coupled with an iterative identification algorithm
which uses a model sequencing approach to determine the model architecture, an efficient QFR
algorithm for model subset selection and model validation tools to decide model adequacy. This
approach has been successfully applied in the identification of two practical systems from noisy
measurements. In one case, the present method is shown to lead to a simpler model that an
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equivalent RBF model, previously estimated using the same data set.
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Figure 1: Examples of B-Spline (a) scaling and (b) wavelet functions

24




0.8

0.4r-

0.2

_0.8 1 1 1 1 1 L] 1 1 1
0 50 100 150 200 250 300 350 400 450 500

t

Figure 2: Example 1: Input data u(t) - Voltage measurements from the pump DC motor
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Figure 3. Example 1: Output Data y(t)-Water level measurements from the conical flask
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Figure 4: Example 1: Model responses: (a) Model Predicted Output y(t), (b) One Step Ahead
Prediction Error £(t) and (c) Model Prediction Error é(t) over the estimation interval

26



-0.5F T i (A"

~1.5F

-2F

] L 1 1 1 1 1
550 600 650 700 750 800 850 900 950 1000

0.6 .
0.4F .

VA
gty © 1
“pak :
-0.4} .

. . I

1 1 1 1 1 1 1
550 600 650 700 750 800 850 900 950 1000

t
(b)

Figure 5: Example 1: (a) Measured Output (cont.) and Model Predicted Output (dash-dot)
over the test set and (b) the Model Prediction Error over the test set
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Figure 8: Example 2: Output Data y(t)-Accelerometer (B) Measurements
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Figure 9: Example 2: Model responses: (a) Model Predicted Output §(t), (b) One Step Ahead
Prediction Error (t) and (c) Model Prediction Error £(%) over the estimation interval
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Figure 10: Example 2: (a) Measured Output (cont.) superimposed on the Model Predicted
Output (dash-dot) and (b) the Model Prediction Error over the test interval
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