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Abstract

Lie algebras and the Cartan decomposition are used to study the stability of
‘pseudo-linear’ systems of differential equations.
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1 Introduction

In this paper we shall study the stability of the general nonlinear system
i=f(z) , z€R" (1.1)

and, for simplicity, we shall assume that £ = 0 is an isolated equilibirum point

of (1.1), i.e:
f(0)=0. (1.2)
If f is analytic we may then write the equation (1.1) in the form
z=A(z)x , z€R" (1.3)

where 4 : R" — R"™ is a matrix-valued analytic function. We shall study
systems of the form (1.3) by the use of Lie algebras. In fact we shall not
generally assume that A(z) is analytic and so we consider the system (1.3) in
the case when A 1s ;'nerely continuous. As usual, ¢f(R") will denote the standard

matrix Lie algebra consisting of all elements of R™" under the Lie bracket
[A,B] = AB - BA.

For any subset § C R"” we shall denote by L(S) the Lie subalgebra of gf{(R"™)

generated by S ( i.e the Lie algebra given by the intersection
L(S) = ﬂsg;ﬂ

of all Lie algebras containing S). Thus, if 4 : R® — R™ is a continuous

matrix-valued furction, as above, and the range of A is denoted by R(A), we



define
La= L(R(A)). (1.4)

When considering the stability of (1.3) we may be tempted to conjecture that
if the eigenvalues of A(z) ( as functions of z) are all strictly negative for all z,
then the system is stable. This is, of course, false and we shall give a simple
counterexample in the next section, which will lead, in the following section to
a description of the case where the Lie algebra £ 4 is solvable. We shall then
consider the case where £ 4 is semisimple, using the Cartan decomposition and
give some examples.

The control theory of systems of the form (1.3) has been considered in ([1])
and the theory of Lie groups and Lie algebras has, of course, been applied to the
symmetry properties of nonlinear systems ([2], [3]). However, it has not been

used previously to study pseudo-linear systems of the form considered here.

2 A Counterexample

Consider the nonlinear system

1“1 —A G(Ig) I
= (2.1)
o 0 -2 z9
where
a(rs) = 1/z3



(Of course, this system has a singularity at £5 = 0—we shall remedy this shortly).

For any initial condition (210,z20) with 229 # 0 this equation has the solution

z:(t) = e-')'tzzo
t
z(t) = e""rm+/ e~ A1=0g(2a(5))zo(s)ds
0
Hence
t e2As
.1:1[2‘) = E—Atmlg—i-/ 6_'\“_")'—..,-6—)\"1330(]’3
0 Tag
e—At [t
= E_Ml’lg-f- ./82'\50'3
20 Jo
— e—}\t.,r o gt (62’“ 1)
- 1t 2)\9:20

as t — oo (if 22y > 0,A > 0). Suppose we take 219 = 1,299 = 1/2,A = 1.Then

we have
(1) = ¢
ze(t) = %e"
so that
z179=1/2.

Let Q be the set

Q= {(z1,22): 21, 22>0, 2122 = 1/2},



and define the function # by

1 y (x1,22) €Q
16(31!22) = * (22)
7(z1,22) v (21,22) €Q

where v is a C* function which makes # continuous on the curve z;z; = 1/2

and for which
7(:1,33) =0 for (231,1?2) € QE

where Q, is an e -neighbourhood of §2. It follows that the system

T -1 p(21,22) I
= (2.3)
1:2 0 -1 Io
is unstable since it is identically equal to (2.1) for the initial values z;¢ = 1,

Tap = 1/2.

It follows that, given a system
z = A(z)z (2.4)

it is not sufficient for stability that the eigenvalues of A(z) be all strictly negative
(or even negative constants). Note that the function 8 given by (2.2) can easily
be modified to be C* everywhere, so that the system (2.4) is not necessarily
globally stable even if the components of A(x) are C*. In the next section we
shall show that continuous triangular systems with negative eigenvalues func-

tions are asymptotically stable at the origin.
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3 Triangular Systems and Solvable Lie Alge-

bras

In this section we shall consider the triangular system

= A(r)z (3.1)
where
( i) ole] v Gy v ) \
0 —)\Q(I) 023(1‘) T8 s ng(l‘)

Az) =

\0 _)n(r))

We assume that all the elements of A(z) are continuous in z € R™ and that
Ai(z)>A>0,1<i<n (3.2)

for all z € R™ and some constant A.

Theorem 3.1 Tinder the conditions just stated the origin is an asymptotically
stable of equatioa (3.1) that 0 is an equilibrium point of (3.1) is trivial.
Proof That 0 is an equilibrium point of (3.1) is trivial. We shall show that the

solution z(t; zq) of (3.1) through zq satisfies

| 2i(t, 20) |< 8™ pi(t) 1 < i <m (3.3)



on some interval t € [0, 7] where § =|| zo || and p;(t) is a polynomial in t,

provided || z(¢;20) ||< 1. From this the result will follow since the functions

fi(t) = e Mp;(t)
are all bounded for ¢ > 0 and if we are put

K= MEXSD fi(t)
we have by (3.3).

| z(t,z0) |[K6K , t>0

and so if § < 1/K we have

| z(t,z0) [[< 1.
Hence (3.3) is valid for all ¢ > 0 and we are done.

To prove (3.3) assume it is true for n > i > j.Then

(1) < —Azj_1 + 20'5_1,£(I)I£(f) )
i=3

| zj-1(t) |

IA

n t
A |.«:J-_1(0)l+2f e~ MO 16 pe(s)ds
- JO

I=j

t= 0

n 1
< e M (1+Zﬂjj‘1=‘/ p,:(s)ds)

where M; ; is the maximum of the function | @;;j(z) | for || z ||< 1, and the
result follows by induction. O

Theorem 3.1 leads us to study equations of the form

&= A(z)z (3.4)



where A(z) can be triangularized by a change of coordinates. Recall definition
(1.4):
La = L(R(A)).
Theorem 3.2 If the Lie algebra L4 is solvable and the eigenvalues of A(z)

are strictly negative for all z € R", i.e.
A(z)2A>0,1<i<n,

then the origin is an asymptotically stable equilibrium point of (3.4).

Proof. By Lie’s theorem ([4]) if g is a solvable subalgebra of the Lie algebra
gf(R"), then there exist a basis of R™ such that all the elements of g in this
basis are upper t-iangular. In these new coordinates the ‘A’ matrix in (3.5) will
be of the same form as that in (3.1) and the result follows from theorem 3.1 O.

We next recall Cartan’s criterion for solvability. Denote by

Dg =[g.9]
(the derived alzebra of a Lie algebra g). Also we define the Killing form
(X,Y) of g by
(X, Y)=Trad X ad Y
where Tr denotes the trace of a linear operator and ad X is the linear operator
defined by
(ad X)A=[X, 4], A€egy.

Cartan’s criterion for solvable Lie algebra ([4]) states that g is solvable iff

(X,X)=0for all X € Dy.



In order to study Cartan’s criterion in relation to the Lie algebra £4, we
need to consider the latter in more detail. Let E;; be the matrix which is zero

apart from a 1 in the (i, j)** place. Then, if A(z) = (a;;j(z)) we can write

n

Alx) = Y aij(2)E; (3.5)

i,i=1
Let M, denote the vector subspace of R™" generated by R(A).
Proposition3.3 M; = R" iff the functions aij(z) ;1 € 14,j < n are linearly
independent (as functions on R™").

Proof. if the functions a;; are not linearly independent then we can write
Zﬂ,‘jd,‘j(.‘c) =0,VYzeR"
iJ

for some scalars «;;, no all zero. We can assume that a;, # 0; then

1
ﬂlx(x)za—ll Z ajja;i(z)
iJ#(1,1)

and so
Qyy
Alz) = Z a;j () (E;_f + ;—J—Eu)
P#(1,1) 1

and the space M is generated by {E;'j + :—;{-El

Hanzan

To prove the converse, let < , > be the standard inner product on R“z, S0

that if X = (24;), ¥ = (3;) € R"’ then

ALY e EZr;jy_,-,- ;
LN

If M; # R" then there exists a nonzero matrix C orthogonal to M, i.e.

< A(I),C >= Z a.-,-(:r) < E;‘j,C)‘: 0

i,j=1



for all £ € R™. However

C= Zn: c,-IJ-E,-j

i,j=1
where not all the ¢;;’s are zero. Hence

n

n
0 = Z a,-_,-(x) < E,‘j, Z ceeEre >
ij=1 k=1
n
= D cjaij(z)

i.J
for all z € R™ and the result follows. m]
Corollary 3.4. If the functions {a;;j(z): 1 <i,j < n} are linearly indepen-

dent then £4 cannot be solvable. O

In order to find the dimension and generators of £ 4 let
S={(4):1<ij<n}

denote the set of ordered pairs of numbers from 1 to n. Suppose that the subset

S; C S is chosen so that the set
{aij(z) : (i,7) € 51}

is maximal linearly independent subset of the coefficient functions
{aij(z) : (i,4) € S}.

Then any element a(z) for (k,£) € S\ S; can be written

ae(z) = Y offa;(z) (3.6)

(1.7)€8

10



for some scalers u . Hence by (3.5) we have

A(z) = Z a.-_,-(.":) (E.'_,' -+ Z afj[EH)

(i.5)€ES, (k,0)eS\S;
Let
E‘.(jl) = Ei; + E affEu
(k.l)ES\Sl
Then
A@)= Y ai(z)E (3.7)
(1.4)€S

From (3.7) it follows that M), is generated by the set { E,(Jl), (7,j) € 51}
Proposition 3.5 The set { E(l) :(i,7) € S1} is linearly independent in R"".

Proof. Suppose, on the contrary, that

Y B;ES =

(i,1)€5:

for some scalers J3;; not all zero. Then, if (p,¢) € S;

Z ﬁij(Ei(jl)squ) =0 (3.8)
(1.J)€5
But,
2 B, Byy 3=111,
Hence, by (3.8), #pq = 0 for all (p.q) € S , and the result follows O

We must next determine a basis for [M;, M,] & M.

To do this consider the bracket

[ Y ai(@ES, S arly)EL)

(i,)€S) (k,L)ES,

> ai(@)acw)ES, B

(1,3),(kL)eS,

[A(z), A(v)]

11



Let P, [E(l) E“)] be the projection of [E{} E(l}] on M; and define

ij 1y

Hlpgrs [Py [Ef_fl),E{l)]

i.e. the part of [E\]), E{)] off M. Write

1: k]
ijke .
Fijre = S Fili By ;

v,w

then

(1 = Pm,)[A(z), A(y))

Z Zai.f(‘r)a“(y)f;{uHEuw

("J)}(hl)ESl v, w

Yo Y {as@)a)fi ) E

v,w (i,5),(k,L)ES)

(Note that Pay, is given explicitly as follows. We can apply Gram-Schmit’s

procedure to orthogonalize the Ef;). Call the orthogonolized matrices Efjl)

Puo(EELE( = Y o™ Ey

ij
(4,7)€ES,
for some scalars a;;. Then
1 —(1) vw —(1) = 1)
< Pu, (LESY, EX), = 3 aft<E TS
(1,7)€5
— . vwk
= u;;" :

Let S5 C S be chosen so that

{buw(I: y) : (U, UI") = S?}

is a maximal linearly independent set of functions over R” x R™ where

buu(z,0) = > ai(z)aw(y) fiik (3.9)

(i,3).(k.L)ES

12



Then,

(I- Pa))A(2), Al = > bij(z,v) (E,J+ 3 ﬁktEH)

(4,7)€S52 (k,L)ES\S,

where we have written
b“(:zy) = E ktbl](: y)
(i.7)€S,
Lat E( )= E;_,+Z(k )€S\ S, B‘_, Ere,(1,7) € So. As before, the set {E,J Yi.i)es,
is linearly independent in R™ and generates My, Mi]e M.
We now have found a basis for Mz £ My@([My, Mi]oMy), ie. {ED} ¢ jes,,
{Ei(j:)}{i,j)Es:;' Continuing in this way we can repeat the above procedure with
M, replaced by M1 and consider a typical term of [M, M;] of the form

B=| Y asn)EP+ Y biw)EP, 3 ay(EP+ ¥ bij(g, 7)EED

(i.)€S (1.7)€S2 (1.4)€5: (i.1)€52

Then (I — Pa,)B is of the form

Z Couw(z, v, 2,p, ¢, 7)Eyu
v,w

for some set of functions ¢y over R®" and we search for a linearly independent
subset of them. Hence we have proved.

Theorem 3.6 Given a system

z = A(z)z

Il

(aij(z))z
: = Y aj(2)E;

ij=1

13



we can find a basis for £ 4 of the form {EE;)}(E,J')ES; 5 {Egj?)}(i.j)eszv- - {EE;{}}(;.J-)E_;K,
where the matrices EEJ-]) form a basis of M, the linear subspace of R™ gener-

ated by R(A) and E{f) is a basis of

[Mp—lep—l] (] Mp—l
mp
With each set S, there is associated a set of functions a{-’jlz,y,...,tl. The
elements E,(J-l) are found by choosing a basis {a;;j(z)}(i j)es, where the number

of variables m, is given by the relation

k-1

my=n , mkzﬁ(z:m;)

i=1
( af;(z) is just a;j(z) and af;(z,y) = bij(z,y), given in (3.9) ), of the linear
space spanned b;" the functions a;;j(z) and setting

Ef)=Eij+ Y alfEu
(k.L)ES\S,

k¢

where a; are given by (3.6). The remainder are given inductively as follows.

If {E";—l)}(i’j}esp_l and Mp_; have been found we can write a typical term of

[Mp_1, Mp_1] in the form

Mg
p~-1 - S - p-1
3 1 e , s k)
B=|3 D af ("M WY EP 3 3T ak(ah2,. . b))

k=1(i,j)ESk k=1(i j)€Sk

Then (I — Pa,_,)B can be written in the form
Mp

£ v 1) Eus
ZG‘J (‘r!yv ] ) 1]

i.J

and S, is given as the set of suffices of a linearly independent set of the af’s. D

14



To simplify the notation we shall write any element of £, in the form
Zc.—(m")F,-
i€l
where the index set I is equal to S; V .-V Sk (disjoint union), z¥ is an my-
vector variable and ¢; is an approprate function of afj of the vector variable z* =
(z,y,2,---,t) (of appropriate size) and F; is the corresponding basis element
B
We are now in a position to study the condition for solvability of £, in more
detail. We require
(X,X)=TradXad X =0
foreach X € [L4.L4] = D, .

Proposition 3.7 If {e;} is a basis of a matrix Lie algebra L then, for any

element X € L we have
(X, X)= En: @i
i=1
where
[X, [X,e]] = 2": aije;
i=1
Now write

[P, F)=)_2kF
kel

i.e. ﬁ‘j are the structure constants of £4 with respect to the basis {F;};e;. If

15



[X,Y] € D, we have
X = ZC,‘(IE)F,' ,Y = Zc,(y’)FJ
i€l JEI

and so

[(X,Y],[[X,Y], F]] Do al@)ei(¥ (= )ee (WOE: Ej), [[Fe, Fr], Fyll

i.5.kLel

i,k tel ikl el
By proposition 3.7 we have

Theorem 3.8 L4 is solvable if
iV E TS S )
ci(z )CJ(U’)Ck(l’ Jee(y )‘JU ‘fkf;"ﬂur‘}kz =
i,k LET it §lkLET
for all vectors z*, 1. =]
3.9 Examplz We shall give a very simple example to illustrate the Lie

algebra £4 and to show how the conditions for solvability often simplify con-

siderably. Thus, consider the system

—2—2? 22,423} z?
g 1
L = '§ —I 24 T z
ry—2} x+2] -2-=z;+2}
1 -1 -1

16
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+H=24+z1)]| 0 1 0 |=

-1 1 2
It is easy to check that L4 is a three-dimensional Lie algebra which is therefore

solvable.

4 Semisimple Lie Algebras

In this section we shall consider the case when £, is a semisimple Lie algebra.
The standard structure theory of such algebras will be used without further
comment; the reader can find the details in various well known references, e.g.

[5]. Thus again consider the nonlinear system
z=A(2)z (4.1)

and let £4. denote the complexified Lie algebra ! generated by all the matrices
A(z), z € Rn. Weshall assume that £ 4. is semisimple. Let h be a Cartan (i.e.

maximal Abelian) subalgebra of £ 4, of dimension N and let

Lac=he ) L5, (4.2)

a€l

lie. L4 & C where L4 is defined as before

17



be a root space decomposition of £4.. We shall again denote by (.,.) the Killing
form on £4.. Recall the following properties of the decomposition (4.2):

(i). (.,-) is nondegenerate on h.

(ii). Lac has N linearly independent roots and each root space £g, is one
dimensional.

(iii). If E4 € £3,, then (by definition)
(ad H)E, = a(H)E,
for all H € h.
(iv).For any root a € T there exists a unique H, € h such that
(H,Ha) = a(H)

for all H € h.

Corresponding to the decomposition (4.2) we can write (4.1) in the form

¢=H(z)z+ Y _ es(2)Eaz (4.3)

agl

where
H(z)eh , zeR" |, E,€L5,.

Using condition (iv) we can write

H(z)= ) ha(z)H,

aEl’

for some functions h,(z) where I’ is a set of N linearly independent roots.

Define the function

Fz)=2)_ Y (%"‘:mm) ha(z)B(Ha) (4.4)

aEl! e

18



In the following we shall fix a linearly independent set of roots ©/. We then
have

Theorem 4.1 Suppose that L4, is a semisimple Lie algebra and let (4.2) be
a root space decomposition. Then the system (4.1) is asymptotically stable in
the large under either of the following set of conditions:

(I). (a). All the roots are real-valued on (the algebra generated by) H(z).

(b). If z # 0, then for at least one root a € £ we have a(H(z)) #0 . Forz =0,
H(0)=0.

(¢). If || z ||— oc then for at least one root 8 € T we have | 3(H(z)) |— oo
{d). Flzl<l, z#0.

(IT).(a). All the roots are pure imaginary on H(z).

(b),(c) as in (I).

(d). F{z)>0,z #0.

Proof. In case {I) consider the-function
V(z) = (H(z), H()).
We have
V(z) = Tr(( ad H(z))( ad H(z))

Since { Ho ,a €X'}, { Eg, B € L } is a basis of the vector space £ 4. and

(ad H(z) )(ad H(z))Hoa =0 , a €X'
(since H is Abelian)

(ad H(z))( ad H(z))Es = 3*(H(z))Es

19



(by property (iii)), we have

By I(a) and I(b) we have

V(U) = 0
Now,
. d
V) = dae),HE)
= LY hole)Ha, 3 hale)Hy)
agX/ LEX!

= 2 T ha(@)hs(@)A(Ha)

aEX! BET!

(by property (iv)), so

Ve =2 3 3 (G2 awe) @) = Fe)

agl! BeT!

where we have used the symmetry of (.,.) so that

B(Ha) = (Ha, Hp)

I

G(H,j).

By I(d) we have

V(z) <0.

The result now follows from I(c) and Lyapunov’s main stability theorem.

20
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Case II follows in much the same way except that
Viz) <0

since a?(H(z)) < 0 because the roots have pure imaginary values. o.
4.2 Example Consider the simple Lie algebra of all skew-symmetric 3 x 3

complex matrices with basis

00 0 0 0 1 0 -1 0
Mi=|0 0 <1 | Ma=] 0 00| Ms=|1 0o o
01 0 -1 0 0 0 0 0

and structural formulas
Ulﬁ,ﬁf{g] = ﬂf3 ,[ﬂfg, ﬁffa] = ﬂfl ,[!\43, ﬂfl] = ﬂfg
If
H = 211!3 ) El = E(Aﬁrl + 1]\!2) ) E_l = ‘l(!lf] - U‘Jg)

then

[H E\]=E, , [HE.)]=-E_, , [E1,E_j]=2H.

The one-dimentional supspace h = {AH : X € C} is a Cartan subalgebra and
the two roots are A and —X with root vectors Ey and E_;. For Hy (as in (iv))
we can take

H,\ ==
Now consider the ’skew-symmetric’ differential equation
1 = =fi(z)zz + fo(z)zs

21



fi(z)zy — fa(z)zs

z>

Il

&3

—fa(z)z1+ f3(z)z2

This can be written in the form

(f1(2) M5 + fo(z) M2 + fa(z) M)

8-
!

(<ih@)H - o)+ i8N + Hfalo) = 1))

e

A(z)z.

In this case,

H(z) = —ifi(e)H

and so the roots are & f; (z) which are pure imaginary. There is only one linearly

independent root and so (4.4) becomes

P@) = (=i 4 i)

since

Hence

and so for stability we require

#]
g{-’? (=fi(z)za + fo(z)zs) + % (=fi(z)z1 — fa(z)z3)

Z—fa (=alelas s file)es] <0

22



for each z # 0 and f1(z) # 0 for z # 0. Thus, for example, if
fi=zi+zi+ad, fo=—zi123, f3 = 2223
we have

F(z) = 2x123fs (1= 223) + 2rszafs (223 - 1)

=222z (1 - 223) — 22342 (1-223)
and we have stability on the region where
z3<1/2.

4.3 Example Consider a system of the form

&y a(z) b(z) T
2 c(z) —a(z) z2
Then L 4. is the Lie algebra of 2 x 2 trace zero matrices, The Cartan subalgebra

h is one-dimenticnal and spanned by

The root is given by 2a(z) and so
F( )—4-—a)A(z:) (z)
z) = 4( zalz

and for stability we require

F(z)<0

23



a(z) (;—i(a(a:)xl + b(z)z2) + g—;(c(r)xl - G(I)Ig)) il

Similar stability conditions can be obtained for systems which generates the

other clasical Lie algebras.

5 Conclusions
In this paper we have proved stability results for nonlinear systems of the form
z=A(z)z

by considering the Lie algebra L4 (or L4.) generated by the matrices A(x),
for all z € R". We have seen, in particular, that solvable and semisimple Lie
algebras can play a significant role here.

Another possible approach in the case when A(z) is an analytic matrix-
valued function is to define the graded Lie algebra of functions in the following

way. Let
oo .
Alz) =D 2'4
i=0
where
::i = z‘i‘ .. .zi;‘
and let g be the Lie subalgebra of the Lie algebra of all matrices generated by

i =0}

24



If

then
T3 T3] = 145, Al (5.1)

This defines a kind of ‘n-dimensional’ Kac-Moody algebra graded by the index
i. Such algebras have been used in the physics of superstrings (see [6]) and we

shall consider their application to nonlinear systems in a future paper.
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