The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of On the Inversion of the n-Dimensional Laplace Transform.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79349/

Monograph:

Banks, S.P. and Moser, A. (1992) On the Inversion of the n-Dimensional Laplace
Transform. Research Report. ACSE Research Report 461 . Department of Automatic
Control and Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

'6‘20(-55’(5)

On the Inversion of the n-Dimensional Laplace Transform

by

S.P.Banks and A.Moser

Department of Automatic Control and Systems Engineering
University of Sheffield
P.O.Box 600
Mappin Street

SHEFFIELD S1 4DU

Research Report No. 461

September 1992



Abstract

In this paper we study the inversion of the multi-dimensional Laplace transform
by a combination of a general partial fraction expansion formula and the theory
of residues. The ideas may be applied to nonlinear systems defined by Volterra

series.
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1 Introduction

In this paper we shall consider the n-dimensional Laplace transform and ob-
tain generalizations of the well-known properties of the one-dimensional trans-
form used extensively in linear systems theory. In particular, we shall be in-
terested in the computation of the inverse transform using the n-dimensional
theory of residues ([5],[10],(8],[9],[1]). Most of our knowledge of the multi-
dimensional inverse Laplace transform comes from tables obtained by evaluating
the transform of given functions in the ‘time domain’ (defined by the coordinates
(t1,---,tx) € R"). This can be found in 2 number of publications ([12],[6],[4)).
The problem of inverting a general function of the Laplace variables is very
difficult and its application in systems theory is therefore somewhat limited
(12)).

The main objective of this paper is to develop as complete a generalization of
the ordinary one-dimensional Laplace transform theory (in the case of rational
functions of s) t the n-dimensional case as possible. This will involve a gen-
eralized partial fraction expansion theory using the techniques of ideal theory.
We shall then apply the theory of residues to compute the inverse transforms
of the resulting quotient forms in which the denominators are irreducible poly-
nomials in C*[X], where X = (X;,---,X,) or X = (s1,*+,5,) when we wish
to emphasize the connection with the Laplace variables.

The application of these results to systems theory will be studied in a com-

panion paper.



2 Mathematical Preliminaries

In this paper we shall need a number of mathematical ideas which are not
commonly found in the systems literature. We shall discuss these briefly here,
giving references to the background material.

Firstly, we shall need some elementary ring and ideal theory (see [7]). Let
C[X] = C[X},---, Xn] denote the ring of polynomials in X = (X, -+, Xy).
An ideal I in C[X] (or indeed any ring) is a subset which is closed under

subtraction and
e celxirc L

If p € C[.X], ther the principal ideal generated by p, (p), is defined by
(p) = {pq : ¢ € C[X]}.

More generally, if § = {p;]1_<_,-50 is a set of polynomials, then the ideal generated

by S is
v
({p:}) = ‘[ZP:’?[ :gi € C[X] }.
i=1
For any ideal I C C[X], its radical V7 is defined by
Vi={pe C[X] : p* € I for some k > 0}.

Given any two ideals I, I; we define their sum by

L+L={pi+p : pp €L, p» € IL}.



Now, for any set of polynomials § C C[X], the variety defined by S, V(S), is

the zero set of all elements of S; i.e.

V(S)={X €eC" : p(X)=0forall peS).

If S conmsists of a single polynomial p, we write V(S) = V(p). Conversely, for

any subset W C C” we define the ideal

J(W) = {p € C[X]:p(X) =0 for each X € W}.

(It is clear that J is an ideal.)

Note that

LChL=V(h)C V)

and

Wy € Wa = J(W) C J(IW)

Moreover, we have

VIhnh) = V(I -I)) = V(1)U V()

I

V(i + 1) V(h)nV(I)

for any ideals I, I, € C[X].

It can be shown that, for any ideal I,

J(V(I)) = v(I).



IfI= \/(T) we say that I is closed. An ideal I is irreducibleif I = I; N Iy
implies that I = I) or I = I, and prime if p; - pa € I implies that p; € I or
p2 €L

Similarly, a variety V C C" is irreducible if V = V, U V, implies that

V=V, or V="V, Any variety V can be written in the form
V=Wu---uW

where V; is irreducible and similarly any ideal I can be written
I=Ln---nlI

where J; is irreducible and closed, i.e. I; = \/T;.
If I'is any ideal in C[.X] we define the quotient ring C[X]/I to be the set

of subsets
g+1CCl[X]

for all ¢ € C[X], with addition and multiplication defined in the obvious way.

Given a ring homomorphism
f:Ri— R»

for any two rings Ry, Ra, suppose that f(I;) C I for some given pair of ideals

I, I. Then f induces a ring homomorphism
f:Ry/I; — Ry/I,.

If ker f C I then f is injective.



We shall also require some notions from algebraic topology and integration
of forms. These will now be discussed briefly (see also [1] for a more extensive
discussion). We shall use the singular homology and cohomology theories. Re-
call that a smooth p-dimensional singular simplex (or p-simplex) on a

differentiable manifold X is a pair o, = (A, f) where
Ap={t=(t1," -, tp)) ERP :t; 20, t;+---+1, <1}

and f : A, — X is a smooth map. The simplex is oriented by the coordinates
t1,-+,1p. (Different coordinates 7y, - -, 7p induce the same orientation of o}, if
0t/8r > 0.) We denote by —o, the simplex o, with the opposite orientation.

Let ¥ = Up_, S, be a dissection of a manifold X into singular simplexes. The
group of p-chains Cp(X) is the free abelian group generated by the p-simplexes
in X, i.e. the set of formal sums

- k k
c,,_kau-f_1 y0p €5, , mi €Z,
k

with obvious addition. The i** face a,(,") of op is a map A,_; — o, such that

(1) —
Op’ = 0poe,

where !

p is the map e} : Ap_; — A, which maps A,_; to the face of A,

opposite the i** vertex, with orientation induced from Ay. The boundary of a
simplex oy, is then defined as

P
dop = Z("}-){U,(;‘El )

i=1



and the boundary of the chain ¢, by
dig = Z my 3(0';)(*).
i
Then we have
00cp, =0

for any chain ¢;. A chain ¢, € Cy(X) is a cycle if dc, = 0 and a boundary if

¢p = Odp4 for some chain dpy 1. Then we define

Zp(X)

{cp € Cp(X) : ¢p is a cycle}

B, (X)

It

{cp € Cp(X) : ¢p is a boundary}
and the quotient group
Hp(X) = Z(X)/By(X)

is the p-dimensional smooth singular homology group of X. We write

ep ~ 0 if ep € Bp(X) and ¢, = 0 if kep ~ 0 for some integer k. We also define
HY(X) = Zp(X)/{ep € Cp(X) : ¢p = 0}.

It is called the weak homology group of X and coincides with Hy(X) in
many cases and we shall assume this here. A set {c,} C Z,(X) is called a
p-dimensional (homology) basis if we can write any [c] € Hp(X) uniquely

in the form

[c] = E m;[c}]



where [c}] denotes the image of ¢, in Hp(X) under the canonical projection.
If Y is another smooth manifold and f : X — ¥ is a smooth map, then we

define a map f : Cp(X) — Cp(Y) by
f(op) =(8p, fog), ap = (Ap,9),
and since fod = o f, f generates a homomorphism
Jo it Hp(X) — Hp(Y).

Now let w be a continuous p-form on X and let o, = (Ap,g) be a smooth

p-simplex. Then we define the integral of w over op by

fw:/ 7(w) = Aty - tp)dty -+ dtp
oy a; ||

where g(w) is the pull-back form of w under g. If w is given locally by

w(@)= > aiiy(z)dzi, A--Aday,
£1,0p

then we can write

7)) =D aiyi, (9(t))dgi, () A Adg; ().

Also,
a Tiyy oy Ti
A=Y an---f,(g(‘))ﬁ'

fiyjniy

In general, for ¢, = 5~ mia} € Cp(X) we define

Jo=Sm [ o
cp L ok



We also write

[ w= e

’
this specifies w as a linear map Cp — R and this ‘inner product’ shows that
the p-forms are in a one-to-one correspondence with the cohomology group
HP(X) of X (indeed, we can take this as a definition of HP(X)). We then have
the following results:

Theorem 2.1 (f(w),¢p) = (w, f(cp)). a

Theorem 2.2 (Stokes’ formula).

'/ w:f dw
dep cp

where dw is the exterior derivative of w. m]

Corollary 2.3 If ¢; = ¢} and w; = wy + d¢, then

f W = / Wa.
1 2
p ‘p

Thus, if [c;] € Hp(X) and [cF] = {w} € HP(X), then we can define

e =fc ~

P
Note that if {¢,} is a basis of the p-dimensional homology of a manifold X, then
for any cyclee, [w =37, ki [, w where c = T k;c;.
Finally, we shall need Alexander-Pontryagin duality of a manifold (see (11]).

This depends on the concept of intersection index which can be defined for



two nondegenerate simplexes o1 = {Ay, f1}, 2 = {A,, f2}, in an n-dimensional

smooth orientable manifold X, where p+ ¢ = n, by

O(z1,---,Tn)
a(tls"';tryrll"'srq) a

¥(01,02) = sgn

at a point a where o) and o, intersect transversally. Here, (t1,--+,tp) and
(r1,+-+,7) are local coordinates at the point a determining the orientations of

oy and o2. If o; and o2 do not intersect, we define
x(e1,02) = 0.
For general chains ¢; = 5, miol , cp = EJ- n,-az,, with r + ¢ = n, we define

x(e1,e2) = Z min;x(or,0}).
i
Now, if we have two boundaries ¢; € B,_1(X) and ¢ € By(X) withr+¢=n

and the carriers of ¢; and ¢; being disjoint, we define the linking coefficient

of e; and e» by
v(er, e2) = x(dy, c2)
where
ady = ¢y,

and d; is transversal to c;. We then have
Theorem 2.4 Let S" be an n-manifold homoemorphic to the n-dimensional
sphere and T a polyhedral submanifold of S™. Then, if r+¢ = n, the homology

groups H,_1(T') and H,(S™\T') are isomorphic. Moreover, if {c;,---,¢p} is an

10



(r — 1)-dimensional homology basis of T, then there is a corresponding dual

basis {dy,---,dp} of S?\T such that

v(ci,dj)=6; , 1<i,j<p

By linearity cf the linking coefficients we obtain
Theorem 2.5 If F is analytic in C"\T and T = T U {ec} is a subpolyhedron

of §2" = C" U {oo}, then for any cycle ¢ € Z,(C"\T) we have

where ¢; is an (n — 1)-dimensional homology basis of 7" and
ki = v(aj,c)

is the linking coefficient of ¢ with the basis element o; and R; is the ‘residue’

given by

1
Wy = W-/c_, F(z)dz,

where c; is the dual n-dimensional homology basis of C™\T.. O

3 Partial Fraction Expansion

In this section we shall generalize some results in [3].

Lemma 3.1 If

o p(X)
"X = T @)

11



where each ¢;(X) = ¢;(Xy,---, X,) is irreducible and p and qy,- - -, g are rela-

tively prime, then we can write r in the form
T pi (X)
r(X)=>_ 3 22 (3.1)
for some p;;(X) € C[Xy, -+, X,], 1€i<k, 1< j<m;,if and only if
(p) C (1) + -+ (qi) (3:2)

where

gi=T]q".

i#i

Proof If (3.2) holds then there exist v;(X) € bfC[z] such that

k
p(X) =D w(X)gi(X)
i=1

k .
=L

i=1

which is of the form (3.1) with
Pim, (X) = vi(X), pi;(X) =0 if0< j<m,.

Conversely, if (3.1) holds for some p;;(X’), then for any ¢(\') € (p) we have

t = pt, for some t; € C[X] and so

k m,
to= 3 Y tipiglt gl )
t=1g4=1
€ (q)+--+(q) (33)

12



O
Corollary 3.1 In order that we may write r(.X') above in the form (3.1) it

is necessary that
V(gi)nV(g;) € V(p)-

Moreover, if the ideal }"(g;) is minimal (i.e. Valtg) = >_(g})) then this

condition is also sufficient.

Proof By lemma 1, we have the necessary condition

(p) C (q1) +---+ (1)

and so

However,

k
174 (Z(q})) = Uiz (V(g:) N V(g;))
F=1

and the necessity is true.

For sufficiency, we have

k
14 (Z(q})) C V(p)
i=1

as above and so




and if 1 /37(¢}) = 3"(g}) then
k
vV Y (@)
i=1

and the sufficiency follows from lemma 3.1. D

Corollary 3.2 We can write

1 k. m; s ‘\)
ml(}x) _;]Zl 'J

for some p;;(X) € C[X] if and only if

k
)= (¢)
fe=]

ie. if and only if the ideals (g!) are comaximal. o
Consider next the evaluation of the polynomials p;;(X) in the expansion

(3.1) when they exist. It is easy to see that such pij’s are not unique, but if

k m, k. m; —
. ij(X) ~ Bij \)
r(A):ZZ b =y Y= (3.4)
i:l;: ‘:\) izl j=1 ql
then
ii (pij — Bi;) g
i=1j=1 ‘If
i.e.
E m,
2 2 (pis = Fi)al™ gl g =, (3.5)
i=1j=1
Consider the polynomials pyy, -+, pim, and the sequence of (generalized) coor-
dinate rings
CIX]/(q1) € C[X]/(g) € --- € CLX)/(¢1™). (3.6)

14



By (3.3), since g is a factor of each term ¢"* -- g™~/ ... g% apart from when

i =1 and j = my, it follows that ¢; must divide pym, — Py, s0 that

Pim; — Pim, € (01)-
Hence, pim, is uniquely determined modulo the ideal (g1), i.e.

Pim, € C[X]/(q1):
Now consider the ring homomorphism

71 : C[X] — C[X]
given by

n1(p)=p-q1, p€ C[X]
i.e. multiplication by ¢;. Then ¥; induces an injection
711 CIX)/ (1) — C[X]/(4}),
which is the inclusion map in (3.4). Since pypm, = pam, in C[X]/(q1), we have
Pimy = P2m, in C[X]/(g}).

Hence, in C[X]/(q1), (3.3) reduces to

k my;

DD (pis = Biy)eT gl g+
i=2 j=1
mi=1 .
+ ) (pij = Bi)a g gt =0, !
j=1

15



Arguing as before we see that, since ¢7 divides every term in (3.5) apart from

the term where i = 1,j = m; — 1 (provided m; > 1), we have

Pimy=1 — Pim,-1 € (?%)

1.e. pim,-1 is uniquely determined modulo the ideal (g7), i.e.

Pim,-1 € C[X]/(‘If)-

Continuing in this way, we obtain
Lemma 3.2 In the expansion (3.1), pi; is uniquely determined modulo the
ideal (¢/"'~7*!) so that p;; is well-defined in CIX)/(gm it o
In order to determine the polynomials p;; in the expansion (3.1) we need to
define operators corresponding to ‘differentiation by g¢;’ for 1 < i < n. We shall

do this in the case of two variables X', Xs; the general case is an easy extension.

Hence we require to find the polynomials p;;, ps; in the expansion

p(X1, Xa) P11, P12 Pim, , P P2m,
- e = = i rep il SR e 3.8
q,l,nl (,\'1 ) )(2)931'(4\1 ! AE) @ ‘:ﬁ qvlm 0 972?12 ( )

where we have omitted the variables X;, X» on the right for convenience. Note

first that if an expression of the form (3.8) exists then we can write
p= 1,95"2 + u,qi‘lu

for some polynomials v and w. Note that v is uniquely defined in C[X]/(g7)
and w is uniquely defined in C[X]/(¢3*?). We can find suitable polynomials v

and w from the division algorithm. We then have
v=pugl "+ p1ag7 i 4 pim,. (3.9)

16



Suitable values of p11,-- -, pim, can again be found from v by successive appli-

cation of the division algorithm:

v = a1+ 5

(@291 + B2)q1 + B,

where a1 = asqy + f2. Similarly,

v = ((a3q1+ B3)q + B2)g1 + By

= 0090 Bt g R s ok By (3.10)

Identifying (3.7) with (3.8) gives appropriate values for pi1,-- -, p1m, (and sim-
ilarly for pai,---,pam,). As we know, of course, the polynomials pij are not
uniquely defined in C[X], only in C[X]/(g™~7+1).

We can, however, choose ‘canonical forms’ for pij in certain cases. For this
we need the well-known division lemma:

Lemma 3.3 If R is a ring with identity and p,q are polynomials in R[X]

whose highest coefficients are units in R, then there is a unique representation
p=oaq+p

where deg # <deg g. O
Considering the case of two variables again as above, we can repeat the proce-

dure in (3.8) and if we write the polynomials as functions of X'; with coefficients

17



in C[X5] (say), then provided each polynomial has highest order coefficient in-
dependent of X3 (i.e. a unit in C[X;]) the polynomials Qm, =1, Bm =1, -, B
will be uniquely defined.

Example Consider the rational function

X? _ P1 i p2 & P3
(X1 - XPAX +2X3)  (X1—XD) © (X1= XDE ¥ (%1 +2X7)

Note that such a decomposition is possible by corollary 3.1, since
VX1 = X)NV(X;+2X3) = {0} C V(X3

and

(X7) = (X1) € /(X1 = X3)2 + (X, +2X3)

To find p; we merely multiply the left hand side by (X; + 2X2) and set X; +

2X3 =10; ie.

X

pPs = mz’l-g-z,\'g:o
4
g

Now we must write X7 in the form

5 , ¥ 4 - ]
Xi=r(X;+2X3 + 5()11 - X3)-.

A simple calculation shows that

18



Thus,

5 2.,
§X1 - §A22 = p1(X1 = X2) + po.

f ==

Regarding the polynomials as elements of (C[X3])[X;] we have

_ 5 I e
pl—g,pz—3kz-

Hence,

Xt 5 X3 4
(X1 - X3)* (X, +2X3) ~ 9(X; — X3) ' 3(X1—X2)? ' O(X; + 2X3)°

4 The Inverse Laplace Transform

We shall next apply the theory of residues to the problem of inverting the n-
dimensional Laplace transform. We start from the general expression for the

inverse transform, namely

1 g14i00 On+ico
f(tll"'!tﬂ)=W/ '/ F(Sl,"‘,Sn)E(‘s‘t’+"'+""t")d31"'dSn.(4.l)
a -4

1—io0 n—i00
The following result specifies the conditions under which (4.1) holds and its
proof can be found in ([6]):
Theorem 4.1 Suppose that the function f(t, - -,1n) has partial derivatives
of all orders up to n, i.e. %:-iilf exists for |i| < n, where i = (iy, - -,in),ti =

.. tin and i| = Z;.’ﬂ i;. Moreover, assume that

|F Ry, -y 1n )] ¢ Qelfitrbintbiota)

19



for some constants @, ky,---, ky. Then, if

o0 oo
F(Slz"lysﬂ) = f ""[ eh(’1‘l+“‘+’“1“)dt1"'din
0 0

we have »
1 -/’0‘1+l'00 -/an+ioo Zn S
Pppngly) = - F(sy,-+,8,)elwi=1""ds .
f( ! ) (27”)" o, —ico On—i00 (& ) g
for a; > k;.

--dsp,

(4.2)

(]

Consider the space C™ with the one point {cc} added, using the standard

one-point compactification topology. Then C" U {oo} is topologically a real

2n-dimensional sphere S§?*. Let T be the singular set of F, i.e.
T = {(s1,-++,8,) € C" : F is not analytic at (s1,---,s,)},

and let T'= T U {oo}.

Theorem 4.2 Let v be any cycle in C,(S*"\T) which is weakly homologous

to the cycle S"\ {0} € C(5?"\{oc}) defined by the set

S"\{oo} ={(s1,-+,8n) € C" : 84 = 04 +iy,—00 < y < 0}.

Then,

!

f(tli"'ltﬂ) C_l(F(sl,---,s"))

1 ~
W[,F(Sh---,sn)ez'm tidsy Ao Adsy,.

Prdof This follows directly from corollary 2.3 and theorem 4.1.

20



15. Figure 19: Nonlinear function and its estimate.
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15, Figure 20: Adaptive control action.
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