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Abstract

A new homotopy technique is applied to the inversion problem for nonlinear
systems, both in the input-output and state-space formulations.
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1 Introduction

The inversion problem in systems theory has a long history [3,4,6,7,8,9] and has

an important position in the field. Regarding a system as an input-output map
5:U—Y

from an input (Banach) space U into an output (Banach) space Y, the inverse

problem is simply to find

S R(S)CY — U

if it exists. The linear case is well understood and has been completely solved
by Silverman [7 ]. In the nonlinear case, the implicit function theorem [2 ] is
important in the existence proof. In this paper we shall give a new homotopy
approach to system inversion and apply it to nonlinear dynamical systems. For
this we shall use a global expansion technique based on generalized Lie series
developed in [1].

The structure of the paper is as follows. In section 2 we derive the homotopy
method, which has been applied in other circumstances [5]. In section 3, the
method is applied to systems with a finite-dimensional realization by using Sil-
verman’s algorithm and in section 4 we consider the case of a nonlinear analytic
dynamical system in state-space form. Finally, a simple example to illustrate

the formal technique will be given.



2 General Homotopy Method

In this section we shall consider a general input-output map S : U — Y defined
on Banach spaces U, Y. We shall assume that S is Frechet differentiable. If S

is (locally or globally) invertible then given y* € ¥ we wish to find
u* = 5~ y").
Let (up,y0) € U x Y be any known input-output pair, i.e.
yo = S(ug).
and put
S(u) = S(u) —y". (2.1)

Define the homotopy H between the functions S and the constant function

u — S(ug) by
H(u,t) = S(u)+ (t — 1)S(uq). (2.2)
We shall find a differentiable curve G : [0,1] — U with
G0)=up , G(1)=u",
i.e. one which connects the known value uy to the desired one u*. Note that
H(up,0) = S(up) — S(uo) =0
and

Hw ,1)=8Su")=Su")-y* =0.



We shall therefore search for G(t) among those functions which satisfy
H(G(1),1) = 0. (2.3)
Lemma 2.1 G satisfies the first-order differentiable equation
G(t) = =[FS(G®))] (wo - ¥") » G(0) = uo. (2.4)

Proof This follows by differentiating (2.3). Thus,

d
0 = —ZH(G)1)

dG  0H
R eal(e[OR)

= FH(G(1),1)
= FuS(u)|,_ G+ S(uo)
= FS(G)G + S(uo) — v~

0
If we assume that FS(u) is continuous and invertible for each u and that
I(FS(u))~1|| < € for all u € U and some ¢ > 0, then an easy application
of the implicit function theorem shows that equation (2.4) has a unique solution

G(1). Equation (2.4) can be solved iteratively by Euler’s method, i.e.

Giy1 = Gi—h(FS(Gk)) (v —y") (2.5)
Go = ug
for k=0,1,---, L—1. This process will give an approximation Gr to u*. Using

Newton’s algorithm we can write
G = GL-(FS(GL))H(S(6L) - v) (2.6)

¢Y = Gi (2.7)



fori =0,1,2, .- Simple estimates then show that the combined approxima-

tions (2.5) and (2.6) converge to a unique solution u*. (Details can be found in

[5])-

3 Application to Systems with s Finite-Dimensional

Realization

Suppose that the linear system FS(u) is shift-invariant and finite- dimensional

for each u € U so it has a state space representation of the form

M-
=
~
i
Il

Auz(t) + Buv(t) (3.1)

e

—_
—~

S

Cuz(1) + Dyv(t)

where z(1) € R",v(t) € RF, y(t) € Rr.

_ In order to solve (2.4) numerically (by, say Euler’s method) then we can
use Silverman’s algorithm [7] to invert the linear system (3.1) at each iteration.
(Note that we can obtain (3.1) for the linear system FS(u) by taking the Laplace
transform of the system and realizing it by standard methods in the form (3.1).)

This algorithm proceeds by defining a sequence of systems derived from (3.1):

(1) Auz(t) + Byo(t)

2k)(t) = Cu(k)z(t) + Dy(k)o(t)

where Cy(k) and D, (k) are obtained as follows. If ¢o = rank D, < p, then



Dy () = , where D,(0) = SoD, and Sp is a nonsingular p x p
matrix. Define Cy(0) = SpCy. Then if

Du(k)
Dy(k) =

I 0

where Dy (k) has rank gx < p, then we partition Cy(k) in the same way as

Cu(k) =

where Dy (k + 1) has gr41 rows and rank gx4y1. Then, if Dy(a) has rank p for

some a, then the inverse system of (23) is given by

£(t) = (Au — Bu(Du(a)) ™ Cula))E(t) +

where

Zo(i) = (H So—i-r‘{a—i—l> y(t}'l

i=0

and A, is given by



From Silverman [7], we have

Theorem 4.1 The system (3.1) is invertible if and only if there exists a posilive
integer o < n such that g5 = p. O
Therefore we have

Corollary 4.1 A nonlinear input-output map S : U — Y s invertible if il 1s
differentiable with a derivative FS(u) which has a finite-dimensional realization
of the form (8.1) such that there ezist inlegers a(u) determined as above for

each u satisfying a(u) < n. ]

4 Application to Nonlinear Dynamical Systems

Consider the general analytic system

H
1l
=
B
=
E

(4.1)

y = h(z,u). (4.2)
(We shall consider the case where dim v = dim y=1, i.e. scalar systems for
simplicity. At the expense of more notational complexity, we can easily extend
the theory to the general case.) In order to apply the general theory we must
first find the input-output map for (4.1). We shall use the global bilinearization

technique which uses the Lie series (Banks, [1]). First, augment (4.1) by making

u into a state:

r = flz,u)

u = v (4.3)



y = h(z,u)

and we obtain the system

0
: = ¢(2)+ v (4.4)
1
y = h(z)
0 f(z,u)
where z = and ¢(z) = . Now define the functions
1 0
gi(z) = h(z)=y
%‘—z’—’(:) “o(2) if i even
gi(z) = . 0
Huenia ) « if i odd
1
Hence, from (4.3) we have
oy = 99y
gi’(“‘) - a: (‘)“
_ dgi . dgi . 0
= 20 62) + o) 2 (2)
1
= g2i(2) + v()g2i41(2)
and so we obtain the bilinear system
G =AG+v(t)BG , G(0) =Gy (4.5)

where

G = (91,92, )7



and A = (a;;), B = (bij) are infinite-dimensional (block) matrices defined by

a;;j = 062i;ilnxn

bi; b2ip1,iInxn -

The initial state Gg is given by

T

Go = | 20, f(20), y ((8F)f)(=0), | (8S) - (z0), -+

where @ = 8/0z. (Note that we are regarding G as an infinite vector of vector-

valued functions.) We can evaluate the Volterra series for (4.4) in the usual

way:
Let
G(t) =) &),
k=0
where

eAiGD

€o(t)

Elly = /OeA(’_’)BL'(s}gk_l(s)ds. (4.6)

Hence, iterating (4.5) we obtain

4 T Tie—1
() = ] / j; eAll=T1) BeA(72=T1) B ... BeAlTk-1-Tx) B .
0 0

eA™ G v(m) - v(re)dry - dry

Mi(v, -, v)(1) (4.7)

]2



where M. is a multilinear operator in v. Let S denote the input-output map
oo
Siv— Y Mi(v,---,v) , (4.8)
k=0
and let Ly (v;-) denote the Frechet dervative of M(v, - ,v) at v (l.e. Li(v;-)

is a linear operator w — L (v; w)). Then

k
Li(v,)= > Mi(v,---, -, 0).
i=1

-
i

We therefore have

Lemma 4.1 The Frechet derivative of the Volterra series defined by (4.7) is

given by
FSu(u) =Y Li(viu)
k=1
where
L T1 Tk-1
Lk(t--’u) = / / f EA(t_Tl]BEA(TJ—Tl)B"'BEA(Tk_]_Tk)B.
0 0 ]
EATI'GO 7 1)(1'}) s 'U(T_f) o 'U(Tk)drl i 'di ) (49)
D

Now let P denote the operator P : G = (g1, g2, )T — y where g; = h(z) = y.

Then we must invert the linear operator L, defined by

Ly(u) = Z PLi(v;u)
k=1

for any v.

Lemma 4.2 FEach linear operator PLi(v;u) can be written as an integral

10



operator of the form

y(t) = f; Ke(t, m,v)u(r)dr
for some kernel A,
Proof This is proved easily from (4.8) by extending the kernel by zero so that
the integrals all range from 0 to t and then using Fubini’s theorem to inter-
change the integrals. 0.
The inverse of the locally linearized system obtained by Frechet differentiat-
ingthe input-output map is then found by solving a linear integral equation.

Example Consider the single-input, single-output system

7 = zi4zu, z1(0)=1, z2(0)=0.
i‘f_} = IiI:
Yy = I1+I2

" Ini this case we do not need to augment the state with u as in (4.2) since the

system is already linear-analytic. Hence we define

2012 (). if 7 even

gi(z) = (4.10)

secnizg). | 7| ifiodd
gz

Then,

11



2
0gi i 8g; z
Oz 4 oz

Z1Z3 0

g2:(2) + udgais1(z).

As an example, we shall evaluate the second order term (k = 2) in (4.8). Thus,

t T1
Lg(‘b‘;‘u) = -/ f eA(t—?l)BeA(‘r]—T;)BEA(T;}GDH(TI)U(Tg)rlrz
0 JO

t T
+ [ [ eAtmmmpeAt=m peAts) Gyam u(r)
0 0

Now,
A — 1"
. N
(e ).J = Z —02ni5T2x2
n=0
and so
A — 1"
t -
(e B),_, = Z ;‘52 2nit1,jlax2
n=0"
whence
9 20 00 ,n, 4n2
(" BetB), = e ﬁ52‘2"15+1,k%52—2"”-}—1,3'123(2
k=1n2=0n,=0 1 2:

o] oo 4n1 42
= 1 2
= Z E == ——=630n3(2.2m1i41)41,j Jox2

P
=
w

and finally,

(eA(!—Ti}BEA{Tl—T;l)BeAT;) B
ij

i3

00 oo 0o oo , _ o
= Z Z Z Z (t__Tl)n (Ti :2) :62.2n2(2.gn1i+1)+1_k1-2

n3!

oo oc
t=m)" (= m)"? Tgnaé
= Z Z —0an3z.2nz(2.2mi41)41,5 l2x2

ny! ny! ng!

Sansi i lax2
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Next, Gg can be found inductively from the definition (4.9). Thus,

g =
z3
g = 1
I1I2
I
gz = 1
0
092 Ty
T Bz
r1Xo
2z, 0 =3
T2 I Ti1To
223
QIEIQ
and
1 1 1
C% = . ;
0 0 0
Put
(m)i(i"rla TQ] =

oo oo

oo
Z Z Z (t—m)™ (1'1—7'2),127_;169,. e ey i Tini | G
ny! Ta! gl © e AR R 0k

n1=0na=0n3=0

>

k=1
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Then L, can be written in the form
1 T
Lo(vyu) = / f Ki(t,m, m2)u(m)v(r2)dridm
o Jo
1 - S
+f / Ki(t, o, m)v(m )u(m)dndr
0o Jo

Changing variables in the first integral gives the kernel K> in lemma 4.2.

5 Conclusion

In this paper we have applied a simple homotopy argument to the inversion
problem in systems theory. The method leads to a simple numerical algorithm
which requires only the inversion of linear systems along a trajectory in the

input space. The numerical aspects of the results will be investigated in a later

paper.
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