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Abstract

An extension to the Morison equation including Duffing-oscillator type force terms
is postulated through knowledge of the flow mechanisms. This is used to curve fit
measured force time-histories from velocity time-histories, generated experimentally
from various sources: regular oscillatory flow in a U-tube, cylinder oscillation in still
water and in a current, random waves in the large De Voorst wave flume and a di-
rectional sea state at the Christchurch Bay Tower. The curve fits from the Morison
equation are sometimes poor while the curve fits from the extended equation are al-
ways excellent, although the corresponding ’predictions’ give little or no improvement
on the Morison equation. The curve fits obtained by simply adding a term propor-
tional to F|F|, where F is force, are also significant improvements over the Morison
fits enabling an improved classification of force in terms of drag, inertia and history (
for each flow situation ). In unidirectional flows the association of a significant history
term with vortex shedding is confirmed by the occurrence of a prominent transverse
or lift force. In directional seas, lift ( due to vortex shedding ) cannot be isolated and
it is suggested that the data analysis described here will indicate the significance of
vortex shedding through the relative magnitude of the history term.
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1 Introduction

Since its introduction in 1950 [1], the Morison equation has provided the main means
of predicting wave forces on slender cylinders. In the usual notation,

oF 1

o -2t
where u(t) is the instantaneous flow velocity, p is water density, D is diameter and
[ is axial length. The dimensionless drag and inertia coeflicients Cyq and C, depend
on the characteristics of the flow. In general the main dependence is taken to be on
Re, the Reynolds number, and K C, the Keulegan-Carpenter number although these
parameters do not have generally accepted definitions in random or directional waves.
In place of Re, the Stokes parameter § = Re/KC is often used. The coefficients Cy
and C,, are usually obtained by applying least-squares procedures to measured force
and velocity data.

The equation generally predicts the main trends in measured data quite well;
however, some characteristics of the flow are not well represented. For example, in
sinusoidal oscillatory flow the force variation at the fundamental frequency may be
well predicted while that at higher harmonics is not. One result is that peak forces
can be underpredicted. A poor representation of the high frequency content of the
forces is a serious limitation for the determination of the fatigue life of a structural
element.

One aim of the project was to determine whether the Morison equation may be
extended to produce a better prediction of force time-histories measured in a variety
of flow situations, ranging from sinusoidal flow in a U-tube, to unidirectional random
waves in a large wave flume, to directional seas in Christchurch Bay. Previous work
of this kind has been limited to the addition of two extra velocity-based terms with
application to U-tube data [2]. State-of-the-art system identification techniques are
to be used here which allow the addition of force and velocity based terms. The aim
was to produce an extended equation giving accurate results with as few extra terms
as possible. The extra terms may be inferred from knowledge of the flow phenomena
involved or determined purely through sophisticated system identification techniques
based on NARMAX routines [3] where the equation structure is obtained automat-
ically and the extra terms may have no obvious relation to the flow phenomena
involved.

In both procedures the first stage is to *fit’ the equation structure to the measured
data. This gives the mean square error and the relative magnitude of the various
terms in the equation, enabling the less significant terms to be removed to give a
’parsimonious’ equation. The second stage is to predict the measured force data by
solving the resulting equation. In this paper it will be demonstrated that excellent fits
are always produced by a simple extension to Morison’s equation while predictions
are surprisingly little better than the Morison prediction. Improved fits are also
obtained by the addition of a single term which is linearly independent of the others
enabling an improved force classification into drag, inertia and history to be made.
The history term is associated with the effect of vortex shedding.

DCqaulu| + %ﬂpchmﬁ (1
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2 Vortex Shedding and the History Effect

It is well known that the time-history of the wave-force on a cylinder can be due to
complicated flow effects which differ from one situation to another. If the Morison
equation is to predict accurately, all nonlinear effects must be represented by the
nonlinear 'drag’ term proportional to u|u|. The linear inertia component is in part
due to the inviscid effect of flow acceleration. Expansion of the drag term as a
polynomial gives

ulu| = aju + aau® + agu®... (2)

which shows that even if the flow velocity is a sinusoid u(t) = Up sin(27t/T) the force
signal will contain all odd harmonics. One immediately sees that the explanation
for the failure of Morison's equation to predict the higher frequency behaviour of the
force signal is that the relative size of all harmonic components must be fixed by the
one coeflicient Cy.

It is not possible to link any physical effect to drag and inertia forces in a precise
way although it is known that the modification of Cy4 from zero and C,, from 2 is
due to viscous effects. However some broad connections can be made. In a sinusoidal
flow starting instantaneously from rest a wake is generated in the first half cycle as
the flow separates and vorticity is shed, forming recirculation zones for KC > 2. (
For KC < 2 detailed description of vorticity behaviour is given in [4]. ) If KC is
large enough these recirculation zones detach themselves, a process known as vortex
shedding. The rate at which vorticity is shed at separation is equal to :l:%uf, where
u, is the velocity just outside the boundary layer at separation. u|u|is thus roughly
proportional to the rate of shedding of vorticity and the drag term in Morison’s
equation may be associated with this effect.

As the flow reverses in the following half cycle, the previously shed vorticity is
convected back around the cylinder, a phenomenon sometimes referred to as wake
re-encounter. This clearly will affect separation positions, the velocities at separa-
tion and thus the part of the force generated by the newly forming wake while the
previously shed vorticity generates the remaining part of the total force. Dividing
the influence of shed vorticity in this way is justified if one considers the wake to
be composed as a series of small 'discrete’ vortices, released at the separation posi-
tions and moving by inviscid interaction since the influence of each vortex generates
a force component given by the Blasius equation, e.g. [5]. The history of the wake
behaviour and vortex movement are to some extent accounted for by drag and inertia
terms. However, vortex shedding is generally complex, e.g. see [6], and is not well
represented in many situations.

Since the drag term is associated with vorticity generation and the history of
vortex shedding can be a significant effect, one might expect the additional influence
of vortex shedding on force to be modelled by higher order and time derivative terms
in F. As a further rationale, it is common practice in system identification to include
output terms to model history effects in order to produce a parsimonious model.
Initially we thus included additional terms proportional to F?, F3, F and F which
are in fact the terms in the equation for the Duffing oscillator. After some preliminary
tests on U-tube data it became apparent that the F? term could be discarded as
insignificant; the model also showed a degree of improvement when the F3 term was
replaced by one with the form F|F|. The form of the extended Morison equation or
Morison/Duffing equation is thus
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The system identification and parameter estimation techniques described in the
next section enable the determination of the coefficients a, a9, a3, Cq and Cy, which
give the best fit to the measured data. The relative importance of the new terms
may also be established. We refer to these extra terms as ’history’ terms although
the drag and inertia inevitably contain history effects as we have explained. However
the additional terms are specifically included to model the 'gross’ history effect of
vortex shedding.

While one aim is to improve force prediction, another is to improve force classifi-
cation by improving the fit of the equation to the measured data. With the Morison
equation, estimates of Cyq and C,, are biased by the residual error which has a struc-
ture determined by the flow mechanisms. The history terms should improve the fit
and therefore give improved estimates of the contribution from drag, inertia and his-
tory. If all the new terms are included in the model, the high degree of correlation
between them can produce a condition of near linear dependence, and in this case
the weighting between terms can be somewhat arbitrary. If the fit is improved by
a smaller model which does not show linear dependence between terms then an im-
proved classification into drag, inertia and history is thought to be justified. Terms
which are not linearly dependent can of course still be correlated however they will
have a unique harmonic structure, i.e. they have a clear identity.

3 System Identification and Parameter Estimation.

The first of the two main problems in identifying a mathematical model of an input-
output system is that of structure detection, i.e. what is the form of the equation of
the underlying process? In this study the problem is bypassed by adopting the form
(3) on heuristic grounds.

Having obtained a model structure the next problem is that of parameter estima-
tion,i.e. how to determine Cy, Cy, and @ ...a3 in equation (3). This is accomplished
by minimising the difference between the model output and the measured output data
which correspond to the measured input. Suppose N sampled records of force, ve-
locity and acceleration are available i.e. {Fi,ui, % :i=1,..., N} where F; is the i**
sampled force value etc. At each sampling instant (by hypothesis) the data satifies
the equation

a1F; + aoF; + Fi + a3 F|F| = frui|u| 4 Batti + G (4)
where ; and f; are introduced as a convenient shorthand for the constants in equa-
tion (3). @1,...,as, f1 and 3, are estimates of the parameters here and (; represents

the error or residual in the model at instant i. The least-squares estimates of the
parameters are formed by minimising the sum of the squared errors

N
¥ = Z,c? (5)

with respect to variations of the parameter estimates. The problem is best expressed
in matrices, Assembling all equations (3) for i = 1,..., N gives
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or

{F} = [Al{B} +{¢} (7)

in matrix notation ( square brackets denote matrices, curved brackets denote vectors
), [4] is called the design matrix, {3} is the vector of parameters and {(} is the vector
of residuals. In this notation the sum of squared errors (5) is

{7} = (YT = {BY [AI)({F) - [41{B)) (8)
Minimising this expression with respect to the parameter estimates yields the well-
known normal equations for the least-squares estimates.

[AIT[A}{B} = [A)]T{F} (9)
which are trivially solved by

{8} = ([4)"[A])~ {4 {F} (10)

provided that [4]T[A] is invertible. Because of random errors in the measurements,
different samples of data will contain different noise components, consequently they
will lead to slightly different parameter estimates. The parameter estimates therefore
constitute a random sample from a population of possible estimates; this population
being characterised by a probability distribution. Clearly, it is desirable that the
expected value of this distribution should coincide with the true parameters. If such
a condition holds, the parameter estimator is said to be unbiased. Now, given that
the unbiased estimates are distributed about the true parameters, knowledge of the
variance of the parameter distribution would provide valuable information about the
possible scatter in the estimates. In fact, this information is readily available; the
covariance matrix for the parameters is defined as

[C1(B) = E[({B) — E{B})-({B} — E{BD)"] (11)
where the carets are used to emphasize the fact that quantities are estimates and the
expectation F is taken over all possible estimates. The diagonal elements C; are the

variances of the parameter estimates Bi. Under a number of mild assumptions it is
possible to show that, given an estimate {8}

[C] = of.([4]7[A])~ (12)

where ag is the variance of the residul sequence (; obtained by using {3) to predict
the output. The standard deviation for each parameter is therefore:

oi = oy (AIT (4] (13)
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If the parameter distributions are Gaussian, standard theory yields a 95% confi-
dence interval of {3} + 1.96{c}, i.e. there is a 95% probability that the true param-
eters fall within this interval.

In order to determine whether a term is an important part of the model, a sig-
nificance factor can be defined as follows. Each model term 6(t), e.g. 6(t) = F(t) or
6(t) = F(t)|F(t)|, can be used on its own to generate a time-series which will have
variance o2. The significance factor sg is then defined by

o
sp = 100—- (14)
aF
where oZ is the variance of the estimated force, i.e. the sum of all the model terms.
Roughly speaking, sg is the percentage contributed to the model variance by the term
6.
Having obtained a set of model parameters, it is necessary to check the accuracy
of the model. The simplest means of doing this is to plot and compare the measured
force F; with the curve-fit value

Fy = —anFy — ca By — 03 Fi|F| + Brus|us] + Batis (15)

based on the estimated parameters. One can also use a numerical measure of the
closeness of fit; the measure adopted here is the normalised mean-square error or

M SE defined by

100
NO’F

MSE(F) = (F F)? (16)

i=1

This M SE has the following useful property; if the mean of the force signal F is
used as the model i.e. F; = F for all i, the MSE is 100%, i.e.

L) -

MSE(F) = 100 Z(F TP = ok = 110 (17)

A more stringent test of the model validity is to predict the wave force from
equation (4) using measured velocities and accelerations only, via some time-stepping
procedure. This can then be compared with the measured force.

The most comprehensive set of model validity tests are those of Billings [7].
Briefly, the validity of the model is contingent on the vanishing of certain correlation
functions between the input ( in this case velocity), and residual data.

4 Application of the New Model Structure.

The measured data may be divided into two broad categories associated with uni-
directional onset flows and directional sea-states.

4.1 Unidirectional Onset Flows

The data has been obtained from three sources. Forces on a cylinder in the sinusoidal
flow of a U-tube have been measured by Obasaju et. al. [6]. Measurements were
made at different values of KC at a given  value and two types of force time-
histories were distinguished. For a given situation ( defined by K C and ) different
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force histories were associated with different modes of vortex shedding and the force
history associated with each mode was obtained. The differences could however be
quite subtle and force histories were also obtained by averaging over all cycles (
and hence all modes ) and it is these which we use here. The data were obtained
by digitising plots of force against time for KC = 3.31,6.48,11.88,17.5 and 34.68
available with g = 417.

Forces have also been measured on a cylinder oscillating in still water and a
uniform current by Obasaju et.al. [8]. For the latter there is now an additional
parameter defining the flow, the ratio of current velocity to the amplitude of the
oscillatory velocity, a. Again the data were obtained by digitising plots of force
against time, only available for a range of § values. In the situations with a current
a single drag term in the Morison equation is maintained, i.e. an ’oscillatory’ drag
and ’current’ drag are not considered separately.

Forces due to random waves have been measured in the Delta flume of the De
Voorst facility of Delft Hydraulics. The particular data considered here comes from
run OA1F1 which used a smooth fixed vertical cylinder. The waves were generated
to give a JONSWAP surface elevation spectrum. The forces were measured on force
sleeves placed at three levels on the cylinder. Data from the highest sleeve which
always remains immersed is used to give the force with the greatest drag component.
The velocity signal was obtained from electromagnetic flowmeters placed adjacent
to the cylinder at the same distance from the wave maker. More details of the
experiment can be found in [9] and [10] which also contain wave-by-wave Morison
analyses of the De Voorst data sets. We plotted the entire velocity, in-line force
and transverse force records and analysed the part of the record around the instant
when the transverse force was a maximum. This is because the magnitude of the
transverse force is thought to be an indicator of the significance of vortex shedding
and nonlinearity of the in-line force. 1000 points of the time-history were used for
the parameter estimation. The Keulegan-Carpenter number is defined in this case
as v/2urmsTp/D where u,p, is the rms value of the horizontal velocity and T}, is the
period associated with the peak in the velocity spectrum. For the data analysed KC
was found to be 5.03 and 3 to be approximately 4 x 10%.

First Morison’s equation was fitted to each data set and the resulting drag and
inertia coefficients are given together with the curve fit M SEin Table 1. The per-
centages of mean square drag and inertia are also given, normalised by the mean
square force. As expected the drag proportion increases and the inertia proportion
decreases, as KC increases. The MSE can be quite large, particularly with KC
between 10 and 14 without and with a current. In all the following tables, the inertia
coefficients for the oscillating cylinder data have been incremented by 1 in order to
include a Froude-Krylov component. This was done in order to facilitate comparison
with the U-tube data. However, it seemed hardly worthwhile to increment the raw
data and for this reason the inertia component is smaller for the oscillating cylinder
data than it would be for a fixed cylinder in kinematically equivalent oscillatory flow.
Force histories with KC' equal to 11.88, 17.5 and 34.68 are shown in Figures 1, 2 and
3 with the Morison fits. Figure 4 shows the Morison fit to the De Voorst data which
is very close as would be expected with such a small nonlinear component.

Fits using the Morison/Duffing equation (3) were originally made by using a five
point centred difference formula to estimate the derivatives F and F and this showed
considerable improvements over the Morison fit. However, the estimated derivatives
were noisy. The influence of the noise was reduced by adopting the discrete or
NARMAX version of equation (3) given by
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The results of fitting this equation to the data are given in Table 2 and the MSE
values are now scen to be very low. Curve-fits corresponding to Figures 1, 2 and
3 are given in Figures 5, 6 and 7 and are almost within plotting accuracy. This is
also the case for the De Voorst data but this is not shown since the Morison fit was
also very close. The history percentages in Table 2 are due to the sum of all the
extra terms involving F. In this case the percentages of drag, inertia and history
are not meaningful due to linear dependencies between the terms. Predicted force
output may be obtained from equation (18) by stepping F; forward in time using
the measured velocities only and using Fy and F, to start the calculation. Using
this procedure the M SE values showed no appreciable improvement over those for
the Morison fit.( Since the Morison equation contains only velocity and acceleration
terms the M SE for the curve fit is identical to that for the predicted output.) This
is a surprising result in view of the excellent curve fits and has yet to be properly
understood.

The analysis indicated that the F|F| term in equation (18) generally made the
most significant contribution to the fit and an equation structure including only this
extra term was tested:

F+aF|F|=ﬁ1u|u|+ﬁgﬂ (19)

The results are given in Table 3. The MSE’s are still significantly below the
values for the Morison fits where the M SE was high. In Table 3 the values of o are
only meaningful when F is normalised in some way. In this case this was achieved
by dividing by %,GDUD2 for sinusoidal flow and, equivalently, by pDu? ., for the De
Voorst data. For this model structure the terms are not linearly dependent and so
the percentages of drag, inertia and history can be considered to be meaningful. A
practical demonstration of this independence can be seen in the case with KC = 14
and a = 1.01. Here the Morison fit is excellent and the M SE is virtually unchanged
by the addition of the F|F| term. The percentage history is negligible indicating
that the drag and inertia components have suffered no interference. This example
corresponds to the case of so-called ’pulsatile’ flow where the presence of the current
ensures that there is no flow reversal; as a consequence the wake is convected away
from the cylinder and one would not expect to observe gross history effects. The
history effect is most significant for K C between 10 and 14 when the MSE for the
Morison fit is large. This range of KC has particularly large lift forces [6] [8] which
are caused by vortex shedding, providing quantitative evidence of the link between
history and vortex shedding.

The values of the coefficients Cyn, C4 and « vary markedly from one situation to
another and so we are clearly not providing a universal curve-fit equation. However,
it is interesting to note that the sinusoidal case with KC = 6.48 and the De Voorst
case with K C = 5.03 have very similar values for Cy, and o with different Cy’s, which
is the only indication of the difference in g values.

The prediction of the Morison/Duffing equation gave little improvement on the
Morison prediction and the predictions from equation (19) are likely to be worse. The
exact solution may easily be obtained and shows clear bifurcation characteristics as
u(t) changes. Specifically, at one sampling instant the equation can have three real
roots and only one at the next instant. This effect is shown in Figure 8 where the
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predicted force history for J{C = 11.88 is shown. Although the bifurcation does not
occur in every situation equation (19) is clearly of no value as a predictor.

4.2 Directional Sea State.

The above data is valuable in that it is of high quality and enables new model
structures of the force equation with vortex shedding to be investigated. The flow
situations are however idealised with Reynolds numbers well below full scale values.
The Reynolds number for the De Voorst data is closer to full scale but the KC value
is low giving inertia-dominated forces which are inevitably fitted well by Morison’s
equation. :

In this section the new model structures are fitted to forces and velocities measured
on the Christchurch Bay Tower described in [11]. The same cylinder was used in the
De Voorst tests but the sea states have greater wave heights ( up to 7m against 2m
at De Voorst ) and are directional with a prominent current. The velocities were
measured with calibrated perforated ball meters attached at a distance of 1.228m
from the cylinder axis. This will not give the exact velocity at the centre of the
force sleeve unless waves are unidirectional with crests parallel to the line joining
the velocity meter to the cylinder. This is called the Y direction and the normal
to this, the X direction. The waves are however always varying in direction so data
was chosen here from an interval when the oscillatory velocity in the X direction was
large and that in the Y direction small. A sample of 1000 points fitting these criteria
is shown in Figure 9. It can be seen that the current is mainly in the Y direction. In
this case the velocity ball is upstream of the cylinder and interference by the wake on
the ball will be as small as possible with this arrangement. Clearly the data is not of
the same quality as that section 4.1 but it should be sufficiently reliable to test the
model equation structures. '

The acceleration values corresponding to the velocities in Figure 9 are shown
in Figure 10. In the Y direction the magnitudes are small with a relatively high
frequency content. The KC values in the X and Y directions are 19.7 and 4.85
respectively. The ratios of current velocity to v/2u,m,, a, are 0.16 and 2.1 in the
corresponding directions. To obtain « in equation (19) the forces in the X and Y
direction were normalised by pDu?,,, where u,.,, is in the corresponding direction.
The results of the fits are given in Table 4 for forces and velocities in the X and Y
directions and also for forces resolved in the instantaneous velocity direction and per-
pendicular to it, which are strictly the in-line and out-of-line forces. The magnitude
of velocity is shown in Figure 11 with the angle of the velocity vector relative to the
X direction. This angle shows considerable variation and Figure 12 shows that the
normal acceleration can be greater than the in-line acceleration.

The M SE of the Morison fit to the X force is high; the time histories are given
in Figure 13. The peaks in force are considerably underestimated and the high
frequency components of force are largely omitted. The fit including the F|F| term
shows considerable improvement and the curves are shown in Figure 14, The force
peaks are now slightly overpredicted and the harmonic content is better represented.
The Morison/Duffing equation gives a remarkably accurate fit with the M SE reduced
by a factor of over a 100 over the Morison fit. However prediction by this equation is
slightly worse than the Morison equation as it was for the unidirectional flows. The
results for the Y direction are even more spectacular. The MSE for the Morison
fit is now 100% indicating a total lack of correlation between the Morison equation
and the measured data. The time histories are shown in Figure 15. The inclusion of
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the o F'|F| term reduces the MSE by a factor of 3 and the time histories are shown
in Figure 16. Remarkably the Morison/Duffing equation again reduces the MSE by
a factor of 100 over the Morison fit; the time histories are shown in Figure 17. In
this case the drag and inertia components are negligible and history dominates as
would be expected. In the X direction, drag and history components are of similar
magnitude and are greater than the inertia component. The importance of history
in both directions implies that vortex shedding is a prominent influence.

Results with forces resolved in the instantaneous velocity direction are similar
to those in the X direction although the value for a has changed from 0.16 to 1.7.
However the force normal to the instantaneous velocity direction is also substantial
as shown in Figure 18. The fit of the Morison equation is shown in Figure 19, giving
a MSFE of 70% with no drag and 30% inertia. The addition of the aF|F| again
significantly improves the fit as shown in Figure 20, although the peak forces are
substantially overestimated. The Morison/Duffing equation, based on equation (18),
obviously cannot be applied since the velocity is always zero. Overall there would
appear to be no advantage in resolving forces parallel and normal to the instantaneous
velocity.

5 Discussion

New model structures including additional force rather than velocity terms have
proved very effective in fitting measured force and velocity data from various sources.
These new equations were first tested with U-tube data for a constant 8 value where
the occurrence of vortex shedding as a function of X C is known through the mag-
nitude of the lift force [6] [8]. When the lift is small, at low K C, the Morison fit is
good, and when it is high, of similar magnitude to the in-line force, the Morison fit
may be poor. It should be noted that the Morison fit can be quite good when lift
is significant, e.g. with KC = 17.5, presumnably due to the way in which the vortex
shedding organises itself. The curve fits by the Morison/Duffing equation were al-
ways accurate to almost plotting accuracy with aF|F| usually the most significant
term. The addition of this term alone to Morisen’s equation significantly improves
the quality of the curve fit particularly when the Morison fit is poor. Since the term
is linearly independent of the other terms the force may be classified as drag, iner-
tia and history ( although it is known the drag and inertia inevitably contain some
history effects ). In this way the link between error in the Morison equation, history
and vortex shedding is quantified through data analysis. Corresponding effects were
found when a current was superimposed on sinusoidal oscillation. The random wave
data from the De Voorst flume unfortunately adds little to the discussion since the
force was inertia-dominated.

A disappointing aspect of this study is the poor force prediction by the Mori-
son/Duffing equation which is far from well understood. However when the NAR-
MAX procedures are allowed to choose terms automatically using a structure de-
tection algorithm [3], the fits and predictions were both very close to the measured
data. Unfortunately, the terms chosen were often of an intangible form and had little
consistency from one situation to another. New work is in progress to optimise the
form of the underlying differential equation structure and this could produce more
consistent results.

With the addition of the aF|F| term the C4 and C,, coefficients showed less
variation with KC ( for a fixed A ) than for the Morison equation alone although
they were far from constant. The two positive results are thus the excellent curve fits
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obtained by the Morison/Duffing equation with only three ( four in the discrete case
) extra terms, and the improved force classification into drag, inertia and history (
using only one extra term).

These procedures worked correspondingly well on wave force and velocity data
obtained from the Christchurch Bay Tower. These data were not so reliable as those
measured in idealised situations but they gave at least a qualitative assessment of the
procedures. A suitable sample was chosen for analysis and turned out to give a very
severe test. The Morison fit was poor with the force peaks grossly underestimated.
The history term gave a similar contribution to the drag in one direction ( and about
twice that of the inertia term ) and was dominant in the other direction. On the
basis of analysis in unidirectional flows, this indicates that the poor performance of
Morison’s equation is due to vortex shedding, a result that was not known a priori.
The converse of the argument is that if a poor fit by the Morison equation is not
associated with a significant history term then this is due to something other than
vortex shedding.

The value of this analysis lies particularly with directional waves where the lift
force due to vortex shedding may not be isolated. It is demonstrated here that
-resolving in the instantaneous velocity direction leaves a significant acceleration in the
normal direction generating a ’lift’ inertia force. Resolving in this way is considered
to be of little value.

When considering the poor fit by the Morison equation to this sample of data,
it should be remembered that it was obtained from a coastal situation, where wave
characteristics are known to be rather different from those offshore where, for exam-
ple, waves and currents are more likely to be in the same direction. It is the intention
to analyse data from more sources, from measurements in a wave basin, on a cylinder
oscillating in a prescribed manner and, if possible, from further measurements at sea.
In this way a realistic assessment of the importance of vortex shedding on wave forces
on offshore structures will be obtained.
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A

Conclusions."

. An extension to the Morison equation including terms in F|F|, F and F gives
excellent curve fits to all the wave force data analysed for this paper. The inclu-
sion of extra terms in the force rather than velocity is argued from consideration
of vorticity behaviour. The errors in force prediction however are only similar
to those given by the Morison equation.

. Significantly improved fits are also obtained by including the F|F| term alone,
particularly when the Morison fit is poor. Since this term is linearly independent
of the others, an improved force classification in drag, inertia and history is
proposed. In unidirectional flow the association of the history term with vortex
shedding is confirmed by the occurrence of lift.

. In a directional sea state at the Christchurch Bay Tower the Morison fit is poor.
There is significant improvement with the F|F| term with a correspondingly
prominent history component indicating the significance of vortex shedding.

. In directional seas, where lift due to vortex shedding cannot be isolated, it is
suggested that the data analysis described here is a useful tool for diagnosing the
significance of vortex shedding. It should be stressed however that an improved
fit using the F|F| term is not absolute proof of vortex shedding, it is simply
consistent with observations in unidirectional flow.
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Cq| Cn a | Drag | Inertia | History | MSE
% % % %

X direction: a = 0.16, KC = 19.7, 8 = 6e10?
Morison 0.74 | 1.18 - 55 21 - 19
Morison +aF|F| | 0.42 | 0.82 0.4 18 13 21 10
Morison/Duffing | 0.04 | 0.03 - 1 0 94 0.2
Y direction: ¢ =2.1,KC = 4.85
Morison 0.70 | 0.63 - 6 3 - 100
Morison +aF|F| | 0.39 | 0.44 | 0.05 2 1 66 35
Morison/Duffing | 0.00 | 0.00 - 0 0 99 1
'In-line’ force: a = 1.7, KC = 19.8, 3 = 12¢10*
Morison 0.65 | 1.19 - 44 21 - 21
Morison +aF|F| | 0.44 | 0.84 | 0.08 20 10 20 11
Morison/Duffing | 0.10 | 0.00 - 1 1 89 0.4
’Out-of-line’ force:
Morison -1 1.05 - - 30 - 70
Morison +aF|F)| -10.41 | 0.30* - 5 63 18

* obtained with ’in-line’ force normalisation

Table 4: Model Fits to Sample of Christchurch Bay Data.




#

KC B a Cq | Cwm | Drag | Inertia | History | MSE
% % % %
Oscillatory flow data ( KC = Yol
331 417] 0.0[-026 [ 1.15] 0.1] 17.7 32.5 [ 0.01
6.48 417 0.0 0.04 [ 1.02| 0.01 | 045 84.9 | 0.007
11.88 417 0.0 0.03[1.01] 0.02] 0.14 92.6 | 0.04
17.5 417 0.0 0.15[1.02| 049 | 0.21 81.7 0.01
34.68 417 0.0 | 0.33[1.08] 3.62| 2.18 488 | 0.10
14.0 929 | 0.0 | 0.59 | 1.01 | 6.08| 1.46 77.7 | 0.28
18.0 634 | 0.0 0.54 | 1.06 | 6.86 | 17.13 141 1.29
14.0 933 [ 0.18 ] 0.29 [ 1.02 | 3.15| 1.26 55.0 | 0.62
10.0 1081 | 0.52 | 0.54 [ 1.04 | 12.45 | 9.45 182 2.24
14.0 417 [1.01 | 052 [1.01| 131 ] 0.92 29.6 | 0.09
De Voorst ( KC = 3@511‘1 )
503 | ~4.10" | 0.0] 024]0.32] 054] 116[ 447] 0.79

Table 2: Duffing-Morison Fit to Data.




KcC Is, a|l Cq| Cum a | Drag | Inertia | History | MSE
7 % 7 %
Oscillatory flow data ( KC = QE)I )
3.31 417 | 0.0 | 1.09 | 2.18 | 0.01 1.8 89.6 0.2 0.17
6.48 417 | 0.0 | 1.42|1.59|0.07 | 124 49.8 46| 0.18
11.88 417 | 0.0 | 1.25 | 0.64 | 0.22 | 20.5 5.1 26.7 2.2
17.5 417 | 0.0 | 1.85 | 0.99 | 0.06 | 69.7 8.6 1.3 0.59
34.68 417 | 0.0 140|112 | 0.12 | 63.5 4.6 3.2 0.75
14.0 929 | 0.0 (1.230.79 | 0.21 | 25.6 0.5 25.7 1.7
18.0 634 | 0.0]1.45|132|0.17 | 46.9 0.9 9.3 2.3
14.0 933 | 0.18 { 0.93 | 1.18 | 0.57 | 30.0 0.7 18.3 2.2
10.0 1081 | 0.52 | 0.65 | 1.20 | 1.46 | 18.0 1.0 27.5 1.6
14.0 417 | 1.01 | 1.12 | 1.62 | 0.44 | 61.0 2l 05| 0.36
De Voorst ( KC = @5’“‘1 )
5.05 | ~4.10° | 0.0 [ 0.46 | 1.55 ] 0.07 | 1.87 | 67.0 | 28| 2.0

Table 3: Morison +aFIF| Fit to Data.




Ca| Cm o | Drag | Inertia | History | MSE
% % % %

X direction: a = 0.16, KC = 19.7,8 = 6e10*
Morison 0.74 | 1.18 - 55 27 - 19
Morison +aF|F| | 0.42 | 0.82 0.4 18 13 21 10
Morison/Duffing | 0.04 | 0.03 - 1 0 94 0.2
Y direction: a = 2.1, KC = 4.85
Morison 0.70 | 0.63 - 6 3 - 100
Morison +aF|F| | 0.30 | 0.44 | 0.05 2 1 66| 35
Morison/Duffing | 0.00 | 0.00 - 0 0 99 1
To-line’ foree: @ = 1.7, KC'= 10.8, B = 126104
Morison 0.65 | 1.19 - 44 21 - 21
Morison +aF|F| | 0.44 | 0.84 | 0.08 20 10 20 11
Morison/Duffing | 0.10 | 0.00 - 1 1 89 0.4
’Qut-of-line’ force:
Morison -1 1.05 - 30 - 70
Morison +aF|F| - 1041 - 5 63 18

0.30*

* obtained with ’in-line’ force normalisation

Table 4: Model Fits to Sal;lple of Christchurch Bay Data.
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