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Approximation to Nonlinear Equations

Using Nonlinear Rational Models

Q.M. Zhu, SA. Billings
Department of Automatic Control and Systems Engineering,

University of Sheffield, Sheffield S1 4DU, UK

Abstract:

The feasibility of approximating several nonlinear dynamic equations which dominate several
engineering disciplines is investigated using a nonlinear rational model formulation. The studies
are based on identification from input and output data rather than analytical transformation from a
nonlinear equation to a nonlinear rational model.

1 Introduction

It is common for just a few fundamental equations to dominate the theoretical
study, experimental design, and interpretation of phenomenon in engineering and
scientific systems. For example Maxwell’s equations have found many important appli-
cations in the study of electromagnetic fields (Dearholt and Mcspadden 1973). The
solution of the Boltzmann equation can be used to calculate the transport coefficients
in solid state physics (Patterson 1971), and the famous Navier-Stockes equation
describes the complex motion of a fluid in dynamic fluid fields (Batchelor 1967). In
general these equations are fairly complicated so that the analytical solutions are
difficult to achieve or even impossible. Often numerical methods such as the Runge-
Kutta formulation can be applied to obtain numerical solutions using computers, but
this approach may only be feasible for a specific range of data and it is difficult to
achieve real time solutions for online applications. An alternative approach would be
to simplify the complex equations by approximating them using system identification
based on nonlinear polynomial, rational, or some other appropriate descriptions which
represent the Fourier expansions of the partial differential equations to a finite number
of components (Franceschini and Zanasi 1992).

Polynomial approximations are well known and can be justified by the Weier-
strass theorem. Rational functions, which include the polynomial model as a subset,
are often preferable to polynomials if they can be estimated because they tend to pro-
vide concise expressions with fast convergent approximation for functions with singu-
lar points. Both polynomial and rational functions have been widely applied to
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approximate many complicated nonlinear static functions and these formulations have
been tabulated (for example, Luke 1975).

Applying polynomial or rational approximation to dynamic nonlinearities intro-
duces two inherent problems. The first is the noise problem which arises from meas-
urement errors, human error, stochastic disturbance, uncertainty and so on, the second
is that there is often no exact analytic transformation into a polynomial or rational
approximation or the analytic description is too complicated to transform mathemati-
cally. In order to deal with these problems the Nonlinear AutoRegressive and Moving
Average with eXogenous inputs (NARMAX) model was introduced as a basis for the
identification of complex nonlinear systems (Leontaritis and Billings 1985). NARMAX
polynomial model identification was originally described a decade ago (Billings and
Leontaritis 1981, Chen and Billings 1989) but NARMAX rational model identification
was only recently considered because of the difficulties associated with the nonlinearity
in the parameters (Billings and Chen 1989a, Billing and Zhu 1990, 1992, Zhu and Bil-
lings 1991, 1992).

Identification of polynomial model descriptions of a variety of nonlinear systems
including a heat exchanger (Liu, Korenberg, Billings, and Fadzil 1987), a diesel gen-
erator (Billings and Fadzil 1988), an automotive diesel engine (Billings and Chen
1989b), nonlinear fluid loading systems (Worden, Stansby, Tomlinson, and Billings
1991) and several other systems have been reported. The application of the rational
model to these types of problems is however only just beginning. The purpose of the
present study is therefore to test the feasibility of using a rational model approximation
to describe typical nonlinear stochastic dynamics in engineering systems. This will
include the introduction of the stochastic rational model, an identification algorithm,
and the application to the approximations of three nonlinear dynamic equations.

2 Rational model identification

Rational model identification is briefly described in this section. The the model
description, parameter estimation, structure detection, and model validity tests are con-
sidered.

2.1 Model
The input-output description of the rational NARMAX model can be expressed as

y(k) - a(y(k—l), T, y(k—r), u(k—l), - E u(k-r), e(k—]), S e(k—r))
b(}’(k—l), SE g y(k—r), u(k-—l), R u(k—r), e(k—]), e E(k—r))

+ e(k)
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This is a ratio of the polynomials numerator a(k) and denominator b(k) polynomials,
where u(k) and y(k) represent the input and output at time k, and e(k) is an unobserv-
able independent noise sequence with zero mean and finite variance c2.

One of the distinctive features of the rational model eqn (2.1) is that the non-
linearity is a function of all the inputs, outputs, noises, and parameters. The nonlinear
in the parameters gives rise to considerable difficulties in model structure detection and
parameter estimation. To aid identification the rational model can be expanded as a
linear in the parameter model but only at the expense of introducing highly correlated
regressor terms and a series of rational model identification algorithms have been
developed to overcome these problems (Billing and Zhu 1990, 1992, Zhu and Billings
1991, 1992).

The linear in the parameters expression of eqn (2.1) may be obtained by multiply-
ing b(k) on both sides of eqn (2.1) and then moving all the terms except y(k)p (k)8
to the right hand side to give

den

Y(k) = ak)— y(k) Yp4i(k)84 + b(k)e(k)
2

num

den
= X Pafk)8,; — T y(k)p4i(k)B4; + (k) 2.2)
Fl =)
where

Y(k) = y()p 41 (k)lg,, =1

alt)
b(k)

Alternatively divide all the right hand side terms by 6, and redefine symbols to give
essentially 8;; = 1. The third term on the right hand side in eqn (2.2) is given by

C(k) = b(k)e(k)

= Pay (k) + pai(k)e(k) (2.3)

den
= (Zpdj{k)edj)e(k)
Fl

den

= pa1(ke(k) + (Zpdj(k)edj)e(k) (2.4)
2



where
E[C(k)] = E[b(k)]E[e(k)] = 0 - (2.5)
providing e(k) has been reduced to an uncorrelated sequence.

2.2 Parameter estimation

The objective of parameter estimation is to obtain unbiased estimates of the
rational model parameters from noisy input and output data. A new orthogonal rational
model estimator (ORME) algorithm (Zhu and Billings 1992) is briefly described
below.

Eqn (2.2) may be written in vector notation as

Y(k) = 6()© + L(k)

= $(k)© + pyy (K)e(k) 2.6)
where
| 00 = [0,8) 9400
= [Pn1®) ** * Prnuam®) P2 ()y (k) * * * =P ggen(K)y (k)]
= 2n1® - Pon® —m(k)(%% +e®) - - —pddm(k)(% re®) @7
e’'=[0,0,
=61 " * Om 02 * * * Bliger) 2.8)
and
0%k) = [9,K) $4)]
=Pn® " Panin®) PV - Puten 5] (2.9)
and the subscriptions n and d refer to numerator and denominator terms respectively.

Notice that the matrix (k) cannot be obtained directly because %(-]il cannot be meas-

ured.
Consider an orthogonal transformation of the original model eqn (2.6)
Y(k) = w(k)G + (k)
= w(k)G + b(k)e(k)

num

den
= 2 wni(k)gn + T wyik)gg; + b(K)e(k) (2.10)
I= 2



where
G =[G, G4
= [8a1> " " "+ B> 822 " "+ Budden) (2.11)
and
wik) = [w,(k) wg(k)]
= [ww,(k) wwg(k)] + [e (k) e k)]e(k)
= [wwn (), - - - W), wwn(K), * -+ WW g, (R)]
+ [en1 k), * -+, Enuum®), en(B), -+ + , eggen(k)]e(k) (2.12)

where [e,(k) e(k)]e(k), the inherent error in the orthogonal transformation, represents
all terms which include the factor e(k) and [ww,(k) ww,(k)] represents all other terms
which may include lagged noise terms e(k—j), j > 0.

The orthogonal regression matrix W is defined
W=0oT! (2.13)
where

Wl =[wi(1) - - W)

wi) . . . WiV
wi) . . . WiV (2.14)
® is given with reference to eqn (2.7)
[ 0.1 041)
®= ) ' (2.15)
L 0.(N) 94(N)

and the orthogonal transform matrix T is a unit upper triangular
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There are several methods of computing the elements of T, such as the Gram-Schmidt
Householder, or Givens, transformations.

L

The orthogonality of the matrix W yields

Wl W=D (2.17)
where D is a positive diagonal matrix
D =diag {d,}, " * -, Apprs Aipps * * * » Aygon} (2.18)
and
N
ds; = Elw.J(k) wai(k) (2.19)

From eqn (2.12)

N
L T wei)
Yo k=1

N N

= wwii(k) + ed(k) o? (2.20)

Where the over bar denotes time averaging and * denotes either n or d.
An unbiased estimate of the parameter vector G can now be obtained from
G = [WIW = 62 ¥, ] (WY - 62 )
= [D = 02 Yol WY — 02 Yorus)

= [(W W)y WPy @.21)
where ¥ is defined with reference to eqn (2.10)
Y=[rq), -, yaw’ (2.22)

and
WIW]gery = (WTW - 62 ¥,,.4]
WP oqy = W7 - 62 v, (2.23)

All terms involving e(k) appear in 62 ¥, and 62 Y, Which are called error terms
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and the subscript (k—1) indicates that only lagged noise terms (eg e(k—j) j 21 ) are
present. Finally

‘yonhzdiag {83_1,"',82,"””,,87-,"',83‘{”}

Vorth = Pa1(K)en1 k), * - -, Py (K)epmum(®)s Py (B)epn(®), - - + » Dar(K)eduen)]T (2.24)

Inspection of the ort.hogorial estimator shows that the noise variance 62 is needed
a priori. An estimate of 62 can be obtained by an iterative procedure (Billings and Zhu
1991, Zhu and Billings 1992) in which parameter estimation and noise variance predic-
tion are recursively updated.

The parameter vector © of the original model egn (3.6) can then be calculated by
TO=G (2.25)

or
e=T!'¢G (2.26)

Full details of the ORME algorithm were given in Zhu and Billings (1992).

2.3 Structure detection

Structure detection is used to select the relevant rational model terms from a
library of possible terms based on measurements of the noisy input and output data.
The error reduction ratio (ERR), which is computed as a by-product of the orthogonal
estimation algorithm, can be used as a criterion to select model terms. Consider egn
(2.10), squaring this with the assumption that the signals are ergodic gives

1 _ "f' g2 ww2i(0) + g2 (1) o2 + 28, €,ADb(1) G2
2 4 2
b El o} o

G,

. dze:" g%’J W\‘ng(t) + gdj ed](t) 0'2 + ngj edj(t)b(r) 0% s 0'_3 (2 27)
F2 o} o} % |

Define the error reduction ratio (ERR) as

-~

g wwik) + g2; exdk) OF + 2g,,; e, (R)b(K) G

errnj Gyo%
. wwi{k) + g2 e2(k) 02 + 22, e, ()b(k) G2
= g% wwik) + g5 d;:;z ) 0.,2 + 284 e;{k)b(k) o 2.28)
Y Y

where



0% = Y2(k)
op = b*(k) (2.29)
Introduce
g% wwi k)
err,,., 0‘2 5
Y Ob
erry = M (2.30)
) 0'% 0% :
as the ERR estimates that would arise if e(k) = 0, and
2. e2(k) 62 + 28, e, e, (k)b(k) o2
Bias[err,,j]—g’ A 2812
Oy Gp
2 2 2 > (IR ~2
- egi(k) o; + 2g4: e (K)b(k) ©
Bias [ erry] = 24 4®) S . g:z 45 o 2.31)
Y Y

as the biases which are induced in the ERR estimates for the realistic case of e(k) # 0.
An unbiased estimate of ERR for the rational model can therefore be estimated
using
err,; = efr,; — Bias [ err,; ]
erry; = efry; — Bias [ erry; ] (2.32)
where err,;, Bias [ efr,; 1, erry, and Bias [ efry; ] are obtained directly from the com-
putations.

With reference to the definitions in eqns (2.28) and (2.31), eqn (2.27) can alterna-
tively be written as

1 num den 0‘2

— = Y efr, + zerrd]
o A 0%

2

num den num den o,
= Yerry+ Yerrg+ Y bias [ err,; 1 + Y bias [ errg 1+ — (2.33)
; F2 1 2 o7

Enq (2.33) can be used as a criterion for determining the number of terms to be
included in the model, it therefore determines the model structure. The larger the value

o?
of ERR associated with a specific term the more the ratio ? would be reduced if that
Y

term were included in the model. Hence terms can be ordered based upon that ERR
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value. Insignificant terms can be rejected by defining a cut off value of 1 — Zerr*j
below which terms are deemed to be negligible. As a criterion ERR attempts to bal-
ance the prediction accuracy and complexity of the final model. )

2.4 Validation

Model validation is used to test if the identified model adequately describes the
data set. In this paper a set of correlation tests (Leontaritis and Billings 1987) are
adopted for rational model validation and these can be expressed as

Yee(T) = 6(7)
Yue(¥) =0  for all =t
Ye)(®) =0 for all =0
Y2 =0  for all
Y2®) =0  for all 1 (2.34)

where 'yxy('t) indicates the cross correlation function between x(k) and y(k), T =0, %1,
+2, --- are the correlation distances, €(k) is the residual or prediction error,
W (k) = uz(k) - E[ u*(k) ], and & is an impulse function. If at least one of the correla-
tion functions has values well outside the confidence limits this indicates that the
model is inadequate or biased. Experience has shown that if these tests are used in
conjunction with the estimation algorithm the experimenter can often infer a great deal
of information regarding deficiencies in the fitted model. Indeed the tests equation

(2.34) frequently indicate which terms should be included in the model to improve the
fit.

3 Modelling of Morison’s equation

Morison’s equation (Morison, O'Brien, Johnson, and Schaf 1950) has been exten-
sively used to predict wave forces on slender cylinders in fluid loading engineering.
The equation takes the form

¥ = -%—pDCdu(t)iu(t)i + i—npchmd(r) (3.1

where ¢ is a continuous time index, y(f) is the force per unit axial length, u(?) is the
instantaneous flow velocity, p is a water density and D is the diameter of the cylinder,
C; and C,, are the dimensionless drag and inertia coefficients respectively which are
determined by the characteristics of the flow. Eqn (3.1) can alternatively be written as
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Y0 = au®lu()! + au(r) (3.2)
where
a; = "I‘PDCd
2
a, = —i—npchm 3.3)

In the present paper, no attempt is made to discuss the advantages and disadvan-
tages of the Morison’s equation in the prediction of wave forces the objective. here is

considering the approximation to the Morison’s equation using an identified rational
model.

The discrete Morison’s equation can be transformed using the backward
difference scheme

u(k) — uk=1)

(1) = 3.4

u() P (3.4)

where k =1, 2, 3, - - - is a discrete time index and A=1 is the sampling period. There-
fore eqn (3.2) may be written with an added noise term

y(k) = ayuE)lu()l + a;(uk)-uk-1)) + e(k) 3.9)

This will be refered to as the stochastic Morison’s equation where the noise e(k) is any
error induced by either uncertainty in the measurements or instrument €ITors, etc.

A zero mean uniform random sequence with amplitude +5 (variance GE = §.33)
was used as the input u(k) and a zero mean Gaussian white sequence with variance
62 = 1.0 was used as the noise e(k). One thousand data pairs were used in the simula-
tion. With reference to eqn (3.1) the parameters were set as p=1, D=2 (Worden,
Stansby, Tomlinson, and Billings 1991), C, = 0.7, and Cn = 2.0 (Barltrop and Adams
1991) which are typical values for circular cylinders under fatigue loading, such that
the parameters in eqn (3.3) become

a; = 0.7 a, = 2n (36)

The ORME parameter estimator was used with an initial model consisting of 112
terms as the full model with specifications nuwmerator degree = 3,
denominator degree = 2, and input lag = output lag = noise lag = 2. Notice that this
includes polynomial models as a subset. The input and output data sequences for this
simulation are shown in Fig. 3.1. The final identified model is given in Table 3.1
which shows that the approximating equation is
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y(k) = 7.3%(k) + 0.10u3(k) - 6.29u(k-1) - 0.03u(k-1)e(k-2) + e(k) 3.7

The one step ahead predictions and residuals are illustrated in Fig. 3.2. The model
validity tests are shown in Fig. 3.3.

All these results indicate that a proper approximation to Morison’s equation has
been obtained. It should be noted that although the estimator searched over the class of
rational models it has correctly set the denominator to one and estimated a polynomial
description.

4 Modelling of an exponential time series

A representative nonlinear exponential time series is selected to demonstrate the
approximation properties of the rational model. A total of 1000 observation samples
were generated using the model

y(k) = ( 0.8 - 0.5exp(-y*(k-1)))y(k-1)
- (0.3 + 0.9exp(~y?(k-1)))y(k-2)
+ 0.1sin( 3.1415926y(k-1)) + e(k) (4.1)

where k = 1, 2,3, - is a discrete time index and the noise e(k) was a Gaussian
white sequence with zero mean and variance 62 = 0.01.

The ORME estimation algorithm was applied with an initial model consisting of
56 terms as the full model with specifications
numerator degree = denominator degree =2, and input lag =0, ourput lag =2, and
noise lag = 4. This includes the class of polynomial models as a subset. The output
data sequence for this simulation is shown in Fig. 4.1. The final identified model is
given in Table 4.1 and can be expressed as

_ ak)
y(k) = B0 + e(k) 4.2)

where
a(k) = 0.98y(k-1) — 1.14y(k-2) + 0.64e(k—1) + 0.15e(k-2) — 0.09¢(k-3) — 0.34e(k—4)
b(k) = 1 + 0.59y*(k1) - 0.39y(k—1)y(k-2) + 0.44y(k—1)e(k-3)
= 0.74y(k-2)e(k-1) + 0.35y(k—2)e(k—4) + 0.34¢%(k-2) 4.3)

The one step ahead predictions and residuals are illustrated in Fig. 4.2. The model
validity tests are shown in Fig. 4.3. All these results indicate that a proper approxima-
tion to the nonlinear exponential time series has been obtained.



« 12«

From previous studies (Chen and Billings 1991) the simulated system eqn (4.1)
gives rise to a stable limit cycle without noise e(f) and this is shown in Fig. 4.4. The
identified rational approximation model without noise terms

0.98y(k=1) — 1.14y(k-2)
1+ 0.59y%(k—1) — 0.39y(k-1)y(k-2)
produces a similar limit cycle as Fig. 4.5 and this suggests that the rational approxima-

tion model captures the underlying dynamics of the simulated nonlinear system very
well even with noise contamination.

yk) = (4.4)

5 Modelling of dynamics with dead zone and saturation

A typical nonlinear model with dead zone and saturation is shown in figure 5.1.
This system can be described by

x1(k) = 0.7x1(k-1) + u(k-1)

0.0, be; (K)I<1.0
Xo(k) = 1.0*sign(x (k)), U;(k)I=2.0
x,(k), otherwise

y(k) = —0.5y(k-1) + x,(k—-1) + e(k) (5.1)

and has a structure which is common in many branches of mechanical and electrical
engineering (Ogata 1970). A zero mean uniform random sequence with amplitude %5
(variance 03 = 8.33) was used as input u(k) and a zero mean Gaussian white sequence
with variance c% = 1.0 was used as noise e(k). 1000 data pairs were used in the simu-
lation.

The ORME estimator was applied with an initial model consisting of 552 terms
defining the full model with specifications
numerator degree = denominator degree = 2, input lag = noise lag = 10, and
output lag = 2. Again this model includes the polynomial models as a subset. The
input and output data sequences for this simulation are shown in Fig. 5.2. The final
identified model is given in Table 5.1. The approximating equation is

- ak)
y(k) = b0 + e(k) (52

where
a(k) = —0.51y(k=1) + 0.21u(k-1) + 0.14u(k-3) + 0.09u(k—4) + 0.07u(k-5)
+ 0.05u(k—6) + 0.01uk—5)u(k-9) + 0.04u(k-—5)e(k—3)+0.1623(k—6)e(k——10)
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bk) =1 - 0.07y(k-2)e(k-5) (5.3)

The one step ahead predictions and residuals are illustrated in Fig. 5.3. and the model
validity tests are shown in Fig. 5.4.

This simulation study demonstrates that the rational model can be used to approx-
imate discontinuous nonlinear elements. Notice that additive noise on the system often
induces nonlinear noise terms in the model. These terms have to be included as part of
the estimation because if they were omitted this would induce bias.

6 Conclusions

The stochastic rational model and an associated parameter estimation algorithm
have been introduced and shown to provide excellent approximations to three quite
different nonlinear models.
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Figure 3.2 One step ahead predictions & residuals
for the idendfied Morison's equation
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Figure 3.3 Model validation for Morison's equation
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Figure 52 Input & output for the dynamic system with dead zone & saturation
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terms estimates e.r.r.s st.de.s o.s.
numerator: -
( 4) u{t- 1)**1l= 0.7389E+01 0.6610E+00 0.2923E-01( 1)
( 5) u(e- 2)**1= -0.6292E+01 0.3331E+00 0.1161E-01( 2)
{ 85) u(t~ 1)**3= 0.1015E+00 0.3740E-02 0.1762E-02( 3)
( 25) u(t- 2)**l*e(t- 2)**1= -0.2694E-01 0.4681E-05 0.1322E-01( 4)
Table 3.1 Identified model for Morison's equation
terms estimates e.r.r.s st.de.s 0.s.
numerator:
( 3) yle= 2)**1= -0.1141E+01 0.5423E+00 0.1126E-01( 1)
{ 2 yie— 1Y¥*¥i= 0.9777E+00 0.4065E+00 0.1533E-01( 2)
( 4) e(t- 1)**1= 0.6381E+00 0.2744E-02 0.6489E-01( 5)
( 7)) e(t- 4)**1= -0.3395E+00 0.8780E-03 0.6268E-01( 8)
( 5) ef{t- 2)**1= 0.1493E+00 0.7421E-03 0.4198E-01( 10)
{ 6) e(t- 3)**1l= -0.9130E-01 0.2637E-03 0.4490E-01( 12)
denominator:
( 36} it L)*¥2*%y (& ) -0.5925E+00 0.2247E-01 0.2566E-01( 3)
( 37) y(t- 1)**1*y(t- 2)**1*y(t)= 0.3880E+00 0.1123E-01 0.2483E-01( 4)
( 43) y(t- 2)**1*e(t~ 1) =%l ey (E) = 0.7393E+00 0.2248E-02 0.1105E+00( 6)
(-40) y(t- L)**1l*e(t- 3)**1*y(t)= -0.4408E+00 0.1306E-02 0.1064E+00( 7)
( 46) y(t- 2)**1l*e(t- 4)**1*y(t)= -0.3522E+00 0.8755E-03 0.1132E+00( 9)
( 51) e(t- 2)**2*y(t)= -0.3431E+00 0.2648E-03 0.3755E+00( 11)
Table 4.1 Identified model for the exponential time series
numerator:
{( B8) nfe~ 2)*¥1= 0.2127E+00 0.1890E+00 0.1273E-01( 1)
{ 2) ¥(t~ 1)1®=*1= -0.5079E+00 0.1142E+00 0.2744E-01( 2)
( 6) u(t- 3)**1= 0.1406E+00 0.5494E-01 0.1406E-01( 3)
( 7) u(e- 4)**1= 0.8921E-01 0.2924E-01 0.1270E-01( 4)
{ 8) u(t= 5)**i= 0.7361E-01 0.2146E-01 0.1287E-01( §)
( 3) ult- §)**1= 0.4822E-01 0.6958E-02 0.1275E-01( 6)
(266) e(t- 6)**1l*e(t-10)**1= 0.1629E+00 0.7268E-02 0.4332E-01( 7)
(149) u(t- S)**l*e(t- 3)**1= 0.3681E-01 0.4396E-02 0.1407E-01( 8)
(145) u(t- S)**l*u(t- 9)**1= 0.1147E-01 0.4475E-02 0.4346E-02( 10)
denominator:
(337} yle~ 2)**1%e(t~ S)**LAy(E)= 0.7418E-01 0.4050E-02 0.2048E-01( 9)

Table 5.1

Identified model for the dynamic system with dead zone & saturation




