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Abstract

A self growing binary tree neural network is introduced for the on-line identification of
multi-class systems. Instead of solving the traditional two class problem with a single neuron
a time shrinking threshold logic unit is introduced such that the modified neuron has the
capability of partitioning the raw data records into three different regions. Incorporating a
Least Mean Squares (LMS) learning algorithm provides the capability of detecting and
creating new classes and this allows clustering and partitioning of the raw data records into
model classes and yields estimates of the parameters. The models which describe the
behaviour of the system at different operating regions can be recovered by inspection of the
connection weights of the individual neurons. Optimisation procedures for on-line estimation
are also proposed. Simulation studies are included to illustrate the concepts.
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1. Introduction

Multi-class systems which can be described by a class of models over different operating
regions are often encountered in practice. Systems which contain piece-wise linear,
hysteresis and coulomb friction elements are typical examples of multi-class systems. Fitting
one global model to systems which include these elements may give unsatisfactory results and
the final model may fail to capture the behaviour of the underlying system [1,2]. A stepwise
backward elimination procedure based on an orthogonal least squares algorithm coupled with
discriminant functions provides one way of identifying multi-class systems [1]. But, this is
an off-line algorithm and a complete set of input and output data is required for the analysis.
Operating the backward elimination procedure on-line is almost impossible and a more
effective and efficient algorithm is required to cluster and partition the data records and to
perform the parameter estimation. Correct classification or partitioning of the data into
classes is vitally important in multi-class system identification because the classes that the
incoming data records belong to, the decision surfaces, and the number of different classes
of models describing the behaviour of the system are seldom known a priori.

Neural networks present a computational paradigm for constructing pattern recognition and
learning algorithms. Early seminal works in the neural network areas include Rosenblatt [3],
Widrow and Hoff [4], and Minsky and Papert [5]. A detailed summary of neural networks
together with applications can be found in [6] and [7]. A perceptron [3] or an adaptive linear
neuron [4] coupled with a threshold logic unit can form linear separable functions which can
be used to partition the input pattern into regions. More elaborate classification functions
can be constructed by using multi-layered neural networks [6,7]. The least mean squares
(LMS) learning algorithm applied to the perceptron or the adaptive linear neuron is a simple
and efficient algorithm which can easily be implemented on-line. An extension of the linear
adaptive neuron to the on-line identification of multi-class systems by including procedures
for partitioning the data records coupled with LMS parameter estimation would therefore
appear to be worthwhile.

In the present paper a new self growing binary tree neural network is proposed based upon
an extension of the adaptive linear neuron [4] for the identification of multi-class systems
which can be described by a set of models over different operating regions. The proposed
network exploits the properties of pattern classification and adaptation in the identification
process. A simple linear neural network is used because the structure and parameters of the
system under investigation can easily be recovered by inspection of the weight vectors of the
network. Simulation studies are included to illustrate the results.



2. The adaptive linear neuron

A single adaptive linear neuron with m input signals and an output threshold logic element
is shown in Figure 1. This unit has an input signal vector or input pattern vector

X(k) = [xo(k) x,(k) ... x,,()]T whose components are weighted by a set of coefficients
W(k) = [wy(k) w,(k) ... w_(K)]7. The unit produces an output
Y& = X TWE) 1)

An adaptation algorithm automatically adjusts the weights W(k) so that the output response
to the input patterns will be as close as possible to the respective desired response. This is
done by adjusting the weights using the LMS algorithm [4] so that

Wk+1) = W(k) + 2peR)Xk) (2)

where e(k) is the error between the desired response y*(k) and the output response from the

neuron y(k)

ek) = y*(k) - X)W 3)

and p is the adaptation step. The choice of p controls the stability and speed of
convergence of the algorithm and a practical range of p is [7] '

1

0<pc<
trace[R]

“4)

where trace[R] = E (diagonal element of R) is the average signal of the X-vectors or

ETX(k)TX(k)]. With p set within this range, the LMS algorithm should converge to W*" the
optimal solution. A proof of this result can be found in [8]. The LMS algorithm minimises
the sum of the squares of the linear errors over the training set.

During the training process, input patterns and the corresponding desired responses are
presented to the linear neuron. The LMS algorithm automatically adjusts the weights so that
the output response to the input pattern will be as close as possible to the respective desired
response. Decisions are made by the threshold logic element shown in Figure 2 where the
output response of the threshold logic element is governed by the error between the desired
output and the output of the neuron.



2.1. The learning rule and partitioning of input patterns

In classification problems, the threshold logic element shown in Fig. 1 is normally selected
to be a hard-limiting quantizer. This produces a binary +1 output to solve the standard two-
class problem. That is

e®) >0 = X(k) € Q.
(3)

ek) <0 = X(k) e Q_
where e(k) is the error between the desired output and the neuron outputandQ_, Q_ < ®&”

define the two regions which the input patterns belonged to. In the identification of multi-
class systems, the capability of the threshold logic unit is extended to cope with the three-
class problem. Consider the partitioning of the input patterns according to the threshold logic
unit shown in Figure 2. Three classes are partitioned according to the rule

el < vy = XK) € Q,
ek) > y(b = Xk € Q, (6)
ek) < -y(b) = X(b) € Q_

where y(k) is the tolerance band of the threshold logic unit and Q,, Q, andQ_c &”

define the three regions in the hyperplane that the input patterns belong to. If y(k) = 0, the
threshold logic unit in Fig.2 reduces to the two level hard limiter and the adaptive linear

neuron described in Figure 1 becomes the standard perceptron or the standard adaptive linear
neuron.

According to the partition rule of eqn.(6), the weight vector for the neuron will only be
updated using the LMS algorithm if the error e(k) falls within the tolerance band
(X(k) € Q). If this condition is satisfied then

Wik+1) = Wk) + 2pe(®X(K) YV k®)l s y(®), XK € Q, 7

If e(k) falls outside the tolerance band (le(k)l > y(k) and X(k) ¢ Q,), the input pattern X(k)

will be excluded from the estimation and passed to a second layer neuron for further
adaptation.



2.2. Asymptotic properties of the learning rule

For a well defined and completely separable multi-class system, based on the classification
rule of egn.(6), the weight vector W(k) for the adaptive neuron is updated according to the
LMS algorithm of eqn.(7) only if the input data pattern X(k) belongs to Q,. Now consider

the case when the tolerance limit y(k) is a time shrinking function

Yk-1) > y(k) 2 0 (8)
so that asymptotically the tolerance limit reduces to a very small value
Ikim yk) - 8 ®

where & 1is a small positive constant. At steady state, the tolerance limit can be
approximated by

Li'f y(k) ~ 0 (10
and according to the partition rule of eqn.(6) and learning rule of eqn.(7), the weight vector
W(k) will only be updated if the error e(k) continues to fall within the tolerance band y (k)
(le(k)l < y(k)). Because of the time shrinking property of the tolerance function y(k) the
weight vector W(k) should be slowly directed towards the true weight vector W™ which
describes the behaviour of the data patterns X(k) belonging to Q,. At steady state, the

tolerance function will approach zero implying that the error for adaptation should also
approach zero

Limek) -0 VYV Xk € Q, (11)
k=

Substituting eqn.(11) into eqn.(3) and taking the limit of k ~ « gives
y'® - XOTW* ~ X(®)T Lim W) (12)
k==
That is with the time shrinking property of the tolerance limit y(k) and the learning rule of

eqns.(6) and (7), the estimated weight vector W(k) should converge to the true parameters
which describe the behaviour of the data pattern belonging to Q,.

If there are N data patterns X(k), k-1,...,N classified as belonging to Q, the misclassification

rate for this set of data patterns can be defined as



N N
JQ) - -}v— Y E®-Y b® - XEWEP (13)
k=1 k-1

From the partitioning and learning rules of egns.(6) and (7), asymptotically y(k) ~ O and

W(k) - W~ implies that Lim e(k) - O at the steady state. Hence for large values of N the
ke

misclassification rate of eqn.(13) should asymptotically converge to zero.

A plausible candidate for the tolerance limit y(k) in the region Q, is

y&) - B"T +a JyIN) , k=N (14)
at time k where N is the number of data patterns classified as belonging to Q,, B isa

constant value with magnitude less than unity (B < 1), J(N) is the misclassification rate for
the activated neuron, I" and « are some positive constants. I' controls the initial training
time of the neuron before the selection and classification process begins while « controls the

asymptotic tolerance limit. A large value of I' and a value of B close to unity would
provide a long learning time for each neuron.

3. The binary tree neural net

More complicated classification functions can be implemented if the neuron shown in Fig.1
is stacked to form a multi-layered neural network. From the selection and partition rule of
eqn.(6), two sets of data records have been excluded from the adaptation. They are

ek) > yk) = XK €Q, (15)
and
ek) < -y(k) = XM eQ_ (16)

For data patterns satisfying either of these conditions a neuron on the second layer is "fired"
or "activated" for adaptation. Data patterns X(k) ¢ Q, are therefore passed on to second
layer neurons for adaptation and the selection, partition and learning processes of egns.(6)
and (7) are implemented as before such that data patterns belonging to Q, and Q_ are
further partitioned into three separate regions according to egn.(6). This splitting process

can carry on further to create a very complicated classification function and a binary tree
neural network is formed. Termination of the binary tree is governed by the complexity of

the incoming data patterns and the specified asymptotic tolerance band Lim y(k). An
f



example of a three layered binary tree network, which can classify at most seven (2°-1)
different patterns, is shown in Fig.3.

One special characteristic of the proposed network is that if the input patterns get very
complicated and are composed of a number of different classes the binary tree neural net will
automatically grow and find new links and weights for the newly connected neurons until all
input patterns are classified into respective classes. This neural net is therefore a self
growing network which has the capability of creating a new class by "firing" or "activating"
a new neuron by making a connection to it. When a new pattern arrives a new neuron on
the next layer will be "fired" for adaptation and a new link to the neuron will form provided
the new pattern is well defined and can be separated from the rest of the existing classes of
patterns. The classification, adaptation and self growing properties of the binary tree neural
net are very important in multi-class system identification because the number of different
classes of models describing the behaviour of the system and the partition planes for the
incoming data patterns are seldom known a priori. The binary tree neural net provides one
way of detecting the number of classes of models which describe the system as well as
producing the partition planes and parameter estimates for these classes. In the worst
possible case the binary tree neural network will make as many links to neurons as the
number of patterns presented. A further advantage of this approach is that the linear
structure of the network allows the system parameters and structure to be directly recovered
from the links to the neurons. '

4. Implementation of the binary tree neural net

The implementation of the binary tree neural net can be summarised as follows:-

i) Start with one neuron initially. Set all weight vectors W(k) to zero. Definep, y(k)
and «. Set up the input patterns X(k).
ii) Evaluate the error e(k) for each pattern presented using eqn.(3).
ili)  Perform the classification test on e(k) using eqn.(6).
a) If le(k) < y(k), classify X(k) as belonging to Q,, the activated neuron and
update the weight vector W(k) according to eqn.(7).
b) If e(k) > y(k), "fire" or "activate” a neuron on the next layer for adaptation.
The data vector X(k) € Q, is passed on to the new activated neuron for

further classification and adaptation. Repeat procedures ii) and iii) until the



data pattern X(k) settles on a neuron.

c) If e(k) < -y(k), "fire" a neuron on the next layer for adaptation. The data
vector X(k) € Q_ is passed on to the new activated neuron for further
classification and adaptation. Repeat procedures ii) and iii) until the data

pattern X(k) settles on a neuron.
iv) Get a new data pattern. Repeat procedures ii) and iii).

5. Ilustrated examples

The operation and effectiveness of the proposed binary tree neural net is best illustrated by
examples.

5.1 A deterministic multi-class system

Consider a piece-wise linear system (S,) described by the equation

0.4u(k-1) + 0.5x(k-1) + 0.6 ; wuk-1) > 1
x(k) = { u(k-1) + 0.5x(k-1) © k-1l < 1 (17
0.4u(k-1) + 0.5x(k-1) - 0.6 ; u(k-1) < -1

where u(k) and x(k) are the input and output of the system respectively. A zero mean

Gaussian white noise of variance 1, u(k) ~ N(0,1), was used to excite the system. Figure
4 shows the first 100 input and output data records. The input pattern presented to the

binary neural net was given as X(k) = [1 x(k-1) u(k-1)]7 and the adaptation step p was set
to 0.1. Equation (14) was chosen as the candidate tolerance function for each neuron with

B =09, T =5 and a« = 1. With the specified parameters B, I and «, the tolerance
function of egn.(14) is a function which shrinks in time to satisfy the property of egn.(8).
Initially weights for all neurons were set to zero. Using the algorithm described in section
4 a two layer binary tree neural net was formed as shown in Fig.5. The neuron 00 was the
initial neuron and neurons 10 and 11 were two related neurons produced and linked by the
algorithm. The profiles of the tolerance functions for the three neurons are shown in Fig.6
and these are monotonically decreasing satisfying the requirement of eqn.(8). Figure 7
shows the misclassification rate or error for each presented pattern. As the number of
presented patterns was large, the error converged to zero indicating that asymptotically the

7



misclassification rate of eqn.(13) also converged to zero. An optimal classification system
was therefore obtained. Profiles of the weight vectors for the three neurons are shown in
Fig.8. The three weight vectors converged to a steady state. When 1000 patterns had been
presented to the network, the weight vectors for the three neurons were given as

W,,(1000) - [0.0205 0.5446 0.9001]7
W,,(1000) - [0.1027 0.3037 0.6964]7
W,,(1000) - [-.3339 0.5924 0.5959]7

where W (), W() and W,,() denote the weight vector for the neurons 00, 10 and 11

respectively. After 10000 patterns were fed to the network, the weights for the three neurons
converged to

W,,(10000) - [0.0002 0.4994 0.9992]7
W,,(10000) - [0.6000 0.5000 0.4000]7 (18)
W,,(10000) - [-.6000 0.5000 0.4000]7

A comparison of the estimated weight vectors at time instant 10000 with the original system
equations of eqn.(17) shows that the estimated vectors have converged to the true parameters.
at the three operating points. The parameter estimates for neurons 10 and 11 are accurate
and unbiased estimates, but the parameter estimates for neuron 00 which described pattern

vectors belonged to Q, (X(K) € Q,), are slightly in error because of the non-zero tolerance
limit yy,(k) which has a value of 0.0529 at k = 10000. Hence data vector X(k) ¢ Q, but
with le(k)l < y4,(k) would still be classified as belonged to Q, and this introduces a small

bias in the weight vector W (k). This bias could be easily eliminated with the optimisation

procedure described in section 6.

5.1.1 Discriminant functions

If the class membership of an input pattern vector could be pre-determined, without knowing
the reference output of the neural net, an appropriate class of model for the system could be
pre-selected and a prediction of the system output could then be obtained based on the
selected model. This prediction capability can easily be achieved with a slight modification

to the binary tree neural network. Consider the fitted model for X(k) € Q,, the modelling



error is defined as

ek) = y* () - XBWy(k) , le®) s v,k (19)
where y,,(.) denotes the tolerance function for neuron 00. Now if the pattern vector belongs
to X(k) € Q, and not Q, the reference output y*(k) can be replaced by the corresponding
estimate X(k) "W, (k) to give

XRT [ Wy - W) ] = e®) > yo) = X(k) € Q, (20)

Similarly for input pattern vector X(k) € Q _,
XB)T [ Wiok) = Weo(®) | = e(k) < ~yook) = X(¥) € Q_ (21)

From eqns.(20) and (21), the estimated weights for individual neurons can be bonded
together to form discriminant functions or partition planes for data classification.

Hence at the time instance k¥ = 10000 say the discriminant functions for system S, could be
obtained by combining weight vector W,(10000) to W_,(10000) and the tolerance limit
¥00(10000) = 0.0529 to form

0.5998 + 0.0006x(k-1) - 0.5992u(k-1) < -0.0529 = X(k) € Q_
or

u(k-1) - 0.0010x(k-1) > 1.0893 = X(k) € Q_ (22)

and W,,(10000) to W,(10000) to give
u(k-1) - 0.0010x(k-1) < -1.0900 = X(k) € Q, (23)

The discriminant functions of egns.(22) and (23) are of the same form as the discriminant
functions of the original system eqn.(17).

5.2 Stochastic multi-class systems

In the case of stochastic multi-class system identification the operation of the self-growing

binary neural net is essentially the same except that the input pattern vector X(k) has to be
modified such that the effects of noise on the pattern classification is minimised. Consider



the same multi-class system of eqn.(17) but with the output of the system corrupted by output

additive noise {(k) ~ N(0,0.0001) which is uncorrelated with the system input. The
corrupted output for the stochastic system (S,) is defined as

z(k) = x(k) + {(k) (29)
To reduce the effects of noise on the estimated weight vectors the input pattern is modified

to X(k) = [1 Z(k-1) u(k-1)]7 where the output data records are replaced by the filtered
output responses

(k) = X(k)TW (k) (25)
where W (k) denotes the weight vector of the neuron which X(k) is classified to. The

adaptation step p was set to 0.05 and eqn.(14) was selected as the candidate for the tolerance
function with = 099, I - 5 and a = 1. Applying the self-growing binary tree neural
network algorithm produced the same two layer binary tree with three neurons as shown in
Fig.5. The profiles of the tolerance functions for the three neurons are shown in Fig.9.
Fig.10 indicates that the misclassification error for each pattern presented converges to a
threshold as the number of data patterns becomes large. Profiles of the weight vectors for
the three neurons are shown in Fig.11. When 1000 patterns were presented to the network,
the weight vectors for the three neurons became

W,,(1000) - [0.0017 0.5017 0.9637]%

W,,(1000) = [0.3096 0.4770 0.5556]7

W,,(1000) - [-.1368 0.5386 0.6793]7

After 10000 patterns were presented, the weight vectors converged to

W,,(10000) - [-.0021 0.4963 0.9996]7
W,,(10000) - [0.5987 0.5029 0.4050]7 (26)
W,,(10000) = [-.5995 0.4944 0.4028]7

Compared to the weight vectors at time instant 10000 obtained with the deterministic system
equations of eqn.(17) the estimated vectors are very close to the true parameters of the
system. This demonstrates the capability of the proposed algorithm for stochastic multi-class
system identification with a high signal to noise ratio. Incorporating the tolerance limit at

time instant 10000 for the neuron 00 which was given as ¥00(10000) = 0.0530 with the

weight vectors Wy (), W o(.) and W, () produced the discriminant functions

10



u(k-1) - 0.01117(k-1) > 1.0996 = X(k) € Q_
@7
u(k-1) + 0.00327(k-1) < -1.0898 = X(k) € Q,
and the estimated discriminant functions are again of a similar form to the original

deterministic system of eqn.(17). Notice that a small value of adaptation step p was selected
in this case so that asymptotically the contribution of the noise to the estimated weight vector

was reduced. However a small p slows down the learning rate of the algorithm.

When the power of the output noise was increased by 20dB such that {(k) ~ N(0,0.01), the
self-growing binary neural net algorithm was re-applied with p = 0.002, § = 0.99,.T - §
and @ - 2 and a two layer binary net resulted as shown in Fig.5. An even smaller p was
selected in this case in order to asymptotically reduce the effects of the noise on the estimated

weight vectors and a higher & was selected such that the asymptotic threshold of the
tolerance limit was wider to cope with the larger noise variance. Referring to this system
as S; the profile of the tolerance functions for the three neurons are shown in Fig.12. Fig.13
shows the misclassification error for each presented pattern. Profiles of the weight vectors
for the three neurons are shown in Fig.14. When 30000 patterns were presented to the
network, the weight vectors for the three neurons converged to

W,,(30000) - [-.0058 0.4997 0.8712]7
W,4(30000) - [-.0606 04624 0.6561]7 (28)
W,,(30000) - [0.1244 0.4865 0.6547)7

with a tolerance limit for neuron 00 of y,,(30000) - 0.3318. Although the weight vectors
are heavily biased the discriminant functions for the network obtained by combining the
weights for the three neurons with the tolerance limit y,(20000) - 0.3318

u(k-1) + 0.1734%(k-1) > 1.2878 = X(k) € Q_ )
(29)
u(k-1) + 0.06104(k-1) > -.9312 = X(k) € Q,

are of the same form as the discriminant functions of the deterministic system of eqn.(17).

A model predicted output for the fitted network is shown in Fig.15 and a reasonable output
prediction was produced.

11



The bias in the estimated vectors might be due to the poor definition of the partition plane
in the presence of noise. Data patterns close to the edge of the partition plane might be
wrongly classified in the presence of noise. This misclassification rate gets worst as the
noise power is increased because more data patterns would be misclassified. The inclusion
of the misclassified data patterns in the training of the net therefore produces biased results.
In the high signal to noise ratio case, this effect is less severe and the original system
structure can still be retained. Alternative forms of noise modelling may alleviate this
difficulty and these are currently under investigation.

The three simulated examples show that the accuracy of the weight vectors is governed by
the separability of the data patterns and the terminal tolerance limit. Because of the finite
number of data patterns which are available in practice even if the patterns were completely

separable the terminal tolerance limit y(k) will not converge to zero. Hence all data patterns
which originally belonged to Q, would be classified to either Q, or Q_. This will induce

bias in the estimation. This problem becomes worse when the system under investigation is
stochastic because the partition planes between different classes of patterns can become
poorly defined.

6. Optimisation procedure

One drawback of the self-growing binary tree neural net algorithm is that the estimated
model will be biased towards the £, set if the number of data patterns for learning and
adaptation is finite. The terminal threshold of the tolerance limit y,,(k) will not converge
to zero even if the system is deterministic and the estimates obtained are no longer optimal.

At regions close to the edges of the tolerance limit y (k) a smaller misclassification error

may be obtained if the data pattern is classified to either Q, or Q_ instead. An optimisation

procedure can therefore be derived based upon this feature.

One possible way to achieve the optimisation off-line is to carry out an exhaustive search on
all patterns after the initial estimation in such a way that the final estimates produce the least
misclassification rate. An off-line optimisation procedure to implement this can be
summarised as follows:-

12



iii)

Assume that there are n classes of patterns and there are N, N,,...,, N, data patterns
classified to Q,, Q,,..., Q respectively. Record the misclassification error for each
pattern.

From all the available misclassification errors, select the pattern X(k) which
contributes the maximum cost to the misclassification rate, say X(k) € Q 1» and pass
this pattern X(k) to the rest of the classes Q,, Q,, ..., Q , for classification. The one
that contributes the least misclassification error, say f,, is selected as the correct
class for data pattern X(k).

Set Ny = N, -1, N, = N, + 1 and perform a new training for the data patterns
belonging to Q, and Q,. Record the misclassification errors for the new training

process.

Repeat procedures ii) and iii) until there is no further reduction in the
misclassification rate. The final estimate should therefore become an optimal solution
to the data set.

One drawback of the exhaustive search method is that it is a very time consuming process
even if it is performed off-line. Implementing the optimisation procedure on-line is almost
impossible. An alternative on-line optimisation procedure is therefore proposed. Consider
the case when the tolerance limit of the self-growing binary tree neural net reaches a certain
threshold then the partitioning and learning algorithm switches to the on-line optimisation
procedure described below:-

i)

When a new pattern X(k) arrives it is passed to all the neurons within the binary tree
and all misclassification errors for individual neurons are recorded.

eR) = y' 0 - XBTWE ; i=1,.n (30)

where W (k) is the weight vector associated with the i’th neuron associated with data
patterns belonging to Q..

The neuron which contributes the least absolute misclassification error is then chosen.

e(k) - k) - minfe () ; i-1,...,1] = X(®) € Q, (31)

13



iii) ~ The weight vector for the j’th neuron is updated using the LMS algorithm

Wik+1) = WK + 2pe(X (k) (32)

Notice that egns.(30), (31) and (32) are simple, efficient, can easily be implemented on-line
and will work in association with the self-growing binary tree neural network algorithm.

6.1 Mlustrative examples

For the deterministic system S, the weight vector of eqn.(18) was chosen as initial starting
estimates and the on-line optimisation procedure of eqns.(30), (31) and (32) was applied to
the newly arrived patterns. After a further 100 patterns were presented to the optimisation
procedures, the weight vectors converged to

W,,(100) - [0.0000 0.5000 1.0000]7
W,,(100) = [0.6000 0.5000 0.4000]7 (33)
W,,(100) = [-.6000 0.5000 0.4000]7

When the optimisation procedure was applied to the stochastic system S, and the estimated
weight vectors of eqn.(26) were taken as the starting estimates the weight vectors converged
to

W,,(5000) - [0.0001 0.5001 0.9997]7
W,,(5000) - [0.5974 0.5006 0.4024]7 (34
W,,(5000) - [-.5982 0.4976 0.4009]7

after 5000 additional patterns were fed to the network.

For the stochastic system S,, the optimisation procedure produced the weight vectors

W,,(5000) = [-.0064 0.5193 1.0005]7
W,,(5000) - [-.1012 0.4731 0.6950]7 (35)
W,,(5000) - [0.1685 0.4873 0.6799]7
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after 5000 additional patterns were fed to the network with the weight vectors of eqn.(28)
as starting values.

For deterministic and stochastic systems S, and S,, eqns.(33) and (34) illustrate that better
estimates were obtained compared with the estimates of eqns.(18) and (26). For the

stochastic system S;, a reasonable estimate has been obtained for patterns belonging toQ,

because the weight vector Wy, () was closer to the true system parameters.

7. Conclusions

A self growing binary tree neural network has been developed for the identification of multi-
class systems. For well defined and separable processes the proposed network can correctly
classify the patterns into the respective classes and produce weight vectors which accurately
describe the behaviour of the system at different operating points. Because of the simplicity
and efficiency of the network it can easily be implemented as an on-line algorithm for the
identification of multi-class systems. An optimisation procedure based upon the minimisation
of the misclassification errors has also been developed and shown to produce improved
estimates.
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input weights

Figure 3. A three layer binary tree neural net
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Figure 4. Input and output data records for system S,
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Figure 5. A two layer binary tree neural net for system S,
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