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Abstract

The identification of continuous time models from non-uniformly sampled data records is
investigated and a new identification algorithm based on the state variable filter approach is
derived. It is shown that the orthogonal least squares estimator can be adapted for the
identification of continuous time models from non-uniformly sampled data records and
instrumental variables are introduced to reduce the bias in stochastic system identification.
Multiplying the filtered variables obtained from the state variable filter with higher powers
of the noise free output signal prior to the estimation is shown to enhance the parameter
estimates. Simulated examples are included to illustrate the methods.
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1. Introduction

The problem of discrete time model identification has been thoroughly studied, and numerous
parameter estimation methods have been developed for discrete time models based on
uniformly sampled data records [1,2,3,4,5]. The problem of identification of systems with
non-uniform sampling using digital computers has however received little attention. In closed
loop control systems, the output response of a control system is usually very steady and high
frequency system response components are rare. The sampling rate for a control system can
therefore be significantly reduced in order to save computing power or release the computer
to perform some other urgent tasks. A fast sampling rate is only required during the
transition period, that is when there is a change in the input demand or if there are any
external disturbances. Provided the slowest sampling rate does not violate the Nyquist
sampling frequency, aliasing will be avoided.

Discrete time modelling of a dynamical process is highly dependent upon the sampling time
of the system and for non-uniform sampling the discrete model is not well defined. The
original plant dynamics are of course independent of the sampling time of the data because
the continuous time model or the differential equation that describes the dynamics of the
system under investigation remain unchanged. Hence if a continuous time model can be
successfully recovered from non-uniformly sampled data records discrete time models for any
sampling frequencies can be derived and classical or modern control laws can easily be
derived based on either the continuous or discretized model.

In recent years, a lot of attention has been directed to the identification of continuous time
systems and a comprehensive review of these developments can be found in [6], [7] and [8].
Some of these parameter estimation methods involve orthogonal functions such as block-pulse
functions and numerical integration [9,10,11] and they all rely on integration rather than
derivative operations. The main drawback with integration is the initial condition problem.
Since the initial states of a system are usually neither known or zero they have to be
identified together with the system parameters. An alternative approach is to use state
variable filters [12,13] where "measures" of higher order derivatives are obtained from the
state variable filters which can in turn be used for the identification of the system parameters.
All the estimation methods cited above are based upon uniform sampling or in some cases
special transducers or components are used to extract measures of the higher order
derivatives for system identiﬁcatiqn. '

In the present study a new estimation method is presented for the identification of systems
from non-uniformly sampled data records. The new algorithm involves procedures for



implementing state variable filters to recover measures of the higher order derivatives [12,13]
of the input and output signals coupled with an orthogonal least squares estimator. This
provides information regarding the structure, or which terms to include in the model, as well
as parameter estimates from non-uniformly sampled data. A new instrumental variables
version of the orthogonal estimator is also introduced to overcome bias which would
otherwise be induced by noisy data. Simulation studies are included to illustrate the
concepts.

2. Application of filters in continuous time model identification

Consider a single input single output continuous time system that can be described by the
linear differential equation

A(D)y(r) = B(D)u(t) (1)

where u(7) is the input to the system, y(¢) is the output response, D is the differential

operator, and A and B are polynomials in D.
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n - order of the dynamical system

If the input, output and the higher order derivatives are available, a set of simultaneous
equations can then be set up for the identification of the unknown system parameters in
eqn.(2). Unfortunately, higher order derivatives of the input and output are practically very
difficult to obtain and this creates a fundamental problem when using eqn.(1) for system
identification. One way around this problem is to replace the higher order derivatives with
corresponding numerical approximations. However it has been found that derivative
approximations are noise accentuating and the effects of noise in parameter estimation are
undesirable. An alternative approach is to use  state variable filters [12,13]. The state

variable filter can therefore be included in the current identification process to provide
approximations of the higher order derivatives. Consider the application of an all pole filter 1/F(D)
on eqn.(l) to give

B(D)

A(D) _ %
-—F( D) () —-—F(D) u(?) (3)



where
F(D) = f,D™ + ;D™ + .. + f,

and m is the order of the filter. Equation (3) can be written as

AD)Yy () = B(Duf@) 4)

where F(D)y f()=y(t) and F(D)uf(t)-u(t) are the filtered output and input respectively.
From eqn.(4), a regression model can be formed as

yi@® = [1 - AD) ] yf(®) + BD)uF() )
Hence if the filtered input, output and the associated higher order derivatives can be
obtained, a set of simultaneous equations can be set up and the unknown parameters forA
and B can be identified. Initially just consider the filtering operation applied to the input

signal u(t) and define
xl(r) = uF(t)

x® = Dx() = Duf() ©)

x, () = Dx__(f) = D" 'uf(r)

So that from eqn.(3) the filtered input signal x,(t) = uf() and the associated higher order
derivatives are related by
1
Dx (1) = _]T ( - J ) — Bk (D) ~ e = L0 + u@ ) (7)
0

Combine eqns.(6) and (7) and form the block diagram shown in Fig.1 where the filtered
input signal and the higher order derivatives can easily be obtained from the output of
individual integrators. The block diagram of Fig.l. can be realized using the basic
summation and integration circuits common in analogue computers. Similarly, an identical

filter can be applied to the output signal y(f) to produce the filtered output signal and
associated higher order derivatives. If the order of the filter m is higher than the order of
the dynamical system n, there will be sufficient filtered higher order derivatives for the

estimation of the unknown parameters 4 and B in eqn.(5).



3. Digital implementation of the state variable filters

If the filtered input, output and the associated higher order derivatives of a dynamical system
Fig.l are sampled with either a uniform or non-uniform sampling frequency a set of

simultaneous equations can be set up for the estimation of the unknown polynomials 4 and

B. The disadvantage of using the analogue filter shown in Fig.1 is that the filter can easily
become saturated, and modifications of the filter characteristics is not easy. Also additional
transducers are required to obtain measurements of the filtered input, output and the higher
order derivatives. To allow for the maximum flexibility in implementing the state variable
filters, the filters can be implemented on a digital computer so that characteristic of the filter
can if necessary easily be modified by adjusting the coefficients of the filter function and
very high order filters can be implemented. The matching of the input and output filters will
be trivial and the problem of saturation is alleviated. The number of transducers required
is also significantly reduced because only the system input and output signals are required
to generate the filtered input, output and the derivatives. The filters can be implemented
using the Euler or Runge-Kutta integration methods. The Euler method is preferable because
of the efficiency and ease of implementation both of which are extremely important in on-
line system identification and control.

Consider the filtering operations carried out by eqns.(6) and (7) and define

X0 - [x,0 %0 .. x,®17 (8)
[ x,(0)
X4(2)
HX@w0.0 - | ~ BC)
%, (0
}1- (L300 = FEua® —m Fuxy® + @) )
0

where u(t) is the input to the filter. The Euler or Runge-Kutta method must be used to solve

dXx()

= H(X(1),u(@),n (10)
dt

for X(z). The numerical solution provided by the Euler approach [14] is given by
X@) = X)) + @ - 1) HOX@), ), 6,) (1)



whereas a 4-th order Runge-Kutta method [14] yields

L-ty)

@ ‘
X@) - X(t,) + —1-75-— [ K1+ 2K, + 2K, + K, | (12)

where
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Application of the filtering operations given by eqns.(11) or (12) to the system input and
output signals produces the filtered input, output and the higher order derivatives which can
be used for the identification of the unknown system parameters. Notice that egns.(11) and
(12) produce reasonable estimates of the filtered signal and the higher order derivatives for

any step sizes or sampling periods t;-t,_, satisfying the Nyquist sampling frequency.

4. The orthogonal least squares estimator

The orthogonal least squares estimation algorithm [15,16,17] has been shown to be a Very
efficient procedure for identifying unknown linear and nonlinear systems. The strength of
the algorithm lies mainly in the fact that it provides information regarding which terms are
significant in the model. This is often vital especially in the identification of nonlinear
systems. The orthogonal least squares is also numerically superior to the ordinary least
squares method. It would therefore appear to be appropriate to extend the orthogonal
estimator so that it can be used for the identification of continuous time models from non-
uniformly sampled data.

Consider the linear-in-the-parameter model

M
yi® - Y 6p(t) + e (13)
i-1 :



where y (2 represents the filtered system output; 8, i-1,...,M represents the M real
unknown parameters associated with the variables p,(f), p,(t) are the filtered input, output

and the higher order derivatives, and €(#) is the modelling error. The orthogonal least
squares algorithm involves a procedure of transforming eqn.(13) into an equivalent
orthogonal equation

M
yF(I) = E g,'wi(t) i E(t) (14)
i-1
such that
1 N
— E wk(rj)wi(rj) -0 YV k=i (15)
N 3

where N denotes the number of data records involved in the analysis. The orthogonalisation
of the data records is performed by defining [15,16]

W‘I(fj) = Pl(rj)

i-1
w(t) = pi(rj) - E“h‘wk(rj) ; i=1,.,M
k-1

(16)
1 N
— w, (t)p.(L.
. i N,Z; 4P ) k=1,...i-1
o A T i=1,.,M
— W, (1.
N; K (1)

The orthogonal parameter estimates £, can then be obtained according to the formula

N
1
FZ ¥ F(tj)wi(rj)
g~ L i=l M (17)

1 2.
}G% w; ()

and the original system parameters estimates é,. can be recovered from eqns.(16) and (17)
as

Oy = 8u
(18)

M
6, - & - Y b, ; k=-M-1,.,1
i=k+1



A by-product of the orthogonal estimation algorithm is the error reduction ratio which is
defined as [15,16]

| ¥ 5 5
Ezgiwf(tj)
ERR, = I o %100 § el M (19)

1 al F 2

This can serve as an indicator of how important a particular dependent variable is and how
close the estimated model is to the original system dynamics. If the sum of the error
reduction ratio is close to 100 the fitted model should be an adequate representation of the
system under investigation.

5. Stochastic system identification

Linear stochastic systems can generally be described by the differential equation

AD)z(H) - B(D)u(®) + CDY() (20)

where z(7) is the noisy output, u(f) is the input and () is uncorrelated white noise

C(D) = ¢,D™ + ¢, D™ + .. + 1 (21)

Applying the state variable filter 1/F(D) to egn.(20) gives

AD)ZF® - BOWF@) + D¢y 22)

F(D)
or

25 = [1 - AD) 1 27(®) + BD () + C*(D)() B

where C*(D) = C(D)/F(D). From egn.(23), an unbiased estimate of the system can be

obtained if u F(z), z£(2), {(z) and the associated higher order derivatives are available. Since 40
and the higher order derivatives are unmeasurable, estimation algorithms which exclude the
noise from the estimation are desirable. The instrumental variable method [18] is one
possible way of eliminating noise from the estimation. This is achieved by introducing
instrumental variables which are highly correlated with the system output but uncorrelated

with the noise to produce unbiased estimates of 4 and B.



5.1 Signal to noise ratio enhancement

Consider a noise corrupted process )
z(t) = y(®) + e(®) (24)

where z(f) is the noise corrupted signal, y(¢) is the noise free signal and e(?) is a zero mean

additive noise which is independent of y(r). Multiplying z(¢) with itself and taking the
expected value gives

E[Z(0] - ED*(D] + E[e*()] (25)

because E[y(f)e(r)] = O where E[.] denotes the expected value, The signal to noise ratio
for egn.(25) is defined as

(57, - ED (26)

Ele*(]
If the signal to noise ratio is high, the signal z(f) becomes more deterministic and the
prediction of z(t) should be good. However, if the signal to noise ratio is low, the
signal z(r) will be dominated by the noise process and the prediction of the signal will be

poor. Hence if the signal to noise ratio of a signal z(f) can be artificially improved, the
output prediction of the signal will also be enhanced.

Consider the multiplication of the noise corrupted signal z(r) with the r-th power of the
noise free signal y(¢) to give

YO0 =y + y e, r-123,. =
Squaring both sides of eqn.(27) and taking expected value gives

Ep¥(@2*®] = ED*" V@] + Eb¥(0)1E[()] o)

because Ey*"!(e(®] = 0 and Ey*(1)e*(®)] - Ey¥()]E[X(®)]. The signal to noise ratio
for the modified signal of eqn.(27) is given as

2r+1)
(s/N], - —— )] 29)
Ely¥(D]E[e*(1)]
When the signal z(r) is multiplied by y"~!(r), the signal to noise ratio becomes
Epy*(]
S - (30)
s o)



Assuming the process is ergodic such that the expected value can be approximated by the
sampled mean

E[y2rD)] %(yz“*“(rl) £ YD) + L+ YD) (31)
YD) = 20 + y) + .+ y00,) (32)
1 r r T
Ey”®] ~ -N—(}’2 @) + Y7 ) + . + Y¥()) (33)
where N is the number of data records. Multiplying eqn.(31)

with eqn.(32) and comparing with the square of eqn.(33) gives

2
{_;_r(yz{m)(ti)+...+y2(r+1)(;N))} {%(yur-z)(tl)J,__._,,yz(r-l)(tN))} > {%(yz’(tl)h.ﬁyz’(rh,))} (34)

or
Ep2 YWIER* @] = (Eb¥ @) (39
by the Schwarz inequality. Rearranging eqn.(35) and dividing both sides by E[—ez(t)_] gives

Ey @) | ED¥@)
Ey¥(0)Ele*®]  Ely**V@)E()

or

[SIM, = [SIN],_, (36)
From eqn, | (36), the signal to noise ratio of the noisy process can be artificially improved by
multiplying*higher orders of the noise free signal The signal to noise ratio

1s progressively improved as the order of the noise free signal power is increased. If the
order of the noise free signal power is sufficiently high, the modified process approaches a
deterministic system. Notice that the signal to noise ratio can be improved according to
eqn.(36) only if the noise free signal is available. In actual practice, the noise free signal is
difficult to obtain but an estimate can be evaluated using any of the
well known estimation algorithms such as the least squares estimation algorithm.

5.2 Estimation procedures

Define the noise free model associated with eqn.(22) as
AD)y () - BDWEQ (37



d) Multiply the filtered records u 7(¢), Duf(2), ..., z7(®), DzF(®), ... by ¢ ()" for a
large value of r and re-apply the orthogonal least squares estimator to obtain new

estimates for A and B.
e) Repeat ¢) and d) until convergence.

6. Simulated examples

A linear system S, given by
0.25D%y(t) + 0.7Dy(f) + y(2) = 1.25u(?) (43)

was excited by a random input signal of bandwidth 4 rad/s. 3000 pairs of non-uniformly
sampled input and output data records were collected for the identification of the system
parameters. Figure 2(a) shows the input and output and a zoomed plot of the sampled
records (Fig. 2(b)) reveals the non-uniform sampling intervals. A sixth order Butterworth
filter with a cutoff frequency of 4 rad/s which covered the whole range of frequency of
interest was selected as the state variable filter to produce the filtered input, output and the
higher order derivatives for system identification. The Euler method was used to implement
the Butterworth filter and the filtered input, output and the higher order derivatives shown
in Fig.3 were generated after passing the input and output data records to the filter. A
second order dynamical model was therefore specified for estimation and the generated

u @), Duf(), y£(@®), Dy*(t) and D?y F(r) were used for the identification of the unknown
parameters. Application of the orthogonal least squares estimator to the filtered data records
produced the estimate )

yF(n) = -0.2515D% F(1)-0.7044 Dy *(1)+0.0055Du F(£) +1.25u F(2) +e(2) (44)

(61.9710) (27.7805) (0.0025)  (10.2460)

The bracketed value beneath the individual ﬁarameters indicates the error reduction ratio of
each corresponding candidate term. As the fitted model of eqn.(44) has a sum of error
reduction ratios of 100 this suggests that it is an adequate representation of the system under
investigation. A comparison with the original model of eqn.(43) indicates that an excellent
model has been obtained and that the estimated model is unaffected by the non-uniform
sampling intervals.

The identification of a stochastic linear system with a signal to noise ratio of 17dB was used
to defined system S, '

0.25D%y(f) + 0.7Dy(?) + y(&) = 1.25u(?)
2(6) = y(@) + e(?)

(43)

11



where e(f) is a zero mean white noise. 3000 data records were collected and these are
illustrated in Fig.4. Sixth order Butterworth filters with a cutoff frequency of 4 rad/s were
applied to the input and output data to produce the filtered input, output and the higher order
derivatives as shown in Fig.5. Application of the orthogonal least squares estimator to the
filtered data records produced the estimate

zF() - -0.2426D%27(r) - 0.6978DzF(r) - 0.0080Du f(2) + 1.2412u (1) + e(r) (46)

(61.4917) (27.9009) (0.0055) (10.5702)

A comparison with eqn.(45) reveals that a good estimate has been obtained and the fitted
model eqn.(46), captured 99.9683% of the total output power. The model can be further
refined by multiplying the filtered variables with high powers of the noise free output

obtained from eqn.(46) as described in section 5.2. Initially, a set of instrumental variablesy £(¢)

were evaluated using the initial model of eqn.(46), the noise free filtered input and associated
higher order derivatives, and the Euler integration method. From eqn.(36) an improved
estimate can be obtained if the filtered variables are multiplied by higher powers of the noise
free output before the estimation as the modified system becomes more deterministic. When

the filtered variables were multiplied by yF(t), the model

25 - -0.24421D%F(r) - 0.6978DzF(r) - 0.0040Duf(r) + 1.2449uF(r) + () (47)
(70.2085) (13.0575) (0.0008) (16.7262)

resulted after two iterations. The sum of the error reduction ratios was 99.993 % indicating

an improved estimate has been obtained compared to 99.968% captured by the model of

eqn.(46). When the filtered input, output and the higher order derivatives were multiplied

by (»F(#)?, the fitted model became

27(r) = -02451D%27(r) - 0.6982Dz"(t) - 0.0020Du (1) + 1.2474u"(1) + €(t) (48
(74.7625) (8.27415) (0.000149) (16.9604)

which captured 99.997 % of the total output power. Multiplying the filtered variables with (y F(r))?
produced the estimate
zF(r) - -0.2456D%*z*(r) - 0.6983DzF(r) - 0.00095Duf(r) + 1.2485u (1) + e@®) (49)
(78.391) (6.13948) (2.5412¢-5) (15.468)
capturing 99.9986 % of the total output power. A comparison of eqns.(46), (47), (48) and
(49) with eqn.(45) indicates that a progressively better estimate has been obtained as the
filtered variables are multiplied by higher powers of the noise free output signal. The

coupling of the noise free output signal with the filtered variables greatly enhances the final
estimate. '

A third example system S, was derived from system S, by reducing the signal to noise ratio

12



to —3dB. Again 3000 data records were collected and these are illustrated in Fig.6. Figure
7 shows the filtered input, output and the associated higher order derivatives when sixth
order Butterworth filters were applied to the input and output data records. The initial
estimate after applying the orthogonal least squares estimator was

2F@) = -0.1723D%2F(1) - 0.6124Dz (1) - 0.1108Duf(r) + 1.1261u () + e(r) (50)

(55.8529) (26.665) (1.67592) (13.5815)

The sum of the error reduction ratios is 97.7787% indicating that around 2.22 % of the output
power has not been captured by the initial estimate of eqn.(50). Table 1 shows the results
of the estimation as the filtered variables are multiplied higher powers of the noise free
output. The estimated model progressively improves as the filtered variables are multiplied
by higher powers of the noise free output signal. Also the sum of the error reduction ratios

progressively increases as higher powers of the noise free output are coupled to the filtered
variables.

7. Conclusions

An orthogonal least squares estimation algorithm coupled with a state variable filter has been
derived for the identification of stochastic systems with uniform or non-uniform sampling.
It has been shown that the application of the state variable filter reduces the effects of noise
on the estimation and that coupling the filtered variables with higher powers of the noise free
signal can further improve the final estimates.

13
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coupling dg a, b, b, Y €RR,
variable 0.25 0.7 0 1.25

6 F()° 0.1723 0.6124 -.1108 L.I261 | 977787
o F@)! 0.1850 0.6255 -.0821 1.1765 | 99.4739
o F)? 0.1928 0.6322 -.0643 1.1995 | 99.7580
60)? ¢, 1979 0.6376 -.0547 1.2126 | 99.8774
(v F(e)* 0.2010 0.6404 -.0497 1.2195 | 99,9323
yF@)° 0.2031 0.6413 -.0470 1.2230 | 99.9595

Table 1. Parameter estimates for system S,
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filtered output and its derivatives
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Figure 4. Input and output data records for system S,
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