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A Comparison of Polynomial & Rational
NARMAX Models for Nonlinear System Identification

Q.M. Zhu, S A. Billings
Department of Automatic Control and Systems Engineering,

University of Sheffield, Sheffield S1 4DU, UK

Abstract: .

Polynomial and rational expansions of nonlinear stochastic dynamic models are compared. The
structure, approximation properties, and stability are discussed and a unified identification algo-
rithm is introduced.

1 Introduction

System characterization and identification are fundamental problems in systems
theory. The problem of characterization is related to the analytical modelling of a sys-
tem and the problem of identification is related to the process of constructing or learn-
ing a mathematical model of a system from observations of the input and output sig-
nals. Determining the model structure is an important part of system identification
because an appropriate model selection is both more likely to provide an accurate
approximation and saves effort in the computation and mathematical manipulation.
Ideally the final model will be accurate, concise, and easy to manipulate. While it may

not always be possible to achieve such an ideal good model and structure selection
~will increase the probability of achieving these objectives in model based identification
of both linear and nonlinear systems.

Order determination and term selection are quite straightforward for linear models
and the well known parametric ARMAX model provides an excellent representation
for the class of real linear systems. Nonlinear model selection however is very compli-
cated because there is no unique model which can represent all nonlinear systems and
the number of combinations of possible terms becomes very large. Usually a special
model form is adopted to describe the specific nonlinear phenomenon under investiga-
tion. Linearization for examﬁlc provides a linear approximation of the system and
avoids the nonlinear aspects of the problem, but often at the expense of very poor
approximation. The Volterra series (Schetzen 1980) is a widely studied model but with
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the disadvantage that this description requires thousands of parameters to specify the

kernels even for simple nonlinear systems.

In the early 1980’s, the NARMAX model was introduced (Leontaritis and Bil-
lings 1985) as an expansion of past inputs, outputs, and prediction error terms. The
main advantage of this representation is that the dynamic information encoded by the
output terms permits very concise model representations. It can be shown (Chen and
Billings 1989) that the NARMAX model provides a very general representation for a
large class of nonlinear systems and various forms of the model have been studied.
These range from linear in the parameters expansions such as the polynomial NAR-
MAX to nonlinear in the parameters expansions such as the nonlinear dynamic rational
model.

The polynomial model has been studied in detail and the model characteristics,
identification, and properties are now well known. In contrast the rational model is
much more difficult to estimate and has only recently been considered. But both
models are closely related and the present study is an attempt to compare the two
representations. This will involve a study of the structure of the models, the approxi-
mation properties, a discussion of stability and the introduction of a unified
identification procedure. The ideas are illustrated throughout by simple examples.

2 Models

The method of representing nonlinear dynamic systems using nonlinear
differential or difference equations is well established in systems theory. But if such
models are to be used as a basis for identification then it is important to consider the
approximation, stability, and identifiability properties of this class of models.

2.1 Structure
The NARMAX model is defined as

)’(k) = F(y(‘k—l)v T, )’(k""); N(k—l), Y u(k_r)’
e(k=1), - - -, e(k—1)) + e(k) (2.1.1)
where k=1,2, -+ is a discrete time index, u(k) and y(k) are the input and output

respectively at time k, e(k) is an unobservable independent and identically distributed
(iid) noise with zero mean and finite variance 03, and F(.) is some nonlinear function

for example a polynomial or rational function.
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The polynomial NARMAX model can be expressed as

yk) = f;p,-(k)e,- (2.1.2)
=1
where  pik) = pjy(k-1), - - -, y(k=r), u(k=1), - - -, utk-r), e(k=1), - - -, e(k-1)) s
defined as a term which is a  function of the variables
(yk=1), - - -, yk-r), u(k-1), - * -, utk-r), e(k=1), - - -, e(k=r)). The rational NAR-
MAX model is of the form
an}(k)enj
y(k) = Zgg =L l (2.1.3)
2 paik)8y;
Fl
where the numerator term
Pn(k) = ppiyk=1), - - -, y(k=1), u(k=1), - - -, u(k-r), e(k=1), - - -, e(k-r)) and the
denominator term
pajk) = pgiyk=1), - - -, y(k-1), u(k-1), - - -, uCk-r), e(k=1), - - -, e(k-r)) are typically
polynomials.
The NARMAX model has the following characteristics:
Remark 1:

If the nonlinear function F(.) in eqn (2.1.1) is continuous, which may include
finite singular points, then it can always be arbitrarily well approximated by polyno-
mial models (Billings and Chen 1989b), this follows from the famous Stone-
Weierstrass theorem (Haaser and Sullivan 1971).

Remark 2:

Usually the NARMAX model has a finite realization in terms of lagged inputs
and outputs with a constant nonlinear degree. For example an infinite power series
may be simply expressed as a rational model (Zhu and Billings 1992).

Remark 3:

The NARMAX model is a natural representation for many nonlinear models and
systems.
Remark 4:

The NARMAX model stability is dependent on both the model structure and the

input amplitude.



Remark 5:
The NARMAX model can be identified using special least squares algorithms.

This will be presented in section 4.

Chen and Billings(1989) have proved that the NARMAX model is a general and
natural representation of nonlinear systems and contains, as a special case several
existing nonlinear models such as the Hammerstien, bilinear, output-affine and rational
models. Using the following definitions the NARMAX model can be classified into
several subsets. Consider eqn (2.1.2),

® A model is linear in the parameters if the model is linear in
6,j=1""",m

(i1) A model is linear in the output variable if the model is linear in
yk-p,j=1,"--,r

(iii) A model is linear in the input variable if the model is linear in
utk—p,j=1,---,r.

Converse definitions of nonlinearity in the parameters, output variables and input vari-

ables can also be defined in an obvious manner.
These concepts are easy to be illustrated with examples

Example 1: The polynomial NARMAX model (Chen and Billings 1989)
y(k) = ay(k=1) + ay*(k=1uk) + u?(k-1) (2.1.4)

is classified as linear in the parameters and nonlinear in the input and output vari-
ables.

Example 2: The output-affine model (Chen and Billings 1989)

_ 1 s 27 5] AVl be 3]
yk) = ——-——1 TG ([uk=1) + u*(k=2)1y(k=1) + u(k-2)y(k=2) + u(k)} (2.1.5)

is classified as linear in the output variable, but nonlinear in the parameters and
input variable.

Example 3: The Bilinear model (Chen and Billings 1989)
y(k) = a,y(k=1) + bou(k) + c;y(k=2)u(k-1) | (2.1.6)
is classified as linear in the parameters, input and output variables.
Example 4: The Hammerstien model (Narendra and Gallmann 1966)
y(k) = ayy(k=1) + by + by u(k) + by u*(k) (2.1.7)

is classified as linear in the parameters and output variable, but nonlinear in the



input variable.
Example 5: The rational NARMAX model (Chen and Billings 1989)
a,y(k=1) + ay*(k-1)u(k-1)
1+ byy*(k-1)

y(k) = (2.1.8)

is classified as nonlinear in the parameters, output and input variable.

2.2 Representation

Mathematical models can be used for both function approximation and data
fitting. In the former case for example a complex function such as a hyperbolic func-
tion can be expanded and approximated by a Taylor series model say, whereas in the
later case the model is estimated as a best fit to a selected data set usually in the pres-
ence of noise. This is normally called system identification and it often involves both
structure detection and parameter estimation.

2.2.1 Function approximation

In function approximation the expansions are usually static. The polynomial
model takes the form

y=l40;x+0,x2+ -+ +0,x" (2.2.1)

and the rational model is expressed as
140, x+0,x2+ -+ +0,x"
) 1+Byx+PByx2+ - +B,x"

Yy (2.2.2)

This is sometimes called Pade function (Braess 1986).

The polynomial model is used mainly to represent the class of continuous func-
tions. The rational model however can also be used to describe certain types of discon-

tinuous functions.

In function approximation the major concerns are usually approximation error
analysis and error convergence speed. There is no need to detect function structure or
to estimate parameters because both the structure of the approximated and approximat-
ing functions are exactly known a priori. Table 2.1 illustrates the order of error of
approximation for both polynomial and rational models, in the table n may be thought
of as the number of evaluations of a given function required to obtain the approxima-
tion and ¢ denotes a positive constant.



Model analytic | analytic with singularity
Polynomial | exp(—cn) n°
Rational exp(—cn) exp(—cn'’?)
Table 2.1 Order of error of approximation using polynomial and rational models

The table shows that the polynomial and the rational model both have the same rate of
convergence exp( —cn ) of error of approximation for an analytic functions without
singularities. But the rational model provides a much better convergence property com-
pared to the polynomial model in function approximation with singularities. In this
latter case the polynomial model will exhibit a very slow convergence to zero error
(Stenger 1980).

There exists a simple transformation between the polynomial model of eqn (2.2.1)
and the rational model of eqn (2.2.2) using the famous Pade table (Braess 1986). In
theory, the polynomial model can be obtained by expanding the rational model into a
power series.

2.2.2 Data approximation

Many dynamic phenomena can be described by nonlinear differential equations or
difference equations. Usually data collected from practical environments are modelled
based on these equations and the approximation properties are discussed below.

Sampled differential equation

The polynomial and rational models are the natural representatives for the sam-
pled continuous time systems described by differential equations. Consider a nonlinear
differential equation

R OENROVOEST( (2.2.3)
where ¢ is a continuous time and y() denotes the first derivative of y with respect to t.
Assuming the sampling period is sufficiently small, the forward difference scheme can
be used to produce

y(k+1) = y(&) _

P ut(k)y(k) = u(k) (2.2.4)
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where k=1, 2, - - - is a discrete time index with equal sampling period h. Simple alge-
bra operation gives

y(k+1) = y(k) + hut(k)y(k) + hu(k) (2.2.5)
which is a typical polynomial model.

Sampling the same differential equation but using the backward difference
scheme produces

Q=YL 20ym = uet 2.2.6)

which gives a rational model or an output affine model

y(k) = )ﬂ‘;l_) ;f( ;(k) 227

Noticed that both the forward and the backward difference schemes deliver a
linear difference equation structure when a linear differential equation is sampled. For

example
YO0 = ay(t) = u(t) 2238)
where a is a constant, becomes using the forward difference scheme
y(k+1) = (h + a)y(k) + hu(k) (2.2.9)

The backward difference scheme produces

yk) = y(k=1) + u(k) (2.2.10)

1-ha 1-ha

and both are linear difference models.

Chaos

The discovery of new types of dynamic behaviour in engineering systems over
the last decade has introduced new analytic and experimental techniques in dynamics.
The principal amongst these new discoveries is chaos. Chaotic behaviour has been
observed in many areas including solid mechanics, fluid mechanics, thermo fluid
phenomena, electromagnetic systems, acoustical systems, and general adaptive control
problems. Usually the chaotic motion is described by some complicated models
(Genesio and Tesi 1991), for example (Ozaki 1985)

y(k) = (1 = 18 exp(=y2(k=1)) Jy(k=1) = ( 0.25 — 72.5 exp(~y*(k-1)) )y(k-2)
(2.2.11)
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which is a typical nonlinear time series model.

The polynomial model can be easily used to model the chaotic behaviour in egn
(2.2.11) by using the Taylor series expansion

exp(—y2(k)) = 1 = y2(k) + y*(k) — - - - (2.2.12)

to replace the exponential terms of egn (2.2.11). Alternatively a rational model could
be employed.

Bifurcations

Chaotic phenomena are often preceded by a series of bifurcations including
subharmonic and limit cycle or Hopf bifurcations. Iooss (1988) presented two typical
bifurcations, the first one is called a saddle node bifurcation can be described by

oy [ tan(y(£)]@ + o, [ tan(()]D + a3 [ cos((0)) = cos(y(1)) 1 sin(y(1)) + 04 =0
(2.2.13)

where 71 and /@ denote the first and second derivative of f with respect to ¢ respec-
tively. A second example known as the pitckfork bifurcation can be expressed by

Y1) + o; Y1) + 0 sin(y(£)) + o3 sin(y(?))cos(y(1)) = 0 (2.2.14)

The two differential equations can be approximated by either a polynomial model
or a rational model. Using the Taylor series expansions of

tan(y() = y() + -;—y3(t) + -%ys(t) PR

sin(y(1)) = y(t) - )’_3@ + m — WU

3! 51
2 4
cos(y() = 1 - )’—2({1 + la({l — s (2.2.15)

to replace the trigonometrical terms in equations (2.2.13) and (2.2.14), and then apply-
ing forward difference scheme

y(p) = )L“)h;M (2.2.16)

gives polynomial approximations to the saddle node bifurcation and the Hopf bifurca-
tion. Alternatively the extended model set ideas of Billings and Chen (1989b) can be
used with the advantage that the trigonometrical terms can be represented without
approximation,
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When the backward difference scheme

y(l)(t) = .ﬂ&L__hM (2.2.17)

is applied to equations (2.2.13) and (2.2.14) rational approximations to the bifurcations
are obtained.

Fractals

Fractal phenomena like coastlines, galaxies, and frost patterns on windows have
been observed over many years. Barnsley and Demko (1980) used both the static poly-
nomial and rational model to approximate fractal phenomena. Two such models are
(Barnsley and Demko 1980)

Y=%z+— (2.2.18)

where z is a complex variable.

The polynomial model has also been used to in the identification of a variety of
nonlinear systems including a heat exchanger (Liu, Korenberg, Billings, and Fadzil
1987), a diesel generator (Billings and Fadzil 1988), an automotive diesel engine (Bil-
lings and Chen 1989), nonlinear fluid loading systems (Worden, Stansby, Tomlinson,
and Billings 1991) and so on. Application of the rational model to these types of prob-
lems is however only just beginning.

3 Stability

The stability of a class of NARMAX models which are characterised as linear in
the output variable is analysed below and a linear equivalent stability criterion is pro-
posed and illustrated with several examples.

3.1 Linear equivalent principle of stability

The stability analysis of the class of nonlinear systems, which are linear in the
output, a subset of the NARMAX model, can be investigated using linear methods.

When the input is treated as a time-variant parameter the model can be expressed
as
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y(k) = o ;(yk-1) + - - - + o, (Wyk-r) + U (3.1.1)

where o,;(u) to o, (u) can be functions of the input and original parameters, and U
represents possibly nonliner terms in u(k—j), j=1,---, r. Eqn (3.1.1) has the same
structure as the linear ARMAX model, except that some of the parameters are time
variant and therefore the stability may be analysed with linear stability criteria.

Remark 1:

The stability of the class of systems considered is input-dependent, this is obvious
by noticing that the parameters o;(«) to o, («) in eqn (3.1.1) are functions of the input.
This confirms the well-known result that the stability of most of nonlinear systems
depends on the input amplitude as well as the system structure and parameters.

Remark 2:

A hypersurface S(u(k), - - -, u(k-r)) distinguishes the stable and unstable spaces
in a hyperspace spanned by (u(k), - * -, u(k-r)). This can be proved from the stability
analysis which results in a set of equations by root-solving. Consider the Z transform

of the characteristic equation of egn (3.1.1)
-0,z - - —ow)=0 (3.1.2)

Let R, (o;(u), - - -, o,(u)) be one of the roots of the characteristic equation. Then for a
stable system the following set of inequalities must be satisfied.

R, (o), -+ + , o, (@)l < 1
le(ul(U), Y Otr(u))l <1
R (cty0), - - - 0, ()l < 1 (3.1.3)

Let S(u(k), - - -, u(k—r)) be the solution of eqn (3.1.3), therefore this corresponds, in
the hyperspace, to the stable solution space which 1is delimited by
Ry()N<1 -+ IR()I<1ina geometrical sense.

Remark 3:

The stable space delimited by S(u(k), - - -, u(k=r)) maps into the inside of the
unit circle in the Z plane, the unstable space is outside the unit circle. This follows
from linear stability theory.
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Remark 4:

The Hammerstien model has the same stability property as the corresponding
linear part of the model because in this case a;(u), - -, o (u) in egn (3.1.1) are
input-independent.

3.2 Stochastic stability

It is very possible that the system described by eqn(3.1.1) switches between stable
and unstable regions due to the parameters o;(u), - - -, o, (u) varying with the input
u(k). This naturally produces a stochastic stability problem.

A large portion of publications on this topic have been devoted to the Lyapunov
stability concept. We first introduce the definition of Lyapunov stability in the m’th
mean, secondly we present theorem 2 to show the condition for the input-output stabil-
ity in the second mean, and then give remarks for the interpretation of the theorem.

We state here, for reference, the concept of Lyapunov stability for deterministic
systerﬁs. We shall always refer to the equilibrium or null solution, x = 0, as the solu-
tion whose stability properties are being tested, xo will denote the initial state at the
initial time k;. We will denote the solution with initial state xp at time kp, by

n
x(k; xo, ko), which is assumed to be an n-vector. Finally, || x || will denote Y lx|, the
=1
simple absolute value norm.
Definition of Lyapunov stability in the m’th mean:
The equilibrium solution is stable in the m’th mean if the mth moments of the

solution vector exist and given € > 0, there exists 8(g, kg) such that || xp ||, < 6 implies

E[ sup \x(k; xq, kol 1 < &, for t 2 kg - @321

N N
where || x [ = Sli™. Form =2, || x [} = T2

i=1 =1
A system described in eqn(3.1.1) is input-output stable in the second mean if
lim[ E[sup R%k] -+ - E[sup Rf"] ] exists, where R;---R, are the roots of the
[—peo

eqn(3.1.1). For SISO systems Lyapunov stability is equivalent to input-output stability.
Remark 5:

A sufficient condition for the system to be stable is
E[RI1<1---E[R?) <1 (3.2.2)

This is useful as an inverse criterion for the stability analysis. When conditions given
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in eqn (3.2.2) are not met the system will be unstable.

In conclusion the methods developed (Zhu and Billings 1990) allow the user to

check analytically in which input amplitude range an identified model is stable for the

class of nonlinear systems considered. The stability analysis for the class of nonlinear

systems, which are nonlinear in the output variable is much more difficult than the

problem considered here. This is more general problem in nonlinear integro-differential

equation stability analysis.

3.3 Examples

Consider the simple first order system
y(k) = o (w)y(k-1) + U(k)

The Z transform of the characteristic equation is

z=a;u)=0
The root R, is given by
Ry = a,(u)
Then for a stable system we require
Ryl =loy(u)l < 1

Example 1
y(k) = 0.5y(k=1)u(k=1) + u(k)
= oy (u)yk=1) + U(k)

where
oy (u) = 0.5u(k-1), Uk) = u(k)
Example 2
Y0 = 5y (0BG DuleD) + (k)
= oy (Wy(k=1) + UK
where

o (u) = 0.8u(k-1) u(k)

Uk) =

1+ u(k-1)" T 1+ uk-1)

(3.3.1)

(3.32)

(3.3.3)

(3.34)

(3.3.5)

(3.3.6)

(331

(3.3.8)
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Example 3
y(k) = W?(k=1) + u?(k-2))yk=1) + 3u(k)

= oy(u)y(k=1) + U(k) (3.3.9)

where
oy (1) = wP(k=1) + u(k-2),  UGk) = 3u(k) (3.3.10)
The regions where condition of eqn (3.3.4) holds are shown as the shaded parts in Fig-
ure 1 (a) to (c). The analysis indicates that the output-affine system, shown in example
two, has a wide stability range, it is possible to make the system globally stable by
chosing la( o;(u) )| < Ib( a,(u) )l, where a(.) and b(.) denote the parameters in the

numerator and denominator respectively. For the systems, shown in examples one and
three, there is at least one unstable area.

Now consider the more complicated case
y(k) = oy (W)y(k=1) + o (u)y(k=2) + U(k) (3.3.11)
The Z transform of the characteristic equation is
22 = 7 o (u) — 0, (u) = 0 (3.3.12)

The two roots Ry, R, can be calculated by

o, + Vol + 4o,

(R}, Ry = 2 (3.3.13)
Then for a stable system we require
o + Vol + 4o,
Rl =1 l<1
2
N Py
o —Voi + 4a
Ryl = |— 2‘ 2iei (3.3.14)
Example 4
oy (u) = utk-1), o) = %u(k—l)u(k-Z) + %uz(k-—Z) (3.3.15)
The two roots are calculated by eqn (3.3.13)
Ry = Quk-1) + u(k-2))/2
R, = (u(k-2))/2 (3.3.16)

The stable region is shown as the shaded part in Figure 1 (d)
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Example 5
o () = 2sin(u(k)), o(u) = cos*(u(k)) (3.3.17)
The two roots are calculated by eqn (3.3.13)
Ry = sin(u(k)) + 1
R, = sin(u(k)) - 1 (3.3.18)

This system is unstable because no solution can be obtained from the set of inequality
equations IRl < 1, IRl < 1, this is shown in Figure 1 (e¢) which has no shaded parts or
because when IR;I <1 (u(k) € (2tx, 2t+ 1)m,t=0,1, ---) the other root becomes
Rl > 1 and, when IRyl <1 (u(k) € (2+1)w, 2t 2)m, t=0,1, - - ) the other root
becomes IRl > 1.

For the general case given in egn (3.1.2), that is the Z transform of the charac-
teristic equation of eqn (3.1.1), some well known stability analysis methods such as
Jury’s criterion for linear discrete time systems can be used to check the stability.

4 Identification

In this section the identification of the polynomial model and the rational model
are unified and compared.

4.1 The generalized stochastic NARMAX model

In a practical environment some uncertain behaviours or stochastic phenomena
are often encounted and model fitting based on stochastic data will be necessary. The
generalization or extension of the stochastic NARMAX model can be considered in
three stages, the first and fundamental sub-model set is the polynomial formulation
(Leontaritis and Billings 1985), the second extension is the model set including
exponential, absolute value, logarithmic, and trigonometrical terms the extended model
set (Billings and Chen 1989a), and the third extension is the introduction of the
rational model (Billings and Chen 1989b, Billings and Zhu 1991). The first two sub-
model sets are naturally characterised as linear in the parameters.

Consider the extension of the NARMAX model of eqn (2.1.1) to the following
NARMAX model of the form
y(k) = F(y(k=1), - - -, y(k=r), u(k=1), - - -, u(k-r),
e(k=1), - - -, e(k=r), e;(k), - - -, e, (k) + e(k) 4.1.1)

; , ,lnd.u&&cl
Note unlike previous studies current noise terms (eg e;(k) etc) which may be (by
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different noise effects on different variables or regressors have been included on the
right hand side. To understand the distinctive noise characteristics of eqn (4.1.1) com-
pared to the previous model two block diagrams are shown in Figure 2. The model of
eqn (2.1.1) shown in Figure 2(a) assumes all the current noise sources can be lumped
together but the enhanced model of eqn (4.1.1), shown in Figure 2(b), allows for
different noise sequences on different variables. The equivalent linear in the parameters
expression of eqn (4.1.1) is

¥(k) = ﬁtb j(k)Bj + e(k) 4.1.2)
1
where
0,8) = piR) k) + e/R)) (4.13)
pik) = py(k=1), * + -, y&=1), uk=1), -+ + , u(k="), e(k=1), - - - , e(k=r)) and

vj(k) - vj(y(k—l), <o y(k=r), u(k-1), - - -, u(k-r), e(k=1), - - -, e(k-r)). Both these
latter expressions may contain exponential, absolute value, logarithmic, trigonometrical,
or other functions, ej(k) is the cumrent independent noise with zero mean and finite

variance ofj. Eqn (4.1.2) can be expressed as
Y®) = 30,0 vk + pih) e)8; + e(®) (4.14)
=1

In the sense of system identification, eqn (4.1.4) represents the problem of detect-
ing model structure and estimating the unknown parameters when the measurements of
different variables as well as the output are noise contaminated. The inclusion of
current noise terms in both input and output is frequently realistic and these noises
could be induced by sampling errors, human errors, modelling errors or instrument
errors. These problems arise in a broad class of scientific disciplines such as signal
processing, automatic control, system identification and in general engineering, statis-
tics, physics, economics, biology, and medicine.

4.2 A unified least squares algorithm

The NARMAX model identification consists of the following steps
(i) Model based term selection
(ii) Parameter estimation

(iii)) Model validation
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The first two steps can be based on a least squares type algorithm. The model term
selection can be obtained using the orthogonal estimation algorithm (Billings and Chen
1989b) which selects the significant terms according to the contribution that each
makes to the estimated noise variance. The parameter estimation is normally achieved
by either a conventional least squares estimator or the orthogonal estimator but corre-
lated noise must be accommodated if bias is to be avoided. Model validation tests the
results obtained from the algorithms. By considering the extended model of eqn (4.1.4)
a unified least squares algorithm can be derived which gives a structure detection and
parameter estimator for all the different NARMAX model sets. Writting eqn (4.1.4) in
vector notation

Y=(PV+PE®O +7? (4.2.1)
where
Y=[rQ) - Y 4.2.2)
N is the data length, and
[ p(vi(D) . .. P (DD
PV =
L pl(N)v](N) L pm(N)vm(N)
[ pi(Mey(1) . . . pu(Dey(1)
PE =

pl(N)el(N) < s pm(N)em(m B

©=[6;6,)"
2= [e(l) - - - e 4.2.3)
Let
® =PV + PE (4.2.4)

Then the formal least squares parameter estimator is
6 = (9o 'OTY
= [[PVIPV + [PEY'PET™ [[PV]'Y + [PE]'Y) (4.2.5)
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where, by the probability limit property (Wilks 1962),
1 sy s 1 T _
~ [PVI'PE = Plim[ — [PVI'PE1=0 (4.2.6)

because ¢;(k) in PE is an independent zero mean noise and Plim[f] denotes the proba-
bility limit of f. Define

; o ] 1
Bias, = Plim[ — [PE)TPE ] = = [PE]"PE
Bias, = Plim[ -1%- [PE]'Y] = Tb’ [PE]'Y (4.2.7)

which can be thought of as the auto-correlation of the terms and errors, and the cross-
correlation errors between the output and terms.

According to the analysis above the unbiased least squares estimate of the param-
eters for the model of eqn (4.1.4) is

6 = [®TD - [PE)TPE]! [@7Y - [PE]TY] (4.2.8)

The famous orthogonal least squares algorithm can also be applied to such an expres-
sion by transforming ®’® into an orthogonal normal matrix with appropriate correc-
tions to the normal matrix and correlation vector (Zhu and Billings 1992).

4.3 Polynomial and rational model identification
For the polynomial model eqn (4.2.8)
6 = [®"® - [PE]"PE]™ ('Y - [PEI'Y)

reduces to

A

6=[0"0]" 'Y O 43.0)

which is a straightforward unbiased estimator. This follows because the matrix PE =0
since which the polynomial model only includes current noise at the output such that

the normal matrix is current noise free. The covariance of the estimator is given by
Cov® = o2 [dTd]™ (4.3.2)

This algorithm and various alternatives to it have been extensively studied (Bil-
lings and Chen 1989a, Chen and Billings 1989).

For the rational model, the algorithm reduces to the rational model estimator
6 =[0"® - [PE]"PE]! [@TY - [PE]TY]
= [T - 62 Y]} [T - 62 ] (4.3.3)
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where [PE]TPE = o2 ¥, [PE]"Y = o2 y, and o2 is the noise variance. This algorithm
was introduced as a new method of identification for the rational model (Billings and
Zhu 1991, 1992, Zhu and Billings 1991, 1992). The covariance matrix of the algorithm
was derived by Zhu and Billings (1991)

Cov0 = o o [T - 02 ¥] Iz, (4.3.4)
where o7 is the denominator variance of the rational model.

Consider a simple rational model to illustrate the algorithm

a(k) _ a1 utk-De(k-1)
bk) 1+ by (k-1)

yk) = + e(k) (4.3.5)

The linear in the parameters expression is given by multiplying b(k) on both sides of
eqn (4.3.5) and then moving all the terms except y(k) to the right hand side

Y(k) = a; u(k—1)e(k-1) — by yz(k—l)y(k) + b(k)e(k) (4.3.6)
where

6=1a,b 1

u(0)e(0) y2(O)y(1)

uN-1e(N-1) y2(N-1)y(N) |

0 0
\P = N
0 Yy'k-1)
k=1
0
V= N 5
- XY tk-1)
k=1

V=[y1), -,y 1T (4.3.7)



w1 =

Unbiased parameter estimates can be obtained by substituting eqn (4.3.7) into eqgn
(4.3.4).

Inspection of eqn (4.3.1) and eqn (4.3.4) shows that the critical difference
between the algorithms for the polynomial and rational models is the current noise
terms which are induced in the later model.

5 Conclusions

A comparison of model representations, stability, and identification has shown
that although the rational model often exhibits superior approximation properties it is
much more difficult to identify compared with the polynomial model.
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