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ABSTRACT

It is possible to characterize the aim of many practical inverse geometric problems as

one of identifying the shape of an object within some domain of interest using non-intrusive

measurements collected on the boundary of the domain. In the problem considered here

the object is a rigid inclusion within a homogeneous background medium of constant con-

ductivity, and the data are potential and current flux measurements made on the boundary

of the region. The rigid inclusion is described using a geometric parametrization in terms

of a star-shaped object. A Bayesian modelling approach is used to combine data likelihood

and prior information, and posterior estimation is based on a Markov chain Monte Carlo

algorithm which provides measures of uncertainty, as well as point estimates. This means

that the inverse problem is never solved directly, but the cost is that instead the forward

solution must be found many thousands of times. The forward problem is solved using

the method of fundamental solutions (MFS) which is an efficient meshless alternative to

the more common finite element or boundary element methods. This paper is the first to

apply Bayesian modelling to a problem using the MFS, with numerical results demonstrat-

ing that for appropriate choices of prior distributions accurate results are possible. Further,

it demonstrates that a fully Bayesian approach is possible where all prior smoothing pa-

rameters are estimated. It is important to note that the geometric modelling and statistical

estimation approach are not limited to this example and hence the general technique can

be easily applied to other inverse problems. A great benefit of the approach is that it allows

an intuitive model description and directly interpretable output. The methods are illustrated

using numerical simulations.



1 INTRODUCTION

Inverse problems occur in a wide range of practical applications in geophysics, industry and

medicine – see Stuart (2010) for a Bayesian perspective of inverse problems. For example

in electrical tomography, voltages are recorded between multiple electrode-pairs attached to

the boundary and the aim is to reconstruct the interior conductivity distribution – a review

of statistical modelling for such examples can be found in Watzenig and Fox (2009). The

standard method of analysis involves domain discretization and the use of the finite element

method. This, however, inevitably leads to an ill-posed inverse problem demanding regular-

ization. For examples of this approach to electrical impedance tomography (EIT), see West

et al. (2004; 2005) and references therein. In the following sections an alternative approach is

proposed. A parametric model of the inclusion will be defined and brief details of the method

of fundamental solutions (MFS) will be given. Then, Bayesian statistical modelling will be dis-

cussed with specific examples given and an outline of the Markov chain Monte Carlo (MCMC)

method presented – for a detailed theoretical discussion of the MCMC method see, for exam-

ple, Geyer (2011) and Brooks et al. (2011). To demonstrate the proposed approach a series of

numerical simulations are described which highlight the flexibility of the modelling and estima-

tion procedures.

2 MATHEMATICAL MODELLING

Suppose that there is an unknown two-dimensional star-shaped object, D, represented by

radii, r = (ri)i=1,M , at fixed angles, θ = (θi)i=1,M , which is compactly contained in a given

body Ω such that Ω\D is connected – see Figure 1. This model has been used for similar

problems in Aykroyd and Cattle (2006; 2007). The data, looking ahead to our example, consist

of potential, y = (yj)j=1,N , and current flux measurements, z = (zj)j=1,N , recorded on the

outer fixed boundary, ∂Ω, at locations x = (xj)j=1,N . The aim of the method is to use the

measured data, (y, z), to estimate the unknown radii, r.

Figure 1: Diagram of star-shaped object model (left) and data measurements (right).

The data model defines the measurements on ∂Ω in terms of exact values of the potential, u,

and the current flux, ∂u/∂n, combined with additive Gaussian noise, that is,

yj = u(xj) + ϵj , zj =
∂u

∂n
(xj) + ζj , j = 1, N, (2.1)



where n is the outer unit normal to the boundary ∂Ω, and the noise (ϵj)j=1,N and (ζj)j=1,N

follow independent normal distributions, with zero means and variances σ2
y and σ2

z , respectively,

and u satisfies the Laplace equation in Ω\D. Further, if D is a rigid inclusion then u = 0 on ∂D,

otherwise if D is a cavity then ∂u/∂n = 0 on ∂D. We can also have that D is an inclusion with

a different conductivity than that of the background Ω\D in which case transmission conditions

are applied at the interface ∂D.

The values of the potential and current flux on ∂Ω are calculated using the MFS, see Borman

et al. (2009) and Karageorghis et al. (2011; 2013), as a linear combination of fundamental

solutions of the governing Laplace equation

u(c, ξ, xj) =
2M
∑

k=1

ck G(ξk, xj),
∂u

∂n
(c, ξ, xj) =

2M
∑

k=1

ck
∂G

∂n
(ξk, xj), j = 1, N, (2.2)

where G(ξ, x) = − 1

2π log |ξ− x| is the fundamental solution in two-dimensions of the governing

Laplace equation and ξ = (ξk)k=1,2M are sources which are located on pseudo-boundaries

inside the rigid object D and outside the outer fixed boundary ∂Ω. We also need to impose

that D is a rigid inclusion, that is u = 0 on ∂D, which can be rewritten as

2M
∑

k=1

ck G (ξk, (ri cos(θi), ri sin(θi))) = 0, i = 1,M. (2.3)

Notice that the MFS introduces an additional 2M unknown coefficients, c = (ck)k=1,2M , which

must be estimated in addition to the M radii, r = (ri)i=1,M from the system given by equations

(2.3) and those obtained by fitting (2.2) to match the Cauchy data measurements (2.1), that is,

2M
∑

k=1

ck G(ξk, xj) = yj , j = 1, N, (2.4)

and
2M
∑

k=1

ck
∂G

∂n
(ξk, xj) = zj , j = 1, N. (2.5)

A geometric nonlinear constraint that D is compactly contained in Ω can also be imposed.

Altogether, equations (2.3)–(2.5) form a system of (2N+M) equations with 3M unknowns. Out

of these equations, (2.4) and (2.5) are linear in c, whilst equation (2.3) represents nonlinear

equations. The tomographic inverse rigid inclusion problem is nonlinear and ill-posed, but

provided u
∣

∣

∂Ω
̸≡ 0 the solution is unique (Haddar and Kress, 2005). The solution may not

exist, but even if the solution exists it is not stable with respect to the noise in the Cauchy data

measurements defined in equation (2.1).

3 STATISTICAL MODELLING

In this section models for the noise process and for prior knowledge will be proposed. These

will define a likelihood and a prior distribution, which are combined using Bayes theorem to

produce a posterior distribution which is the basis for estimation. For background to Bayesian



modelling, see Gelman et al. (2003), and for applications of Bayesian modelling in electrical

tomography problems, see West et al. (2004; 2005) and Aykroyd and Cattle (2006; 2007).

With data (y, z), and assuming (conditional) independence of y and z given r and c, then the

appropriate form of the likelihood is:

l(y, z|r, c) = l(y|r, c)× l(z|r, c). (3.1)

The likelihood quantifies both the inaccuracies in the measuring equipment and other uncon-

trolled influences. From (3.1), the likelihood of y given r and c is

l(y|r, c) = (2πσ2
y)

−N/2 exp

{

−
1

2σ2
y

||y − ŷ(r, c)||2
}

, (3.2)

where ŷ(r, c) = (ŷj(r, c))j=1,N are fitted values assuming inclusion radii r and MFS coefficients

c. The structure of the likelihood of z given r and c is identical to (3.2), except that z replaces

y, ẑ replaces ŷ and σ2
z replaces σ2

y .

Estimating from the likelihood alone may not be possible due to the non-linear relationship

between the radii, r, and the data, and the ill-posed nature of the problem in terms of the MFS

coefficients, c. In a standard approach, progress can be made by imposing regularization.

This leads to a numerical approach which will produce point estimates, but there will be no

information about confidence, that is, about the precision of the point estimates. Here an

alternative approach is adopted based on the widely used Bayesian modelling framework. The

key addition to the modelling is to consider prior distributions for the model parameters which

quantify specific expert opinion or more vague knowledge of the relative ranking of the various

alternatives.

It is assumed that there is some knowledge of the values, or relationship between, the model

parameters r and c. In the examples considered here we expect the boundary to vary gently

around the object, which suggests smoothing, leading to a prior distribution such as

π(r|βr) =
1

(2πβ2
r )

M/2
exp

{

−
1

2β2
r

||∇r||22

}

, (3.3)

which uses a 2-norm, and hence corresponds to a Gaussian distribution, or

π(r|βr) =
1

(2βr)M
exp

{

−
1

βr
||∇r||1

}

, (3.4)

which uses the 1-norm, and hence gives a Laplace distribution. In each case, ||∇r||qq =
∑

|ri−

ri−1|q, with periodic boundary, and βr defines the amount of variability between adjacent radii.

The whole prior modelling can be repeated for the MFS coefficients producing prior distribution,

π(c|βc), for c. Here, the same first-order smoothing prior distribution will be used, but the range

of alternatives is still available and there is no requirement for this to be of the same type as for

the radii.

Bringing the likelihood functions and prior distributions together gives the corresponding pos-

terior distribution as the product of likelihood and prior distribution

π(r, c|y, z) ∝ l(y|r, c)l(z|r, c)× π(r|βr)π(c|βc). (3.5)
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Figure 2: Hierarchical relationship between data, model parameters and hyper-parameters.

The hierarchical structure of this model is represented in the directed graph in Figure 2 (left).

The boxed variables are fixed data and prior parameters whereas the circled variables are to

be estimated. The arrows indicate causal relationships.

Now, of course, the prior parameters, βr and βc, are also unknown and hence should be

included in the modelling process. Here the hyper-prior distribution for βr is taken as

π(βr) = α2
r exp

{

−α2
r/β

2
r

}

. (3.6)

This is an example of the, widely used, inverse-gamma prior for a variance parameter (Gelman,

2006). The value of the hyper-parameter, αr, can be fixed at a reasonable value chosen during

initial trials. In addition, there will be a similar prior, π(c|βc), for c and hyper-prior distribution

for βc with a hyper-parameter αc. This leads to the full posterior distribution as the product of

likelihood, prior and hyper-prior distributions

π(r, c, βr, βc|y, z) ∝ l(y|r, c)l(z|r, c)× π(r|βr)π(βr)× π(c|βc)π(βc). (3.7)

Figure 2 (centre) illustrates the hierarchical relationship between the model variables.

Taking the modelling one final step further, it is entirely reasonable to allow separate prior

distributions, π(cI |βcI ) and π(cE |βcE ), for the two sets of MFS coefficients in (2.2), that is,

cI = (ck)k=1,M , those associated with the interface ∂D, and cE = (ck)k=M+1,2M , those associ-

ated with the outer boundary ∂Ω. This then also suggests corresponding separate hyper-prior

distributions π(cI) and π(cE), with separate hyper-prior parameters, αcI and αcE . Again these

hyper-prior parameters will be fixed at reasonable values chosen during initial trials. The result-

ing posterior distribution is again the product of likelihood, prior and hyper-prior distributions

π(r, c, βr, βcI , βcE |y, z) ∝ l(y|r, c)l(z|r, c)× π(r|βr)π(βr)× π(cI |βcI )π(βcI )× π(cE |βcE )π(βcE ).

(3.8)

The hierarchical structure of this model is illustrated in Figure 2.



4 MARKOV CHAIN MONTE CARLO ESTIMATION

The Markov chain Monte Carlo (MCMC) approach is now widely used for many Bayesian sta-

tistical estimation problems in situations were model complexity and parameter dimensionality

make other procedures infeasible – see, for example, Gamerman and Lopes (2006) and Liu

(2008). The procedure has come to mean much more than an alternative numerical method. In

particular, the approach allows a deeper exploration of the posterior distribution than permitted

by other approaches.

The MCMC approach gives a framework which can be used to design tailor-made iterative al-

gorithms for many estimation problems. In particular, a resulting algorithm is used to produce

a correlated sample from some target statistical distribution – usually the posterior distribution

in a Bayesian analysis. Specifically, the transitions in the Markov chain are designed so that

an equilibrium distribution exists and is equal to the target distribution. If the transitions are

designed well, then after an initial transient period, referred to as burn-in, the remaining sam-

ple will have the same statistical properties as a sample obtained directly from the posterior

distribution. The only exception is that, by the very nature of a Markov chain, there will be

correlation within the sample which must be taken into account when the algorithm output is

summarised. If transitions are designed badly however, then the initial transient period could

be long and the within sample correlation could be high. This means that the algorithm is

inefficient and would require larger samples to achieve acceptable accuracy and precision.

Our particular implementation is now described. Suppose, that all the model parameters are

stored in a single vector, Θ = (Θi)i=1,p. Examples of this are, Θ = (r, c), Θ = (r, c, βr, βc)

and Θ = (r, c, βr, βcI , βcE ) – these are the three cases illustrated in Figure 2. Starting from

an arbitrary value, Θ0, K random walk transition steps are performed based on Gaussian

perturbations. At each step, k = 1,K, the proposed value is accepted with a probability which

depends on a posterior ratio. The algorithm is summarised in Figure 3. The statement and

implementation of the algorithm are straightforward and a sensible choice for the variance, τ2,

in the proposal distributions can be made from initial experimentation.

Set an initial value for Θ = (Θ)i=1,p, call this Θ0

Repeat the following steps for k = 1,K

Repeat the following steps for i = 1, p

Propose new value Θk
i = Θk−1

i +N (0, τ2)

Evaluate α = min
{

1, π(Θk|y, z)/π(Θk−1|y, z)
}

Generate u from a uniform distribution, U(0, 1)

If α > u then accept the proposal, otherwise reject and set Θk = Θk−1

End repeat

End repeat

Discard initial values and use remainder to make inference.

Figure 3: Random-walk Metropolis-Hastings algorithm.



As this is a very simple estimation problem, an equally simple random walk proposal is very

likely to work well. When considering more complex estimation problems, particularly with

many parameters, more careful consideration may be needed. The efficiency of the algorithm,

however, is heavily dependent on the choice of the proposal scheme.

When choosing a value for τ2, it is important to realise that both low and high values lead to

long transient periods and highly correlated samples and hence unreliable estimation. A rea-

sonable proposal variance can be chosen adaptively during the early burn-in period, and it has

been proven theoretically that for a wide variety of high-dimensional problems an acceptance

rate of 23.4% (Roberts et al., 1997) is optimal. Further, if different types of parameter are be-

ing estimated, then it may be appropriate to have a separate proposal variance for each type.

Further, it is wise to also check Markov chain paths and to calculate sample autocorrelation

functions. For good estimation the paths should look “random” and the autocorrelation func-

tions be close to zero for all except small lags. For suggestions on judging the appropriate size

of MCMC samples, and other convergence issues, see Raftery and Lewis (1995), Cowles and

Carlin (1996) and Geyer (2011).

Once the sample has been generated from the posterior distribution, a number of possible es-

timators are available. One choice is the posterior mean, which can be estimated by the mean

of the sample collected after a suitable burn-in period to allow the chain to reach equilibrium.

The whole MCMC sampling ethos encourages the investigation of a variety of summary mea-

sures, and not only mean and variance. Instead the sample can be used to calculate interval

estimates using sample percentiles, or in fact the whole of the posterior distribution can be

examined. Also, it is usual not to assume normality of the sampling distributions of the various

quantities being estimated, but instead the sample histogram is used to estimate the unknown

distribution. In the following numerical results section a variety of output will be shown, but

as a minimum it is usual to examine the histogram of the sampling distributions and to form

credible intervals using the percentage points of the corresponding sampling distribution. For

applications of MCMC methods to electrical tomography, see West et al. (2004; 2005) and

Aykroyd and Cattle (2006; 2007).

5 NUMERICAL RESULTS

5.1 Preliminary

In this section part of a series of numerical experiments based on simulated data will be re-

ported. Three true object geometries for D will be considered, namely: (i) a circle of radius 0.5

centred at the origin given by the radial parameterization

r(θ) = 0.5, θ ∈ [0, 2π); (5.1)

(ii) a bean-shaped obstacle given by the radial parameterization (Ivanyshyn and Kress, 2006),

r(θ) =
0.5 + 0.4 cos(θ) + 0.1 sin(2θ)

1 + 0.7 cos(θ)
, θ ∈ [0, 2π); (5.2)



and (iii) a round-cornered rectangle given by the radial parameterization (Ivanyshyn, 2007)

r(θ) =
2

3

[

sin10(θ) +

(

2

3
cos(θ)

)10
]

,

−0.1

θ ∈ [0, 2π); (5.3)

each of these being contained in the unit disc Ω.

First we determine the current flux data, ∂u/∂n, on ∂Ω by solving the direct Dirichlet problem

∇u = 0 in Ω\D, (5.4a)

u = 0 on ∂D (5.4b)

u(1, θ) = exp
(

− cos2(θ)
)

on ∂Ω = {(1, θ) | θ ∈ [0, 2π)}, (5.4c)

using the MFS with M = 500 degrees of freedom. The boundary potential and current flux

measurements were then selected at N = 30 equally-spaced points on the outer fixed bound-

ary ∂Ω. Data, as defined in equations (2.1), was then produced by addition of Gaussian noise

with σy = σz = 0.01 (corresponding to a signal-to-noise ratio of 1%). We also take M = 50 such

that the discretised problem defined in equations (2.3)–(2.5) is underdetermined as it contains

M+2N = 110 equations with 3M = 150 unknowns. Of course, by increasing n to 50 or beyond

we obtain the determined and the overdetermined situations. For more details of applying the

MFS to these three scenarios, see Smyrlis and Karageorghis (2009). The contraction and dila-

tion parameters, η and χ, entering the boundaries {χr(θ)|θ ∈ [0, 2π)} and η∂B(0; 1), on which

the sources (ξk)k=1,2M are positioned, are taken to be η = 1.8 and χ = 0.9.

The first section below reports a pilot study to understand the effects of smoothing on the

estimation of the MFS coefficients, as well as on the rigid inclusion shape. Then the second

section considers full model estimation using Gaussian prior distributions and the final section

shows results of full estimation using Laplace prior distributions.

5.2 Understanding the influence of the prior distribution

In the first set of examples the true object, D, is taken as the disk of radius 0.5 centred at

the origin as parameterised by equation (5.1). The simplest possible model includes a single

unknown radius, r, along with unknown MFS coefficients, c. Figure 4 shows the object recon-

structed (left), without prior information, using the radius estimated as the mean of the posterior

sample. Also shown are the estimated MFS coefficients (centre and right) surrounded by 95%

credible intervals. In all the relevant figures these coefficients are plotted as functions of θ.

The posterior estimate of the radius is 0.4997, compared to the true value of 0.5, with an

estimated standard deviation of 0.00107. The estimated MFS coefficients follow the true values,

which were obtained from the MFS direct problem solution and are shown in all relevant figures

as a continuous dark line, but clearly those associated with the interface source points (centre)

show substantially more variability between values and greater uncertainty in the estimates

than those associated with the outer boundary points (right).

Now consider the case where prior information on the smoothness of the MFS coefficients is

included in the estimation. Figure 5 shows the object reconstructed using fixed prior param-
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Figure 4: Circular inclusion and circle model fitted with no prior information: fitted circle (left)

and MFS coefficients (with credible intervals) associated with the interface (centre) and outer

boundary (right).
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Figure 5: Circular inclusion and circle model with strong prior information (βcI = βcE = 0.01):

fitted circle (left) and MFS coefficients (with credible intervals) associated with the interface

(centre) and outer boundary (right).



eters βcI = βcE = 0.01. The reconstructed object (left) is indistinguishable from the previous

reconstruction, but the estimated MFS coefficients are very different to those without prior

smoothing. The coefficients for the interface (centre) very closely follow the true values and

the credible intervals are reasonably constant in width. Notice, however, that overall the width

of the credible intervals has not changed dramatically. For the coefficients associated with the

outer boundary (right) the variability between estimates has reduced (for example, focus on

the region between 2 and 4), but there is a dramatic bias in the estimated values. In particular,

the width and height of the peaks is lost. In summary, the coefficients for the interface are

well-estimated with this choice of smoothing parameters, but those for the outer boundary are

over-smoothed.

The obvious suggestion is to reduce the amount of smoothing by reducing the value of the

smoothing parameters. In another experiment, not shown here, the values βcI = βcE = 0.1

were used. The estimates of the coefficients for the interface, however, resemble those without

smoothing even though those coefficients for the outer boundary are well estimated. The

conclusion from these two experiments is that the coefficients for the interface benefit from

more smoothing than those for the outer boundary.

Figure 6 shows the object reconstructed using fixed prior parameters βcI = 0.01 and βcE =

0.1. Clearly, for both sets of coefficients the estimates closely follow the true values and have

narrow credible intervals. As well as producing good object reconstruction the process has also

produced accurate coefficient estimates which could be easily described. Hence, we conclude

that smoothing of the MFS coefficients is worthwhile, but that it is not appropriate to use the

same degree of smoothing for the interface and outer boundary coefficients.
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Figure 6: Circular inclusion and circle model with separate prior information (βcI = 0.01,

βcE = 0.1): fitted circle (left) and MFS coefficients (with credible intervals) associated with

the interface (centre) and outer boundary (right).

5.3 Full estimation using Gaussian prior distributions

Consider now the full estimation incorporating the hyper-prior distributions and hence including

estimation of the prior parameters βcI and βcE . For this, we must specify values for the hyper-

prior parameters αcI and αcE . Here the values of the fixed smoothing parameter values from

the previous experiments have been used, and so αcI = 0.01 and αcE = 0.1. Figures 7 and 8



show summaries from the MCMC estimation.
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Figure 7: Circular inclusion and circle model with full posterior distribution and separate prior

information (αcI = 0.01 and αcE = 0.1): histograms, showing the posterior relative frequency,

for radius (left) and MFS interface (centre) and outer boundary coefficients (right).
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Figure 8: Circular inclusion and circle model with full posterior distribution and separate prior

information (αcI = 0.01 and αcE = 0.1): fitted circle (left) and MFS coefficients (with credible

intervals) associated with the interface (centre) and outer boundary (right).

Figure 7 shows posterior histograms for the object radius, r, and for the prior parameters βcI
and βcE . As summaries of this information, posterior estimates (with standard deviations) are

r̂ = 0.4992 (0.0024), β̂CI
= 0.0116 (0.0045), and β̂CE

= 0.2457 (0.0891). Clearly, the variation

in the radius is very small indicating that it can be well estimated. Similarly, the smoothing

parameter, βcI , for the interface coefficients has low variability. In contrast, the smoothing

parameter for the outer boundary, βcE , has higher variability and slight positive skew. It is

worth noting that the posterior estimate of the smoothing parameter for the interface, βcI , is

close to the prior mean and hence the likelihood has little effect. In contrast, the posterior

estimate of the smoothing parameter for the outer boundary, βcE , is not sensitive to the prior

mean value, αcE .

Figure 8 shows the reconstructed object and estimates of the MFS coefficients with credible

intervals. The inclusion remains well estimated and, although the MFS coefficient smooth-

ing parameters are being estimated, the estimates of MFS coefficients have not significantly

changed. This demonstrates that it is possible to successfully estimate the prior smoothing

parameters and the inclusion shape together without loss of accuracy.

In the next experiment the star-shaped model is used which contains M = 50 radii at equally-



spaced angles. The prior parameter for the radii smoothing, βr was fixed at 1.0, and the prior

parameters for the MFS coefficient smoothing were fixed at the posterior estimates from the

previous example, that is βcI = 0.0116 and βcE = 0.2457.

Figure 9 shows the reconstructed inclusion and estimated MFS coefficients. The dataset used

is based on a circular true object and so the reconstruction is very accurate. The mean of the

posterior radii (with standard deviation) is 0.5012 (0.0012). Similarly, the MFS coefficients are

well estimated. It is worth noting that the object reconstruction is not sensitive to the value of

the prior parameter, βr, but the reconstruction is significantly worse if this smoothing is removed

completely from the modelling. Accuracy and variability in the object reconstruction are shown

in Figure 10. The estimation errors (left), defined as the difference between the estimated and

true radii, are indicated by the very thin region around the inner circle. This shows that the esti-

mation errors are very small and are reasonably evenly distributed around the circle. A circular

histogram (centre) and circular credible interval (right) aim to describe estimation variability. In

the histogram the darker regions indicate the higher frequencies and in the credible interval the

thickness of the region indicates the amount of variability. From this, it is clear that the circular

histogram tends to exaggerate the slightly non-circular shape of the reconstructed object and

hence perhaps the credible interval gives a more reliable representation. These results show

that fitting of the star-shaped model to data from a circle truth has been successful.
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Figure 9: Circular inclusion and star-shaped model with separate prior information (βr = 1.0,

βcI = 0.0116 and βcE = 0.2457): fitted circle (left) and MFS coefficients (with credible intervals)

associated with the interface (centre) and outer boundary (right).
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Figure 10: Circular inclusion and star-shaped model with separate prior information (βr = 1.0,

βcI = 0.0116 and βcE = 0.2457): estimation errors (left), object boundary histogram (centre)

and object boundary credible interval (right).



In the next experiment the star-shaped model is applied for recovering the bean-shaped truth,

as defined in equation (5.2), with the prior parameters kept fixed as before. Figure 11 shows

the reconstructed object and estimated MFS coefficients for the interface and outer boundary.

The rigid bean-shaped inclusion is clearly recovered and MFS coefficients are well estimated

without the need for any adjustments.
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Figure 11: Bean-shaped inclusion and star-shaped model with separate prior information (αr =

1.0, βcI = 0.0116 and βcE = 0.2457): fitted circle (left) and MFS coefficients (with credible

intervals) associated with the interface (centre) and outer boundary (right).

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

Figure 12: Bean-shaped inclusion and star-shaped model with separate prior information (αr =

1.0, βcI = 0.0116 and βcE = 0.2457): estimation errors (left), object boundary histogram (centre)

and object boundary credible interval (right).

Accuracy and variability in the object reconstruction are shown in Figure 12. The estimation

errors (left) are small and are reasonable evenly spread around the boundary. The circular

histogram (centre) and circular credible interval (right) indicate that there is greater variability

at the “cusp” than elsewhere. This is, however, a very difficult feature to reconstruct accurately

and so this estimate can be considered more than acceptable. Overall, the estimation of the

star-shaped model to data from the bean-shaped truth has also been very successful.

Now consider the full estimation problem, that is, including estimation of the smoothing param-

eters of the MFS coefficients. This requires choice of the hyper-prior parameters αr, αcI and

αcE and then the estimation of βr, βcI and βcE in addition to the radii and MFS coefficients.

In pilot runs, not reported here, it was found that if these hyper-parameters are chosen small

enough then good estimation is possible – for example using αr = 0.1, αcI
= 0.0001 and

αcE
= 0.0001.



Figure 13 shows the posterior histograms of the prior parameters, with posterior means (and

standard deviations): β̂r = 0.0383 (0.0070), β̂cI = 0.0754 (0.0322) and β̂cE = 0.2384 (0.0651).

Figures 14 and 15 show estimated of the inclusion shape and MFS coefficients which clearly

indicate less accuracy and greater variability Hence, in this case allowing estimation of the

prior parameters has produced a less accurate reconstruction of the shape of the object.
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Figure 13: Bean-shaped inclusion and star-shaped model with separate prior information (αr =

0.1, αcI = 0.0001 and αcE = 0.0001): histograms, showing the posterior relative frequency, for

radius (left) and MFS interface (centre) and outer boundary coefficients (right).
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Figure 14: Bean-shaped inclusion and star-shaped model with separate prior information (αr =

0.1, αcI = 0.0001 and αcE = 0.0001): fitted shape (left) and MFS coefficients (with credible

intervals) associated with the interface (centre) and outer boundary (right).
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Figure 15: Bean-shaped inclusion and star-shaped model with separate prior information

(αr = 0.1, αcI = 0.0001 and αcE = 0.0001): estimation errors (left), object boundary histogram

(centre) and object boundary credible interval (right).

In the final experiment the star-shaped model is applied for recovering the round-cornered rect-



angle defined in (5.3)–most numerical methods will find this problem challenging because of

the relatively sharp corners to the shape. Figure 16 shows the reconstructed object and esti-

mated MFS coefficients for the interface and outer boundary with prior parameters kept fixed

as before. The most dramatic change is in the pattern of true MFS coefficient for the interface

which is caused by the rounded corners of the rectangle. In spite of this, the reconstruction

resembles the truth and the MFS coefficients for the outer boundary are well estimated. The

MFS coefficient estimates for the interface however are not good, though they do following

the general pattern of the interface coefficients. The posterior mean (and standard deviations)

of the radii smoothing parameter is β̂r = 0.028886 (0.02519). Accuracy and variability in the

object reconstruction are shown in Figure 17. The estimation errors (left) clearly show over-

rounding at the corners and bulging in between – the reconstruction is too circular. The circular

histogram (centre) and circular credible interval (right) indicate that variability in the posterior

distribution is small.
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Figure 16: Round-cornered rectangular inclusion with star-shaped model with separate prior

information (αr = 1.0, βcI = 0.0116 and βcE = 0.2457): fitted shape (left) and MFS coefficients

(with credible intervals) associated with the interface (centre) and outer boundary (right).
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Figure 17: Round-cornered rectangular inclusion with star-shaped model with separate prior

information (αr = 1.0, βcI = 0.0116 and βcE = 0.2457): estimation errors (left), object boundary

histogram (centre) and object boundary credible interval (right).

Finally, consider the full estimation, including the smoothing parameters of the MFS coeffi-

cients, that is, fixing values for hyper-prior parameters αr, αcI and αcE and allowing the esti-

mation of βr, βcI and βcE in addition to the radii and MFS coefficients. Figure 18 shows the

reconstructed object and estimated MFS coefficients for the interface and outer boundary. The



rectangular object reconstruction is slightly better, with a useful improvement in the estimation

of the interface MFS coefficients, and the coefficients on the outer boundary remain well esti-

mated. The posterior mean estimates of the prior parameters (and standard deviations) are:

β̂r = 0.0307 (0.0426), β̂cI = 0.0322 (0.0301) and β̂cE = 0.2331 (0.0941). Accuracy and variability

in the object reconstruction are shown in Figure 19. The estimation errors (left) show a slight

improvement but still the reconstruction is too circular. The circular histogram (centre) and

circular credible interval (right) indicate that the posterior distribution is concentrated, hence

this time allowing estimation of the prior parameters has produced a slightly more accurate

reconstruction of the shape of the object. As with the bean-shape, this is also a very difficult

feature to reconstruct accurately and so this estimate can be considered more than acceptable.

Overall, the estimation of the round-cornered rectangular truth has been very successful.
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Figure 18: Round-cornered rectangular inclusion with star-shaped model with separate prior

information (αr = 0.1, αcI = 0.0001 and αcE = 0.0001): fitted shape (left) and MFS coefficients

(with credible intervals) associated with the interface (centre) and outer boundary (right).
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Figure 19: Round-cornered rectangular inclusion with star-shaped model with separate prior

information (αr = 0.1, αcI = 0.0001 and αcE = 0.0001): estimation errors (left), object boundary

histogram (centre) and object boundary credible interval (right).

5.4 Full estimation using Laplace prior distributions

In this section, consider the full estimation using the Laplace distribution, for all prior distribu-

tions, in place of the Gaussian distribution. The hyper-prior parameter values are fixed at the

values αr = 0.1, αcI = 0.0001 and αcE = 0.0001 and allowing estimation of the smoothing
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Figure 20: Bean-shaped inclusion with star-shaped model with separate prior information (αr =

0.1, αcI = 0.0001 and αcE = 0.0001) and Laplace prior distributions: fitted shape (left) and MFS

coefficients (with credible intervals) associated with the interface (centre) and outer boundary

(right).
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Figure 21: Bean-shaped inclusion with star-shaped model with separate prior information (αr =

0.1, αcI = 0.0001 and αcE = 0.0001) and Laplace prior distributions: estimation errors (left),

object boundary histogram (centre) and object boundary credible interval (right).

parameters, βr, βcI and βcE , as well as the MFS coefficients and the radii.

For the bean-shaped object, Figure 20 shows the reconstructed object and estimated MFS

coefficients and Figure 21 shows the variability summaries. There has been little change,

compared to the corresponding results using the Gaussian prior distribution (see Figures 14

and 15). However, there is a slight improvement in the accuracy of the “cusp” which reflects

the Laplace distributions ability to better model abrupt changes.

Finally, consider the estimation for the round-cornered rectangular object. Figures 22 and 23

show the estimates and variability summaries. From Figure 22 it can be seen that the object

outline is very well recovered with slight over rounding at the corners and irregular sides, but

these are minor compared to those when the Gaussian prior distribution is used (see Figures

18 and 19). The MFS coefficients are also well estimated with substantial improvement in

those associated with the interface compared to the earlier cases. These results demonstrate

that the star-shaped model with a Laplace prior distribution has been very successful.
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Figure 22: Round-cornered rectangular inclusion with star-shaped model with separate prior

information (αr = 0.1, αcI = 0.0001 and αcE = 0.0001)and Laplace prior distributions: fitted

circle (left) and MFS coefficients (with credible intervals) associated with the interface (centre)

and outer boundary (right).
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Figure 23: Round-cornered rectangular inclusion with star-shaped model with separate prior

information (αr = 0.1, αcI = 0.0001 and αcE = 0.0001) and Laplace prior distributions: esti-

mation errors (left), object boundary histogram (centre) and object boundary credible interval

(right).



6 DISCUSSION

This paper has described the Bayesian approach to parameter estimation and the MCMC

estimation algorithm, and applied them to the very practical problem of reconstructing the

shape of an object from a continuous model EIT data. The MFS provides a simple yet accurate

and fast approach to solving the forward problem. It is easy to describe and simple to program.

However, it introduces additional, nuisance, parameters which must be estimated along with

the variables of interest.

The Bayesian modelling approach gives a rigorous framework for including expert knowledge

into the estimation process through prior distributions. Any beliefs regarding the nature of

the parameter values, and relationships between the parameters can be incorporated. Also it

provides a natural hierarchical structure to describe the dependence between variables which

then allows a more intuitive description and interpretation of these relationships. Unfortunately,

the prior distributions will contain additional unknown parameters. The framework also allows

uncertainty in these parameters to be modelled via hyper-prior distributions. It would be pos-

sible to further define hyper-hyper-prior distributions, but this usually does not add anything to

the performance, nor even the flexibility, of the model.

A simple MCMC estimation algorithm was developed which allowed all parameters to be well

estimated. It is important to emphasise that such algorithms must be designed with care and

should be tested widely to have good confidence that they are performing well. The great bene-

fit when using MCMC algorithms is that complex models can be used easily. Also, there is great

flexibility in the choice of output. The posterior sample can be used to estimate any summary.

For example, posterior marginal distributions can be checked for normality, and where appro-

priate non-parametric techniques can be used to make inference in place of normal-based

methods.

A range of simple examples have been considered and the proposed methods illustrated and

developed. In the first set of examples a circular inclusion and a circular object model were

used. Although of limited practical use this allowed the focus to be on the estimation of the MFS

coefficients. It is clear that estimation can be improved substantially by the inclusion of prior

information regarding boundary smoothing and that the two sets of MFS coefficients should

be treated separately. These experiments highlight an important point that although maximum

likelihood estimation is sometimes possible for such problem, and will produce a good fit to the

data, it can leave parameter estimates which are not interpretable. With the inclusion of prior

smoothing there is no significant deterioration in the goodness-of-fit but there is a substantial

improvement in the interpretability of the MFS coefficients.

In practice it is the star-shaped model which is likely to be of greater use, and this model fitted

all data well. It was even possible to perform a fully Bayesian analysis in which prior param-

eters were also estimated successfully. The bean-shaped and the round-cornered rectangle

are challenging shapes to estimate accurately and so this approach can be considered very

successful. Although in some examples the improvement over the use of fixed parameters was

not always substantial there are examples where it makes a significant difference and hence



leads to a robust approach.

The results clearly indicate that the combined Bayesian/MCMC procedure has worked well,

and that the MFS provides a very good and fast approximation to the forward solution. The

examples have demonstrated the range of statistical models and prior distributions which can

be used and the range of output summaries which are possible using MCMC sampling proce-

dures. Also, the whole approach can easily be generalised making it a feasible approach even

for complex modelling problems.
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