
This is a repository copy of A characterization of tree-like resolution size.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79312/

Version: Accepted Version

Article:

Beyersdorff, O, Galesi, N and Lauria, M (2013) A characterization of tree-like resolution 
size. Information Processing Letters, 113 (18). 666 - 671. ISSN 0020-0190 

https://doi.org/10.1016/j.ipl.2013.06.002

eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

Reuse 

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright 
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy 
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The 
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White 
Rose Research Online record for this item. Where records identify the publisher as the copyright holder, 
users can verify any specific terms of use on the publisher’s website. 

Takedown 

If you consider content in White Rose Research Online to be in breach of UK law, please notify us by 
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request. 

mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/


A Characterization of Tree-Like Resolution SizeI

Olaf Beyersdorffa, Nicola Galesib, Massimo Lauriac

aSchool of Computing, University of Leeds, UK
bDipartimento di Informatica, Sapienza Università di Roma, Italy

cKTH Royal Institute of Technology, Sweden

Abstract

We explain an asymmetric Prover-Delayer game which precisely characterizes proof size in tree-like Resolu-
tion. This game was previously described in a parameterized complexity context to show lower bounds for
parameterized formulas [BGL13] and for the classical pigeonhole principle [BGL10]. The main point of this
note is to show that the asymmetric game in fact characterizes tree-like Resolution proof size, i. e. in princi-
ple our proof method allows to always achieve the optimal lower bounds. This is in contrast with previous
techniques described in the literature. We also provide a very intuitive information-theoretic interpretation
of the game.

Keywords: Computational Complexity, Proof Complexity, Prover-Delayer Games, Resolution

1. Introduction

Resolution is one of the best-known and most-studied proof systems. It was developed by Blake [Bla37],
Davis and Putnam [DP60], and Robinson [Rob65] and refutes unsatisfiable formulas in CNF by using the
single inference rule C∨x D∨¬x

C∨D
. Due to its simplicity, Resolution is widely used in applications. In fact,

most modern SAT solvers employ subsystems of Resolution as their underlying mechanism. One particularly
important subsystem is tree-like Resolution where proofs are in the simple form of a tree, i. e. each derived
clause can be used at most once. When we focus on unsatisfiable formulas, tree-like Resolution is equivalent
to the execution of DLL algorithms and to decision trees for the search problem (i. e. to find a falsified clause
under a given assignment).

A number of techniques have been developed to understand the complexity of Resolution and its frag-
ments. Most notably, there is the size-width tradeoff [BSW01], the feasible interpolation technique [Kra97]
and several game-theoretic methods [PI00, Pud00]. All these techniques provide powerful tools for showing
lower bounds to the size (and sometimes width and space) of Resolution refutations. One interesting question
is how good these lower bounds are, i. e. if the techniques can be used to obtain optimal bounds. One nice
result in this direction is the characterization of tree-like Resolution space by Esteban and Torán [ET03].
Their characterization uses the Prover-Delayer game devised by Pudlák and Impagliazzo [PI00] which is a
simple and elegant method to obtain bounds on the size of tree-like Resolution refutations. But exactly for
this characterization of Esteban and Torán, the game of Pudlák and Impagliazzo does not yield optimal size
bounds for tree-like Resolution refutations.

Our contribution in this note is to explain a refined version of the Pudlák-Impagliazzo game, the asym-

metric Prover-Delayer game. This game has been used previously in Parameterized Resolution [BGL13]
and for the classical pigeonhole principle [BGL10]. Here we present a slightly simplified version for classical
tree-like Resolution and observe that our asymmetric game precisely characterizes tree-like Resolution size.

IResearch was supported by a grant from the John Templeton Foundation and by a DAAD grant.
Email addresses: o.beyersdorff@leeds.ac.uk (Olaf Beyersdorff), galesi@di.uniroma1.it (Nicola Galesi),

lauria@kth.se (Massimo Lauria)

Preprint submitted to Information Processing Letters June 12, 2013



This result provides an interesting counterpart to the result of Esteban and Torán [ET03] in that we now
have elegant combinatorial characterizations of both tree-like Resolution space and size.

As mentioned above, the original symmetric game of [PI00] was also studied by Esteban and Torán [ET03],
who prove that the tree-like Resolution clause space complexity of a formula is exactly equal to the largest
number of points achievable by the Delayer in the symmetric game. The lower bound for proof length follows
from the fact that a formula with clause space complexity s requires proof length at least 2s (cf. [ET01]). This
connection with clause space complexity limits the strength of the symmetric method, since there are formulas
for which the above lower bound is not tight (e.g. the classical pigeonhole principle [IM99, DR01, BGL10]).
This is so because the clause space complexity of a formula F is s if and only if any proof tree for F contains
a complete binary tree of height s. The gap between the size of such a minor and the size of the proof tree
is exactly what the symmetric game fails to analyse. In contrast, our result here (Corollary 2) states that
the asymmetric game precisely characterizes the proof size. As a consequence our result shows that for some
formulas the tree-like size is larger than 2tree-like space.

The remaining part of this paper is organized as follows. In Section 2 we describe the asymmetric Prover-
Delayer game. Section 3 collects some facts on the correspondence between tree-like Resolution refutations
and boolean decision trees. Sections 4 and 5 then state the two directions of our characterization of tree-
like Resolution size by the asymmetric game. We conclude in Section 6 with an example illustrating the
advantage of the asymmetric game over the symmetric version.

2. Asymmetric Prover-Delayer Games

The game starts with an unsatisfiable formula F in CNF, and it is played by two players called Prover
(female) and Delayer (male). The Delayer brags that he knows a satisfying assignment for F , and the Prover
wants to expose his lie. At each round of the game Prover asks Delayer for the value of one of the variables,
and she continues to query until a clause of F is falsified. In each round the Delayer scores some points and
indeed the objective of the Delayer is to maximize his score at the end of the game, before being eventually
exposed by the Prover.

Let F =
∧

j Cj be the CNF they play on. We say that “Cj(α) = b” when the partial assignment α forces
clause Cj to evaluate to b. We say that Cj(α) is undefined otherwise.

The game is played in rounds, and while the two players interact they build a partial assignment as
byproduct of their interaction. We denote by αi and si the partial assignment and the Delayer score at the
end of round i, respectively. At the beginning of the game α0 = ∅ and s0 = 0. At round i:

1. Prover asks for a variable x 6∈ dom(αi−1);

2. Delayer assigns two weights p0 and p1 to the two possible answers; the weights must satisfy:

p0 ≥ 0 p1 ≥ 0 p0 + p1 = 1. (1)

3. Prover chooses value b, and the status of the game is updated1:

αi := αi−1 ∪ {(x, b)} si := si−1 + log
1

pb
.

The game ends at the first round i such that Cj(αi) = 0 for some clause Cj . The final score of the Delayer
is si.

The game has been already used in the articles [BGL10, BGL13]. Here the game description is simpler,
in particular two details are different. The first one regards the weights p0 and p1. The previous definition
of the game separates the weight function and the Delayer strategy. Since both must be carefully chosen for
proving a lower bound, we can assume that the Delayer himself decides the value of this function at each
step of the game. The second difference is that in the previous definition the Delayer was allowed to answer

1we consistently manage the extreme cases by setting si = ∞ whenever Prover chooses value b such that pb = 0

2



Prover’s query at the cost of not scoring anything in that round. In the new formulation the Delayer can
simulate this behavior by choosing either (0, 1) or (1, 0) as weights.

If Delayer chooses (1, 0) or (0, 1) then the Prover cannot choose the value corresponding to weight 0;
that would give an infinite amount of points to Delayer, and would be suboptimal for the Prover since she
can always enforce a finite score. Therefore in the case of integer weights, Prover’s answer is determined by
Delayer, who in turn does not get any points in that round.

This observation justifies the small changes to the game definition given in [BGL10, BGL13]. It is now
more compact and elegant.

The Prover-Delayer game of Pudlák and Impagliazzo [PI00] can be seen as a special case of the game we
describe here, and will be called the symmetric Prover-Delayer game in this paper. In the symmetric game the
Delayer has only two options: either he decides the value of the queried variable himself, or asks the Prover
to decide. In the former case he does not get any points, while in the latter he gets one point, regardless of
Prover’s choice. A moment’s thought is sufficient to realize that limiting the (asymmetric) Delayer to choose
the pair (p0, p1) among

{(
1
2 ,

1
2

)
, (0, 1), (1, 0)

}
yields exactly the symmetric game. If Delayer chooses

(
1
2 ,

1
2

)
,

then he gets one point whatever Prover decides. If Delayer chooses one of the extremely unbalanced pairs
we already argued that he forces Prover’s hand.

3. Tree-Like Resolution and Decision Trees

This section collects some facts on the correspondence between tree-like Resolution and boolean deci-
sion trees. All this material is known (see e. g. [BSIW04]), but we give precise statements with proofs for
completeness.

A decision tree for an unsatisfiable CNF F =
∧

i Ci is a binary tree where inner nodes are labeled by
variables of F and leaves are labeled by clauses from F . Each path from the root to a leaf in the tree specifies
a partial assignment. In addition, a decision tree for F must satisfy the condition that each path from the
root to a leaf falsifies the clause at the leaf. Therefore, a decision tree for F solves the following search
problem: given an assignment α ∈ {0, 1}n find i such that Ci is falsified by α.

It is a well known fact that a tree-like Resolution refutation of F can be thought of as a decision tree for
F . This follows by induction on the size of the refutation. If the size is 1 then the refutation is just the empty
clause, so Ci = � for some i and the search problem can be solved by the single vertex decision tree labeled
by i. If the tree is bigger, let x be the last variable on which the refutation resolves. Consider the subtrees
T0 and T1 of the refutation, inferring respectively x and ¬x. For b ∈ {0, 1} the tree-like Resolution inference
Tb can be restricted to a refutation of F ↾x=b. By the inductive hypothesis the latter can be transformed
into a decision tree Db which solves the search problem for F ↾x=b. Clearly, the search problem for F is
solved by a decision tree which queries x and if x = b it applies the decision tree Db. In this transformation
from tree-like refutations to decision trees

• each inferred clause corresponds to a query node;

• each Resolution inference on x corresponds to a query for x;

• each occurrence of an initial clause Ci corresponds to a leaf labeled by i;

• each consistent2 path from the root to a node in the decision tree corresponds to a partial assignment
which falsifies the corresponding clause in the refutation.

The above transformation implies the following lemma.

Lemma 1. Let F be an unsatisfiable CNF with a tree-like Resolution refutation T . Then there is a decision

tree with the same tree structure as T which solves the search problem for F .

2if a path goes through two nodes which query the same variable it must take the same direction in both nodes. Otherwise
it does not correspond to a legal input of the decision tree.

3



Notice that the transformation can be reversed, even though it is not always possible to preserve the exact
tree structure since decision trees leave more room for sub-optimal choices with no equivalent representation
in Resolution (e.g. unreachable nodes, search problem solved by a strict subtree, falsified clauses at an
internal node). Nevertheless, it is easy to identify a decision tree without such redundant parts which is
embedded in the original one.

Definition 1. An embedding of a rooted tree T ′ into a rooted tree T is an injective mapping f from the

vertices of T ′ to the vertices of T , such that if u is parent of v then f(u) is an ancestor of f(v). We say that

T ′ is embeddable into T if such embedding exists.

It is an easy observation that any tree obtained from another one by removing subtrees and/or collapsing
edges connected by degree two vertices is embeddable into the original tree. A tree-like Resolution refutation
is called regular when in every path from an initial clause to the empty clause no variable is resolved twice.

Lemma 2. Consider an unsatisfiable formula F in CNF and a decision tree T for the search problem on F .

Then there is a tree-like regular Resolution refutation of F with tree structure T ′ such that T ′ is embeddable

into T .

Proof. We assume that T has no unreachable nodes, i.e. never queries the same variable twice. Otherwise
we remove the redundant queries and the corresponding unreachable subtrees. The new decision tree is
embeddable into T , so this assumption is without loss of generality.

To get the refutation we essentially take the tree and flip it over: we label nodes with clauses in such a
way that the clause labelling any internal node is deducible from the clauses labelling its children using a
Resolution step.

Let ρ be the unique minimal partial assignment reaching a node u. There is a unique maximal clause D

which is falsified by ρ. We label the node u with D. The root clause is the empty one by definition. If u
is an internal node with query variable x, the two child nodes correspond to assignments ρ ∪ {x = 0} and
ρ ∪ {x = 1}, respectively. Thus the labelling clauses are D ∨ x and D ∨ ¬x. If u is a leaf node outputting
index i for clause Ci, then D ⊇ Ci. This is clearly a regular tree-like refutation of the leaf clauses with the
same structure as T .

To obtain a proper refutation substitute each leaf clause D with an (arbitrary) initial clause Ci ⊆ D.
This substitution must be propagated towards the root: each clause is substituted by a subclause. Consider
the inference A∨x B∨¬x

C
. The premises are mapped to A′ and B′ respectively. Either both x ∈ A′ and

¬x ∈ B′ or one of them (say A′) does not contain variable x. In the former case C is substituted with the
resolvent of A′ and B′, otherwise the inference tree of C is substituted by the one of A′, reducing the length
of the proof.

The two constructions explained above lead to the following remarkable correspondence.

Corollary 1. The smallest tree-like Resolution refutation of an unsatisfiable CNF F has exactly the same

size as the shortest decision tree for the search problem on F .

4. Decision Trees as Prover Strategies

Given the above correspondence between tree-like Resolution and decision trees, we can now start to
explain our characterization of tree-like Resolution size by the asymmetric Prover-Delayer game. Loosely
speaking, we interpret the weights chosen by Delayer as a way to define a distribution on the branching
made in the decision tree. Under this view the Delayer’s score at each step is just the entropy of the
bit encoding the corresponding choice, according to Delayer’s distribution. Since root-to-leaf paths are in
bijection with leaves, this process induces a distribution on the leaves. Hence the entropy collected on the
path is the entropy of the corresponding leaf choice. In this interpretation, the asymmetric Prover-Delayer
game becomes a challenge between a Prover, who wants to end the game giving up little entropy, and
Delayer, who wants to get a lot of it. This means that the average score of the Delayer estimates the number

4



of leaves in the tree. In our framework the decision tree determines Prover’s queries, and the Delayer defines
a distribution on paths.

The connection of this game to size of proofs in tree-like Resolution is given by the next theorem. A
version of this result for tree-like Parameterized Resolution appeared already in [BGL13].

Theorem 1. Let F be an unsatisfiable CNF. If F has a tree-like Resolution refutation of size at most S,

then there is a Prover strategy such that any Delayer gets at most log⌈S
2 ⌉ points.

Proof. Let F be a contradiction using variables x1, . . . , xn. Choose any tree-like Resolution refutation of F
of size S and interpret it as a boolean decision tree T for the search problem on F , according to Lemma 1.
All internal vertices of T have two children, thus S = 2L− 1 where L = ⌈S

2 ⌉ is the number of leaves of the
tree.

The decision tree T completely specifies the query strategy for Prover: at the first step she will query
the variable labelling the root of T . Whatever decision is made regarding the value of the queried variable,
Prover moves to the root of the corresponding subtree and queries the variable which labels it. This process
induces a root-to-leaf walk on T , and such walks are in bijection with the set of leafs.

To completely specify Prover’s strategy we need to explain how Prover chooses the value of the variable
x asked at that round. The most natural thing to do is to choose the value randomly as follows:

x =

{

0 with probability p0

1 with probability p1,

where p0 and p1 are the weights determined by the Delayer.
In a game played between this randomized Prover and a specific Delayer D, we denote by qD,ℓ the

probability of such a game to end at leaf ℓ. We call πD this distribution on the leaves. To prove the theorem
the following observation is crucial:

Claim 1. If the game ends at leaf ℓ, then Delayer D scores exactly log 1
qD,ℓ

points.

Before proving this claim, we show that it implies the theorem. The expected score of Delayer D is

∑

ℓ

qD,ℓ log
1

qD,ℓ

= H(πD)

which is the Shannon entropy of the distribution πD. The support of πD has size at most L, which implies
that H(πD) ≤ logL since the entropy is maximized by the uniform distribution. By fixing the random
choices of the Prover, we can force Delayer D to score at most logL points.

To prove Claim 1 consider a leaf ℓ and the unique path that reaches it. Without loss of generality we
assume that this path corresponds to the ordered sequence of assignments x1 = ǫ1, . . . , xm = ǫm. The
probability of reaching the leaf ℓ is

qD,ℓ = q1q2 . . . qm

where qi is the probability of setting xi = ǫi conditioned on the previous choices. The score of the corre-
sponding game play is

m∑

i=1

log
1

qi
= log

1
∏m

i=1 qi
= log

1

qD,ℓ

.

This concludes the proof of the claim and the theorem.

The above theorem shows that lower bounds to the refutation size in tree-like Resolution can be obtained
by choosing an appropriate distribution for the Delayer.

5



5. Distributions as Delayer Strategies

So far we argued that the asymmetric Prover-Delayer game can be used to prove lower bounds for the
size of tree-like Resolution refutations, but we would like to know how good this lower bound method is.
Here we show that the method completely characterizes proof size, meaning that it is always possible (in
principle) to define a Delayer strategy such that the implied lower bound is almost equal to the proof size.
To be more precise this method characterizes the number of leaves in the shortest proof.

Theorem 2. Let F be an unsatisfiable CNF with shortest tree-like Resolution refutation of size S. Then

there is a Delayer strategy such that the Delayer scores at least log
⌈
S
2

⌉
points in any game on F against any

Prover.

Proof. We denote the number of leaves in the shortest tree-like refutation of a CNF F by L(F ), and we
denote by F ↾α formula F restricted by the partial assignment α.

Delayer assigns weights according to the following rules, depending on the partial assignment α computed
so far, and on the variable x 6∈ dom(α) queried by the Prover

p0 =
L(F ↾α,x=0)

L(F ↾α,x=0) + L(F ↾α,x=1)
and p1 =

L(F ↾α,x=1)

L(F ↾α,x=0) + L(F ↾α,x=1)
.

Let n be the number of variables of the formula F . By induction on n we show that the Delayer wins at
least logL(F ) points. For the base case the formula has zero variables and is unsatisfiable, thus it contains
the empty clause and L(F ) = 1. The Delayer always score at least zero points, since Delayer’s score is always
non negative. If n > 0 then two cases occur: either the formula already contains the empty clause, and then
the reasoning above applies; or the Prover queries a variable x and chooses a value b. The score is log 1

pb
+X

where X is the score the Delayer wins in subsequent steps. By the induction hypothesis X ≥ logL(F ↾x=b),
thus the total score is at least

log
1

pb
+ logL(F ↾x=b) = log

(
L(F ↾x=0) + L(F ↾x=1)

L(F ↾x=b)

)

+ logL(F ↾x=b) =

log (L(F ↾x=0) + L(F ↾x=1)) ≥ logL(F ).

A refutation of size S has exactly
⌈
S
2

⌉
leaves, so the theorem is proved.

A comment on the previous proof is required. We already argued that the Delayer strategy defines a
distribution on the root-to-leaf walks in the tree induced by the Prover strategy. The above proof is based
on the fact that is is possible to define a distribution which is uniform on the leaves of the shortest proof,
and thus the entropy is exactly the logarithm of the size of the set of leaves (cf. Figure 1).

Combining Theorems 1 and 2 we obtain the following tight characterization.

Corollary 2. For any unsatisfiable CNF F , the maximum score achievable in an Asymmetric Prover-

Delayer game by a Delayer is exactly log
⌈
ST (F )

2

⌉

where ST (F ) is the size of the shortest tree-like Resolution

refutation of F .

6. Advantage of the Asymmetric Prover-Delayer Game

In this last section we briefly describe an example of the new characterization of tree-like Resolution size.
Consider the formula

(x1 ∨ · · · ∨ xn) ∧ ¬x1 ∧ · · · ∧ ¬xn.

In the symmetric game, the Delayer will only earn 1 point (cf. Figure 2). This only yields a trivial constant
lower bound on the proof size. In contrast, the optimal Delayer in the asymmetric game will earn exactly

6



T0

T1

p0 = l0
l0+l1

p1 = l1
l0+l1

l0

l1

Figure 1: The proof tree structure can be used to give different weights to the branches. Here l0 and l1 are the number of leaves
of the left and right subtree, respectively.

log(n + 1) points when using the distribution shown in Figure 2. The formula is minimally unsatisfiable
and has exactly n + 1 critical assignments, namely to set exactly one of the n variables to 1 or to set all
of them to 0. To win the game, Prover has to identify one of these critical assignments. And from an
information-theoretic perspective, Prover needs exactly log(n+ 1) bits to specify one of these n+ 1 critical
assignments. Consequently, the Delayer should earn exactly log(n+ 1) points. This is easily verified. Let k
be the number of rounds that Prover needs to win the game. Then Delayer scores exactly

k−1∑

i=1

log
n+ 1− (i− 1)

n+ 1− i
︸ ︷︷ ︸

for the first k − 1 0’s

+ log(n+ 1− (k − 1))
︸ ︷︷ ︸

for the last round

= log
n+ 1

n+ 1− (k − 1)
+ log(n+ 1− (k − 1)) = log(n+ 1).

A more interesting example is the famous pigeonhole principle (PHP). Its complexity in Resolution was
first determined by Haken’s seminal exponential lower bound [Hak85]. However, in tree-like Resolution the
complexity of PHP is indeed 2θ(n logn) as shown independently by Iwama and Miyazaki [IM99] and Dantchev
and Riis [DR01]. The paper [BGL10] provides an elegant proof of this optimal n! lower bound for PHP via
the asymmetric Prover-Delayer game. In contrast, the symmetric game only yields a lower bound of 2Ω(n),
because the smallest tree-like Resolution refutations of PHP only contain full binary trees of height n.

References

[BGL10] Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. A lower bound for the pigeonhole princi-
ple in tree-like resolution by asymmetric prover-delayer games. Information Processing Letters,
110(23):1074–1077, 2010. 1, 2, 3, 7

[BGL13] Olaf Beyersdorff, Nicola Galesi, and Massimo Lauria. Parameterized complexity of DPLL search
procedures. To appear in ACM Transactions on Computational Logic. Conference version in Proc.

14th International Conference on Theory and Applications of Satisfiability Testing, volume 6695
of Lecture Notes in Computer Science, pages 5–18. Springer-Verlag, Berlin Heidelberg, 2011. 1,
2, 3, 5

[Bla37] A. Blake. Canonical expressions in boolean algebra. PhD thesis, University of Chicago, 1937. 1

[BSIW04] Eli Ben-Sasson, Russell Impagliazzo, and Avi Wigderson. Near optimal separation of tree-like
and general resolution. Combinatorica, 24(4):585–603, 2004. 3

7



0

0

1

2

?

? ?

?

1

2

1

1

(a) Symmetric

1

n+1

1

n

1

n−1

1

n−2

1

2

1

2

n−2

n−1

n−1

n

n

n+1

(b) Asymmetric

Figure 2: The probability associated to each leaf in a symmetric 2(a) and an asymmetric 2(b) Prover-Delayer game. In the
symmetric game the Prover can end the game as soon as the Delayer gets one point, while in the asymmetric game the Delayer
always gets log(n+ 1) points.

[BSW01] Eli Ben-Sasson and Avi Wigderson. Short proofs are narrow - resolution made simple. Journal

of the ACM, 48(2):149–169, 2001. 1

[DP60] Martin Davis and Hilary Putnam. A computing procedure for quantification theory. Journal of

the ACM, 7:210–215, 1960. 1

[DR01] Stefan S. Dantchev and Søren Riis. Tree resolution proofs of the weak pigeon-hole principle. In
Proc. 16th Annual IEEE Conference on Computational Complexity, pages 69–75, 2001. 2, 7

[ET01] Juan Luis Esteban and Jacobo Torán. Space bounds for resolution. Information and Computation,
171(1):84–97, 2001. 2

[ET03] Juan Luis Esteban and Jacobo Torán. A combinatorial characterization of treelike resolution
space. Information Processing Letters, 87(6):295–300, 2003. 1, 2

[Hak85] Amin Haken. The intractability of resolution. Theoretical Computer Science, 39:297–308, 1985. 7

[IM99] Kazuo Iwama and Shuichi Miyazaki. Tree-like resolution is superpolynomially slower than dag-like
resolution for the pigeonhole principle. In Proc. 10th International Symposium on Algorithms and

Computation, volume 1741 of Lecture Notes in Computer Science, pages 133–142. Springer-Verlag,
Berlin Heidelberg, 1999. 2, 7

[Kra97] Jan Kraj́ıček. Interpolation theorems, lower bounds for proof systems and independence results
for bounded arithmetic. The Journal of Symbolic Logic, 62(2):457–486, 1997. 1

[PI00] Pavel Pudlák and Russell Impagliazzo. A lower bound for DLL algorithms for SAT. In Proc. 11th

Symposium on Discrete Algorithms, pages 128–136, 2000. 1, 2, 3

[Pud00] Pavel Pudlák. Proofs as games. American Math. Monthly, pages 541–550, 2000. 1

8



[Rob65] John Alan Robinson. A machine-oriented logic based on the resolution principle. Journal of the

ACM, 12:23–41, 1965. 1

9


	1 Introduction
	2 Asymmetric Prover-Delayer Games
	3 Tree-Like Resolution and Decision Trees
	4 Decision Trees as Prover Strategies
	5 Distributions as Delayer Strategies
	6 Advantage of the Asymmetric Prover-Delayer Game

