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ABSTRACT

The influence of the integration interval At of the fourth-order Runge-Kutta
algorithm on Duffing’s equation is investigated. Discretised models of the continuous
equation are also derived and the effects of the discretisation period T on the discrete
models is studied. Bifurcation diagrams and Poincaré maps are used to assess the
accuracy of the results and it is shown that both these methods suggest smaller upper
bounds for the integration interval and the discretisation period than other criteria,
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1. Introduction

The study of chaotic systems has received increasing attention over the last three decades. This
period roughly coincides with a major expansion of the computer industry. Such a coincidence is not a
surprise since some of the numerical tools required in the analysis of chaotic systems are very
computer-demanding, thus the millions of iterations involved in the analysis of a chaotic system have
been made feasible recently by modem digital computers.

When simulating continuous systems on such machines a numerical algorithm must be used to
perform the integration. Three questions can then be asked: i) how should the integration interval, A,
be chosen in order to obtain reliable results? ii) can the system be approximated by a discrete model
which faithfully reproduces the nonlinear dynamics? and iii) if the answer to the latter question is
affirative, then how should the discretisation interval, T, be chosen?

Grantham and Athalye [1] worked on Lotka-Volterra equations and reported that the fourth-order
Runge-Kutta algorithm may alter the system dynamics if Ar is not sufficiently small and that the
second-order Runge Kutta qualitatively changes the system solutions even for fairly small values of Ar.
Mallet-Paret and Nussbaum [2] have shown that a discrete approximation of a singularly perturbed
delay continuous equation does not preserve the dynamical structure of the original system no matter
how accurate the approximation is. They argue, however, that a faithful discrete version of the continu-
ous system exists and can be obtained by other means.

The aforementioned papers suggest that the effects of the integration interval and the approxima-
tion procedure used in the derivation of discrete models is very system-dependent, and hence that this
hampers the establishment of more general results. The present study aims to answer the three ques-
tions above for Duffing’s equation. The answers themselves are, perhaps, not the most important
results reported since it will be shown that the choice of At and T may prove inadequate even when a
very good agreement at the fime-series-simulation level is achieved. Bifurcation diagrams and Poincaré
maps are used to assess the accuracy of the models in both regular and chaotic regimes and these
reveal if the chosen values of Ar and T are adequate or not. Although the results reported are only
based on Duffing’s equation over a limited range of parameter values, the implications for other non-
linear systems appears to be the same.

Some background material is presented in section 2. The results concerning the simulation of
Duffing’s continuous equation are presented in section 3. Discretised models for Duffing’s equation are

derived and validated in section 4. The main conclusions are summarised in section 5.



2. General background

2.1. Duffing’s equation

Duffing introduced a nonlinear oscillator with a cubic stiffness term to describe the hardening
spring effect observed in many mechanical systems. Since then Duffing’s oscillator equation has
become, together with van der Pol’s equation, one of the commonest examples in nonlinear oscillation
texts and research articles [3]. There are, however, two different types of equations: i) Duffing’s non-
linear inductor equation, used to model nonlinear electrical oscillators, and ii) Duffing’s two-well
potential equation, used to model the dynamics of a buckled elastic beam. In this work the former
equation is considered and this can be expressed as

X+ kx + X = f coswt (1)
Hereafter constant values are assigned to k& and @, namely 4=0.1 and w=1 rad/sec.

The nonautonomous equation above can be rewritten as an autonomous system at the expense of
adding an extra state 6=, thus

u=v

v=-0.1v — 1’ + f cosd

6=1 2)
and (u,v;0) € R*x S,

22. Bifurcation diagrams

A useful tool for assessing the characteristics of the steady-state solutions of a system for a range
of parameter values is the bifurcation diagram.

A point r of a bifurcation diagram of the kind used in this work is defined as:
r= {(x.f) e RXI | x=x(t), ffy; r,=K,,x2nfm} 3)

where / is the interval /=(f;,f) € R and K, is a constant.

In words, the point r as defined in (3), is chosen by simulating the system (1) for a sufficiently
long time K, x2n/ with f=f; and then plotting x(K,,}x2/w) against f,. In practice, however, for each
value of the parameter f, n,, points are taken at the instants:

ti= Kyt i) x2mo i=0,1,...,n,~1 “4)

A bifurcation diagram will therefore reveal at which values of the parameter fe/ the solution of

the system bifurcates. Further, when studying chaos, such diagrams are useful in detecting parameter



ranges for which the system behaviour is chaotic. However, it has been pointed out [4] that these

diagrams cannot distinguish between chaotic and quasiperiodic regimes and therefore first-return maps
should also be consulted.

23. Poincaré or first-return maps

Consider a periodic orbit ¥ of some flow ¢, in R" arising from a nonlinear vector field. Let
Z c R" be a hypersurface of dimension n—1 such that it is transverse to the flow ¢, Thus the first
return or Poincaré map P= X — X is defined for a point ¢ € X by (see figure 1):

P(q) = ¢.(q9) (5)
where 1 is the time taken for the orbit ¢,(q) based at ¢ to first return to X,

As mentioned earlier, equation (2) is the representation of (1) in a cylindrical state space R*x S
Furthermore, as w=1, system (2) is periodic in 8 with period 2n. Hence, the planes 6=0 and 6=2x

coincide and therefore provide a good choice for ¥, which is, for the purposes of the present work,
chosen as

= {(u,v;e) e R*x S'16=0 } (6)

This is illustrated in figure 1.

The map defined in (5) is very useful in the analysis of nonlinear systems since it takes place in a
space which is of lower dimension than the actual system. It is therefore easy to see that a fixed point
of P corresponds to a periodic orbit of period 2n/w for the flow. Similarly, a subharmonic of period
Ix2m/w will appear as / fixed points in P. Quasiperiodic and chaotic regimes can also be readily recog-
nised using Poincaré maps. For instance, the first-return map of a chaotic solution is formed by a
well-defined and finely-structured set of points for noise-free Hamiltonian systems,

More details concerning Poincaré maps may be found elsewhere [3-5].
3. Simulation of Duffing’s equation

3.1. Time series

A fourth-order Runge-Kutta algorithm was used to carry out the integration of equation (1). The
different values of the integration interval, Az, were chosen as fractions of =« in order to facilitate sam-
pling the system exactly on X. If-Ar were to be chosen in a different way, more sophisticated methods
for obtaining the Poincaré maps would have to be used [6]. Figure 2 shows the system output x(f) for
J=6.5 and w=1 rad/sec when the system is simulated using Ar = n/3000; 7/600; /300 and 1/125. The
responses are virtually indistinguishable up to plotting precision and this would therefore suggest that



all the values of Ar are acceptable.

3.2. Bifurcation diagrams

The bifurcation diagrams of system (1) for various values of At were obtained as outlined in sec-
tion 2.2. In all cases the parameter f was varied in the range 4.55/<12, i.e. [=(4.5,12) and K, =400,
ny=50 for chaotic regimes and n,=6 otherwise. Several bifurcation diagrams were obtained simulating
the system with different values of Ar. Figures 3a-3d correspond to Ar = 1/3000; 7/600; 7/300; n/125
respectively. If Ar is increased beyond m/30 the integration procedure becomes unstable.

Some of the bifurcation points in the diagrams are labelled B1 to B9 as shown in figure 3a. Some
steady-states shown in figure 3a can roughly be classified as follows. From f=4.5 to f=B1 a period-1
regime is observed. From Bl to B2 a period-2 and from B2 to B3 a period-4. The system displays
chaos for f~B3 up to B4 when a period-3 is established. Period-3 regimes are observed up to B7 where
each solution period-doubles and again at B8, i.e. just afier B8 a period-12 can be verified. For the

sake of simplicity, it is assumed that the system is driven into chaos at B8 (this actually happens just
after B8) and returns to a period-1 at B9.

Remark 1. B1-B2—B3 and B7—B8 are period-doubling cascades which are a well known route to
chaos and follow a well-defined invariant pattem [7].

Remark 2. Ueda [8] has presented a kxf chart (N.B. here ¥=0.1) generated by digital and analogue
computers (the same chart can be also found in reference [4] page 158). The agreement of figure
3a with Ueda's analogue results is striking. It should be stressed, however, that slight differences
occur and can be explained based on the selection of initial conditions. For instance, for &=0.1
and 11.65/<13.4 chaotic or period-1 steady-states can take place depending on the initial condi-
tions used. In the present work the following initial conditions were always chosen x(0)=0 and
x(0)=0.

It is clear from figures 3a-3d that the bifurcation diagrams and consequently the nonlinear
phenomena involved change significantly as At is increased. For instance, the bifurcation diagram of
figure 3b displays what was named an unfinished period-doubling cascade [4). Further, as At is
increased the aforementioned cascade will eventually terminate in a chaotic regime in the range
7.25f<7.7 as shown in figure 3c. Poincaré maps verify that the system does not settle to a single
period-3 regime in the range 8<f<9.5 but rather period-1 attractors are also observed, for instance at
/=8.95. Figure 3d shows that the system behaviour degrades further as Az is encreased, although it still
exhibits some features associated with the original diagram for low values of f,

Figure 4 illustrates how Ar- affects the bifurcation points. Disrupted lines indicate that the

corresponding bifurcation point is not clearly observed in the respective diagram. From the figure it can



be inferred that Ar does not strongly affect the values of f at which the system bifurcates, although the
way the system bifurcates is very different for large values of Ar.

Grantham and Athalye [1] have reported that for the Lotka-Volterra equations the fourth-order
Runge-Kutta algorithm may introduce chaotic regimes for insufficiently small values of Ar and that the
second-order Runge-Kutta may provoke chaos even for very small values of Ar. Similar results for
Duffing’s equation can be observed for the fourth-order Runge-Kutta algorithm from figures 3c and 3d.

Although the system displays chaos approximately in the same ranges of values of f(5.655.8
and 10<£11.6) for Ar= w/3000; n/600; /300, but this does not necessarily mean that the chaotic

regimes in each case possess the same characteristics. In order to gain further knowledge of such
regimes, Poincaré maps will now be used.

3.3. Poincaré maps

Figures 5a and 5b display the Poincaré maps for At = n/3000 with £=5.7 and F=11 respectively.
Poincaré maps of chaotic attractors of Duffing’s equation can be found elsewhere (see for instance
reference [4] page 86) and a very good agreement can be observed. Sli ght differences can be explained
based on the different values of f and k. Figures 5a and 5b will therefore be referred to as the uncor-
rupted maps for Duffing’s equation.

Figures 6a-6¢ show the Poincaré maps for =11 and Ar= w600; 1/300; ©/125 respectively. The
main differences observed are of twofold: i) fuzziness, as Ar is increased some of the fine structure is
lost, this can be quantified by the fractal dimension [9,10], and ii) position, the attractor occupies a
different position in the state space (see the marked point in the figures). The attractor for Ar = /125
is quite different as expected from the bifurcation diagrams.

It should be emphasised that although the chaotic regimes for Ar = ©/3000; ©/600; /300 occur
approximately for the same values of f, the Poincaré maps have exposed some differences. In particu-
lar, consider the bifurcation diagrams of figures 3a and 3b which are virtually indistinguishable over
the ranges for which chaotic motions are observed. Nevertheless, the attractors shown in figures 5b and
6a reveal that some dynamic aspects of the system are still affected by Ar in the range
7t/3000<Ar<m/600. Similar results hold for the attractors found at 5.5<5/<5.8.

The results of the present section have illustrated the effects of varying the integration interval of
the fourth-order Runge-Kutta algorithm on some nonlinear phenomena displayed by Duffing’s equa-
tion. Further, the above results suggest that a suitable value for Ar would be /3000. In what follows
such a value will be employed tq generate data which will be used to validate discretised versions of
1.



4. Discrete models for Duffing’s equation

Discrete versions of equation (1) can be obtained using the following approximations:

sy = X(kt1) — x(k)
x(k) T

)]
and
%K) = x_(,_k)__—# - (8)

respectively known as explicit Euler of forward difference and implicit Euler or backward difference
approximations.

Using (7) and (8) in (1) two slightly different discrete versions of Duffing’s equation can be
readily obtained. The models using Euler’s approximation are not globally stable, that is for some input
amplitudes they become unstable and consequently such models are not considered here. Further, in

order to be able to sample the solutions exactly on £ when generating Poincaré maps, T was chosen as
a fraction of =.

Using equation (8) and the approximation x(k)*=x(k-1)? to avoid applying a predictor corrector
method, models of the following form are obtained:

x(k) = ox(k=1) + Bx(k=2) + (k—1)>+Su(k) 9)

The model coefficients for different values of T are listed in Table 1.

TABLE 1 Coefficients of the Discretised Models

T o B Y )
7:300 1.99895 -0.99895 -1.09547e-4 1.09547e4
n:60 1.99479 -0.99479 -2.72727e-3 2.72727e-3
7:30 1.98963 -0.98963 -1.09547e-2 1.09547e-2
m15 1.97948 -0.97948 -4.29650e-2 4.29650e-2
n:12.5 1.97548 -0.97548 -6.16168e-2 6.16168e-2

These models will be compared to the original system integrated with Az=r/3000 in order to ver-

ify the influence of T upon them.




4.1. Time series and correlation functions

Figure 7 shows simulation data for f=6.5, A=w/3000 and the discretised models for
T=n/300; n/60 and 7/30. The responses are undistinguishable up to plotting precision. Further, the data
obtained for 7=r/15 and n/12.5 are very similar to those of figure 7 but appear out of phase. Although
such a shift in time is obvious in a simulation context, in an application situation these responses could
be incorrectly regarded as acceptable. Nevertheless, these results would suggest T=r/30 as an appropri-
ate choice.

For comparison purposes, two other criteria were used to evaluate appropriate values for T. Con-
sidering Tp,;,/20 <T< 7,,;,/10 where 1., is the time related to the first local minimum of the autocorre-
lation function of the response [11], values in the range m/36 <T< n/17 are found. Furthermore, choos-
ing 1/T to be 10 times larger than the fastest peak in the signal power spectrum, suggest that T=n/38
would be appropriate. In this case the signal used was the system response for f=11 which is chaotic
thus presenting a noise-like power spectrum.

Billings and Voon [12-13] have introduced high-order correlation functions to detect the presence
of unmodelled terms in the residuals of discrete models. Thus if a model of a system is adequate the
following conditions should hold

Pee(1) = E[e(-T)e(n)] = &1)

Q. = Elu(t-1)e()] =0, Vt

D,2,(1) = E[@ (-0 (D)e)] = 0, Va
D,2,2(1) = E[(-t)=uX(0)EX0] = 0, V1

D e)(T) = E[e(e(-1-1)u(-1-1)] = 0, 120 (10)

where € are the residuals, defined as the difference between the actual measured output and the one-

step-ahead predicted output, u(z) is the input, the over-bar signifies the mean value and E[.] indicates
the mathematical expectation of the argument.

Such tests were used in the present study to assess the validity of the various discretised models.
In what follows the output of the continuous model simulated with Ar=n/3000 was used as the bench-
mark measured data and the discretised models were used as predictors. A low amplitude noise was
added to the data obtained from the continuous model in ord'er to avoid numerical problems when com-
puting the correlation functions and to simulate a more realistic scenario.

Figures 8a-8c show the correlation functions for models discretised with T=r/ 12.5; /15 and w30
respectively and figures 9a-9c depict the measured data superimposed on the predictor outputs. The



plots for 7=r/60 and n/300 are even better than the ones for T=n/30 and are therefore omitted.

Care must be taken when using predictors for validating models which are sensitive to initial con-
ditions since there is an uncertainty in the knowledge of the actual initial conditions due to the pres-
ence of noise and therefore the predictors will not be initialised with accurate data. Thus even a good
model which is not properly initialised is likely to give a totally different response which will be
judged unacceptable. In the present work the noise was not added to the first data points and conse-
quently the predictors were initialised with accurate initial conditions. In practice the initial points may
require some degree of smoothing to achieve the same objective.

From figures 9a-9c it is clear that although the predictors seem to perform fairly well, the correla-
tion functions reveal that the models for 7=r/15 and n/12.5 are inadequate. These results seem to sug-
gest T=m/30 as an acceptable value for the discretising period.

The autocorrelation function of the residuals, @, of all the models are outside the 95%
confidence bands at the lag T=1 because no noise model was fitted. The correlations @, Deeuy P2,

and @ 7 » indicate that the process model is adequate for T<n/30.

It is worth pointing out that the above results are in agreement and point to a discretisation period
in the range m/38<T<n/17. However, in the next two sections it will be seen that T must be decreased

further in order to yield a discretised model capable of faithfully reproducing the nonlinear phenomena.

4.2, Bifurcation diagrams

The bifurcation diagrams for T=n/300; n/60; n/30; n/15 and 7/12.5 shown in figures 10a-10e
respectively, were obtained following the same procedure as in section 3.2. If T is increased beyond
n/12.5 unstable models are obtained. As figures 10a and 10b are quite similar, T was not further
decreased. The bifurcation points were labelled as for the continuous diagrams and a very good agree-

ment is observed between the diagram of figure 3a and those of the discretised models for small values
of T,

The diagrams of figures 10d and 10e are clearly different. The model discretised with T=n/15
displays regular motions for f=10.7, this is a unique feature of this model. As in the continuous case,
larger values of T induce an extra chaotic regime in this case at approximately 6.6<<8.0.

The chaotic window observed for the lower values of f is wider for models discretised using a

small T. This narrowing of the chaotic window was not observed in the continuous case.

From figure 11 it can be seen that the bifurcation points of the discrete models are shifted to the
left (with the exception of BS5), in other words they happen at lower values of f as T is increased. In
figure 12, the bifurcation points of figure 11 are compared with those of the continuous system
obtained using As=m/3000. Thus from figure 12 an upper bound for T can be suggested, namely



-10 -

T<n/60.

4.3. Poincaré maps

Figures 13a-13e show the Poincaré maps for T=r/300; w/60; /30: /15 and ™12.5 with f=11
(=10 was used for T=r/12.5 only). As T is increased two main changes are observed: i) the original
attractor becomes deformed, and ii) ghost attractors appear. To some extent these changes contrast with
those observed in the continuous case, where ghost attractors did not happen, but the maps gradually
lost some of the fine structure and therefore became fuzzier. However, such increase in fuzziness could
be induced by the appearance of a ghost attractor, see for instance figure 6b where arrows indicate
what seems to be the original attractor and an underlying one. Figure 6b is very similar to figure 13a
although the latter is not as fuzzy as the former and it is better placed in the state space (see the coor-
dinates of the indicated point).

One of the differences between the attractors of figures 6b and 13a is that the former seems to
display the original attractor with most of the points on it, plus an underlying attractor with fewer

points. Figure 13a displays two coexisting attractors with approximately the same number of points on
each one.

Remark 1. It is interesting to note that for some discretised models two different, well-defined and
finely-structured attractors coexist, see for instance figure 13d. Thus the increase in T does not

only contribute for the deformation of the original attractor but also provokes the appearance of
another one.

Remark 2. In some cases it was noted that the first set of points (=10,000) lay on one attractor and
suddenly the system "switched" to the second attractor. It was then appropriate to consider if the
continuous simulation or discrete models with small T would also switch to another attractor for

larger simulation times. Such models were therefore simulated for longer periods but no change
was observed in their return maps.

Remark 3. Some discretised models do not switch suddenly from one attractor to another, rather the
maps of both attractors are simultaneously formed as the system is simulated.

Figure 14 shows the Poincaré map of the discretised model for T=r/600, Comparing this figure to
figure 13a it is clear that the ghost-effect is reduced, thus these figures suggest T<n/600 as an upper
bound for the discretisation period which is much lower than the ones suggested by the criteria of sec-
tion 4.1. Increasing the values of Ar and T yields models which take longer to settle to a steady-state
regime. Indeed, if Ar and T are taken beyond their respective critical values unstable models arise
which can be considered, in a sense, to take an infinite time to reach steady-state. It could therefore be

argued that the extra chaotic window in the bifurcation diagrams appear because the models were not
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in steady-state by the time the points in the diagram were taken. Poincaré maps, however, have
revealed that in such cases the models display genuine chaotic behaviour.

5. Conclusions

The dynamical effects of the integration interval, Az, of the fourth-order Runge-Kutta algorithm
and the discretisation period, 7, used in the derivation of discrete models for Duffing’s equation have
been investigated.

The main results can be summarised as follows:
a) Both Ar and T have strong effects on the dynamical behaviour of the considered models

b) Most of the effects are not clearly evident from the simulated time-series. However bifurcation
diagrams and Poincaré maps were shown to be more sensitive to such effects and therefore suit-
able for validating the considered models

c) The increase in Ar and T affects the respective models in different ways. For example, increasing Ar
induces new chaotic regimes which are observed in the bifurcation diagrams and also increases
the fuzziness of the strange attractors revealed in the respective Poincaré maps. On the other hand
increasingly large values of T shift the bifurcation points in the diagrams to the left, so that the
models become chaotic for smaller input amplitudes. This also narrows the range of values at
which chaotic regimes are observed. Models discretised with large T also present new strange
attractors which coexist with the original attractor.

The use of bifurcation diagrams and Poincaré maps has revealed that smaller values of Az and T
should be used in order to yield reliable results. It is not being argued that the smaller A and T are the
better, since such an assertion is obvious. What has been emphasised, however, is that the use of bifur-

cation diagrams and Poincaré maps suggest much smaller upper bounds for Ar and T than other cri-
teria.
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