The
University
o Of

= -n,‘-_“ u}:_.'!?- Bhe&i{“:ld.

This is a repository copy of Computer Aided Analysis of Nonlinear Systems.

White Rose Research Online URL for this paper:
http://eprints.whiterose.ac.uk/79296/

Monograph:

Billings, S.A. and Haynes, B.R. (1992) Computer Aided Analysis of Nonlinear Systems.
Research Report. ACSE Research Report 446 . Department of Automatic Control and
Systems Engineering

Reuse

Unless indicated otherwise, fulltext items are protected by copyright with all rights reserved. The copyright
exception in section 29 of the Copyright, Designs and Patents Act 1988 allows the making of a single copy
solely for the purpose of non-commercial research or private study within the limits of fair dealing. The
publisher or other rights-holder may allow further reproduction and re-use of this version - refer to the White
Rose Research Online record for this item. Where records identify the publisher as the copyright holder,
users can verify any specific terms of use on the publisher’s website.

Takedown
If you consider content in White Rose Research Online to be in breach of UK law, please notify us by
emailing eprints@whiterose.ac.uk including the URL of the record and the reason for the withdrawal request.

\ White Rose o
| university consortium eprints@whiterose.ac.uk
WA Universiies of Leeds, Sheffield & York https://eprints.whiterose.ac.uk/



mailto:eprints@whiterose.ac.uk
https://eprints.whiterose.ac.uk/

y '(O:Mf%‘(:s)
Lo
R X

COMPUTER AIDED ANALYSIS
OF
NONLINEAR SYSTEMS

S A Billings 1
B R Haynes }

$+ Department of Automatic Control and Systems Engineering
University of Sheffield
Sheffield S13JD, UK

1 Department of Electronic and Electrical Engineering
University of Leeds
Leeds 1LS29JT, UK

January 1992

Research Report Number 446



- CHAPTER 6

I. INTRODUCTION

. GLOBAL ANALYSIS OF NONLINEAR SYSTEMS
II. CELL MAPPINGS SYSTEMS

IV. CELL MAPPING DISCRETISATION

V. CELL MAP ANALYSIS

- VI. ANALYSIS OF A NONLINEAR FEEDBACK SYSTEM

A. Cell Map Analysis p=k, r=0

B. Cell Map Analysis u=r, k=0.5, 1.0, 1.25

VII. ANALYSIS OF A NONLINEAR SAMPLED DATA SYSTEM
A. Cell Map Analysis

VIIL. CONCLUSIONS

References



COMPUTER AIDED ANALYSIS OF NONLINEAR SYSTEMS

I. INTRODUCTION

In general the method of analysis applied to any nonlinear system depends to a large extent on the
structure of the model representation. To date little has been done to study the more qualitative
aspects of the type of nonlinear models produced as a result of control system modelling and
system identification. Analytical methods meet some of the requirements for certain classes of
models. Such methods however, tend to be valid for only one particular model structure or type.
For instance dynamical system theorists have studied the general nonlinear ODE as a dynamical

system in its own right, see for example Mees (1981), where the general form of system

representation is taken to be

x(t) = F(x(t)n) xeR™ peR™ 1)

where the vector pu represents some quasi static parameter set. Fundamental results, both
analytical and geometric in nature have been provided for (1) and these now form the basis for
much of the work in this area, see for example Guckenheimer and Holmes (1983). On the other
hand the attention of the control theorists has, to a large extent, been constrained to less general
model forms. This is Jargely as a result of a desire to solve specific problems in system theory.
Fundamental results in this area were obtained by Sandberg (1964) and Zames (1963, 1964). An
algebraic theory for the representation, realisation and analysis of nonlinear control systems has
since developed (Mayne and Brockett, 1973). In this work bilinear models have attracted a lot of
attention largely because they are more amenable to analysis. Many concrete examples of
bilinear systems do exist, see for example Mohler (1970, 1977). Subsequent work based around

these systems spawned a more general class of system known as the linear analytic system. These

take the form
x(t) = f(x(t),t) + ut)g x(t)) + u(f) ueR™
y(t) = h(x(t).t) ‘ 2

Realisation theory for these systems was provided by Brockett (1972), D’Alessandro, Isidori and
Ruberti (1974), Sussmann (1977), Fliess (1982) and Jakubczyk (1987). An algebraic approach to

the analysis of the discrete time equivalent of (2) has been pursued by Normand-Cyrot and
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Monaco (1984). Realisation theory for discrete systems was supplied by Clancy and Rugh (1978),
Sontag (1979) and Schwartz and Dickinson (1986). Additionally extensions to the familiar
concepts found in system theory and control have been provided by many authors, see for
example Hermann and Krener (1977), Brockett (1981), Rugh (1981), Isidori (1985), Desoer and
Lin (1985), Byrnes and Lindquist (1986), Fliess and Hazewinkel (1986), Vidyasagar (1986) and
Isidori (1989).

The discrete equivalent of (1), sometimes referred to as a recurrence or mapping, has been shown
to exhibit a richer set of characteristics than its continuous counterpart and spawned at least an
equal, if not greater, number of analysis techniques. Discrete maps have been extensively studied

as dynamical systems in themselves, prompted initially by the work of Li and Yorke (1975). Here

the general model representation takes the form.
Xe41 = g(xk,ﬂ) xeR™ ;,ueR"" €)

where 1 is once again some parameter vector. Extensive effort has gone into trying to classify the
recurrent behaviour of (3), see for instance Bernussou (1977), Guckenheimer ( 1979), Iooss

(1979), Gumowski and Mira (1980), Collet and Eckmann (1980), Preston (1983), Salvadori (1984)
or Holmes and Whitley (1984).

From the control viewpoint the main application of the dynamical systems approach has been the
analysis of chaos in feedback systems, see for instance Baillieul, Brockett and Washburn (1980),
Sparrow (1980, 1981), Holmes (1983), Cook (1985), Ushio and Hirai (1983) and Salam (1985).
Success in this area has not however had such widespread coverage as other areas of exploration,
in particular nonlinear circuit theory, see for example Chua and Lin (1990). This may be partly
due to the flourishing interest by control theorists in the algebraic and geometric approach.
Notable exceptions tﬁat make direct use of the qualitative approach include Mehra (1976) and
Sparrow (1980, 1981) on bifurcation free control; by Aeyels (1985) and Abed (1986, 1987) on
constructing stabilising feedback control for continuous systems; by Hahn (1985), using describing
functions; by Chang and Chen (1984) who considered PID control; and by Salam and Bai (1986),
Ydstie and Golden (1988) and Mareels and Bitmead (1988) who have considered bifurcation in

adaptive control systems.

In control studies the augmentation of the system model with one or more parameters enables the
study of the systems behaviour over a specified range of parameter values. It is important to see

how the behaviour of a system or model changes if the equations that make up that representation
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cfxange in some manner, if only because such models are seldom known accurately. In théhgeneral
nonlinear setting this problem is placed within the framework of structural stability and
bifurcation theory. Detailed knowledge of the models solution structure is then required in order
to classify the complete unfolding of the behaviour to be expected (Golubitsky and Schaeffer, 1985
and Golubitsky, Stewart and Schaeffer, 1988). In control this problem appears uhﬁer the title of
robustness. The dynamical systems approach is attractive in that it provides information on the
very type of qualitative behaviour the nonlinear model was constructed to emulate. In addition,
the method becomes of use precisely at the point where traditional linear control theory breaks

down, that is, when one or more linearised eigenvalues become degenerate.

Unfortunately these methods do have some drawbacks. First, being generally analytically based,
they depend on a good deal of a priori knowledge of the solution structure of the system. In a
general parameterised nonlinear model such information will not be available and indeed may be
difficult to obtain. Secondly, most of the analytical approaches available require the model

structure to take a particular form.

One possible solution to this problem, which we outline in this work, is to suspend the parametric
models in a discrete, or cellular, state space. This allows the application of a particularly attractive
and simple numerical algorithm which can be applied to a wide variety of model types whilst at
the same time maintain the attractive qualitative aspects of the dynamical systems approach.
Information on the systems stationary and periodic solution structure is provided along with both
local and global stability characterisation over a predefined region of the systems state/parameter
space. This information can be presented in much the same way as a traditional bifurcation
diagram. Although the method itself does not attempt to identify any particular bifurcation
behaviour, such characteristics can usually be identified by virtue of the changes detected in the

systems solution structure,

As an added bonus, the analysis of an unknown system can proceed in an interactive manner
whereby the parameter space of the problem is probed over specified parameter region for
nonlinear characteristics. This probing approach has proved to be a powerful aid in the analysis of

competing nonlinear model structures (Haynes and Billings, 1991).



II. GLOBAL ANALYSIS OF NONLINEAR SYSTEMS

The stability of a model, both absolute and structural, is dependent on the location and
distribution of degenerate singularities on the solution manifold of that system. Analytical
methods meet some of the requirements for certain classes of models. Such methods however,
tend to be valid for only one particular model structure or type and tend to rely on constructing a
reduced order system around a point where the interesting dynamics are d‘eemed to be situated.
In dynamical systems studies most analytical approaches tend to rely on a reduction method in
order to reduce the dimension of the problem under consideration. Such methods, when
employed, not only rely heavily on a priori knowledge of the solution structure of the problem, but
even if successfully applied, are only locally valid in a small region about the degenerate
eigenvalue. In diécrete dynamical systems, where a profusion of periodic behaviour is all too
common, constructing such a system is even more cumbersome. Obviously for application to the
type of discrete models encountered in sampled data systems, system modelling and system
identification a flexible approach that does not suffer these drawbacks is essential (Haynes and
Billings, 1991).

Traditionally numerical analysts have used path following or continuation methods to trace out
branches or arcs in the solution manifold of a system of nonlinear equations dependent upon one

parameter. To illustrate the basic concept consider an autonomous system, the stationary

solutions of which satisfy
f(x(®),u) =0 xeR" peR (4)

A smooth branch of solutions, x(s), is made up of a one parameter family of solutions to (1) or
(3), where s is some arbitrary parameter. Fig. 1. shows some typical solution branches. The
points y, and p, represent simple bifurcations. The point g, a furming point or limit point. At the
point p4 a multiple bifurcation occurs, where more than one eigenvalue or complex conjugate pair
of eigenvalues become degenerate. The basic problem then is to compute large segments of the
solution structure of (4), including the branches, as p varies. A secondary problem also exists,
that is the assignment of stability and the estimation of the corresponding influence domain within
R".

In the general case the stationary solutions will be smooth functions of u. For H€R this solution
set forms a path in R" *1, for a two parameter family, u€R?, a surface, and for peR™, where m >2,

a hypersurface of solutions. If an initial point, xo, ¢, is known then a path following algorithm can
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be used to trace out the branch (Keller, 1977). Given the general one parameter nonlinear
equation

g(xp) =0 g:R"xR—R" xeR® ueR (5)
and a point xo, o satisfying g(x,u)=0 consider the problem of calculating the solution set of (5)
near Xp,uo. The mathematical basis for the path following method is the Implicit Function
theorem. This ensures the existence of a smooth path of solutions x=x(x) near xo, o, provided
8x(X0.40) is nonsingular, that is xo,u0 is a regular point, where g,(x,u) is the usual nxn Jacobian
matrix. Given a regular point x,po the problem is to compute a neighbouring point

corresponding to p=po+Au where Ap is a small increment in u. A predictor corrector method is

typically used. Differentiation of g(x(u),u) with respect to u gives
ax
?“ op T8 =0 (6)

where g, denotes the n vector with components

i

Bu(xp) = [ %’ %gf] ™
Rearranging and evaluating about xg,uq gives

?;(Xm#o) = - (& T glma (vom) 8= (xoko) (8
A Euler predictor approximation x, to x(uo+Ap) is then given by

% = % + Au [%]0 | ©
which is used as a starting value to solve the system.

g(x,p+lp) =0 (10)

This simple Euler-Newton method works well and forms the basis of many computer codes.
However, the path following method runs into trouble at points where g? is singular, in particular
if the path x(u) bends back upon itself, as in Fig. 1. at p,, then the method fails. Addition of an
auxiliary equation to (5) is often used to circumvent this difficulty.

Many implementations of the above algorithm are in existence (Rheinboldt, 1986, Doedel, 1981,
1986, Brindley, Kass-Petersen and Spence, 1989). Unfortunately the available path following

methods provide information on only the local stationary solutions. In addition a priori
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knowledge is needed in the form of one or more p(_Ji:its on a kncﬁ;m solu;:-i(;n brancﬂ in order to
start tracing the solution arc. In order to detect any splitting at bifurcation points an additional
branch switching algorithm must be employed. Furthermore continuation methods provide no
information on the extent of the influence domains of the branches traced out. Indeed no account

at all is taken of the possibility of disjoint or isolated solutions existing.

Under natural conditions on f the set of solutions of (5) constitutes a differentiable manifold in the
product of state space and parameter space. The dimension of this manifold equals that of the
parameter space. At present the standard path following computational methods require the user

to construct a picture of a p-dimensional manifold from information along a 1-dimensional path,

(Rheinboldt, 1988).

In a true nonlinear control design attention would center not so much on computing a few
segments of this manifold, but rather in determining the form and special features of the entire
solution manifold and designing control schemes or selecting system parameters to achieve some
desired aim. Once a possible control had been identified robustness or parameter sensitivity, and
indeed structural stability would be considered by allowing variations in the nominal parameter

set. In general this is not easy to achieve and can lead to misinterpretation of the solution

structure.

In this work a dual approach has been adopted specifically with this aim in mind. This combines
the essentially qualitative ideas of Bifurcation Theory with a simple yet attractive numerical
algorithm. The analysis of nonlinear systems using a cell map approximation was first carried out
by Hsu, see for example Hsu and Guttalu (1980). This method has been extended to the
qualitative analysis of general nonlinear parameterised models such as (1) and (3). The approach
proves attractive for a number of reasons. Firstly, it provides a method of enumerating both the
stationary and periodic solution structure of the system over a given parameter range. Secondly,
it has been shown to detect all of the typically found bifurcation phenomena (Haynes and Billings,
1992). Thirdly, and more importantly, information of a global nature is provided on the extent of
the systems stability domains. As a result both local and global behaviour can be studied with

little need for a priori information.



III. CELL MAPPINGS SYSTEMS

The process of analysing a system using cell map analysis comprises of a number of steps. The
first is the suspension of the nonlinear system, (1) or (3), in a cell state space, Z". This is an n-
dimensional space whose elements are n-tuples of integers. Each element is called a cell vector,
or simply a cell, and is denoted by z. There are many ways to obtain a cell structure over a given
euclidean state space, (Hsu, 1987). The simplest way, which we make use of here, is to construct a
cell structure consisting of rectangular parallelepipeds of uniform size (squares, cubes etc). Letx;,
i =1,..,n be the state variables and let each coordinate axis of the state variable be divided into a
number N;, of intervals of uniform size ;. The interval z; along the x; axis is defined such that it

covers all the x; of interest and

1 1
(2= E)hi <x < (zm+ E)hi z = 12.,N; (11)

The n-tuplé 2, i =1.,n is then called the cell vector, denoted by z. A point x belongs to a cell z iff
x; and z; satisfy (11) ¥ig[1,n]. Each cell z is considered as a cell entity and the entire collection of
cells as the cell state space. Consider now the mapping between two cells z (j) and 2 (j +1), where
J=1,2.. is used to denote a sequence in the same manner as the iterates of a mapping. The cell

map, C(z), is a mapping of a set of integers {N +} such that

z(G+1) = C(z())) 2(j)eZ'cS (12)
The cell function, F(z,C), is then defined as

F(zC) = C(z) -z | (13)
A singular cell 2" as a cell satisfying the relationship

F(z',C) = 0 or z = C(z") : (14)
A periodic cell cycle, given that C°(z) denotes the identity mapping, is a sequence of K distinct
cells z°(j), j =1..,K, K being the minimum value which satisfies

zZ(m+1) = C™(2°(1)) m=1.K-1 z2'(1) = cX(2°(1)) (15)

Each element of the periodic cycle is a periodic cell. The complete cell cycle is labelled as P-K.
Additionally those cells eventually mapped onto the P-K cycle by (12) are defined as within the
domain of attraction , or DOA, of the cell cycle and labelled as the DOA-K cells.



The size of the cell state space is determined by the system itself. For most practical systems
there are ranges of values of the state variable beyond which we are no longer interested. This
means that there is only a finite region of the state space which is of concern. Similarly for a
dynamical system governed by a cell mapping there is only a finite region of cell space of interest,
and correspondingly a finite number, N,, of cells, named regular cells. The sink. cell is used to
encompasses all possible cells outside the region of interest. If the mapped image of a regular cell
lies outside the region of interest it is then said to be mapped into the sink cell. The regular cells
are labelled by positive integers {1,2..,N.}. The sink cell is labelled as {0}, the zero cell. This
makes the total number of cells N +1, such that S={N,.+}. The set, S, is closed under the

mapping described by
z(j+1) = C(z(j)) z(j), z(j+1)eZ"cS
C(0) =0 S = {N.+} (16)

The sink cell, C(0), is a P-1 cell. The set of regular cells within the influence domain of the sink
cell, these being eventually mapped to C(0), are in the domain of attraction of the sink cell, and
labelled the DOA-Sink cells.

IV. CELL MAPPING DISCRETISATION

The cell map, C(z), system may be considered as a discrete system similar to the point mapping
Xe+1 = 8(%) xeR™ (17)

In order to make use of the qualitative ideas provided by dynamical systems theory it is necessary

to extend the algorithm of Hsu to the analysis of a more general parametérised nonlinear system
(Haynes and Billings, 1992).

Xe+1 = 8(Xe, 1) xeR™ peR™ (18)

Applying the center point method of discretisation requires the division of R™ into a collection of

cells according to (11) and the calculation of each cells center point x(4)(j) such that

hi :
H0G) =20+ hz() - 5 z()=L.N; j=L.Ni i=l.n (19)

where ; is the cell size and x{") the lower bound defining the region of interest such that

xD<x<x®, where x® = (x{?,..x" ) and x® = (x{M,..x#) ). Similarly R"* is discretised using
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™ L& . . . _
BOG) = w0 +gm0) - & 2()=1 N jeLN, immetlomen, @)

where g; is the cell size over the region defined by p®@<u<u® where p®=( pi’),..,y,(,’” ) and

p®=( p{"),..,pf,’:. )- The point mapping or image of the center point x(@)(}) is then calculated
using (18) such that '

xfh = g (", u®) ' (21)

and the cell map C(z) can be constructed by determining the image of each cell within S using

G(z()) = z(j+1) = INT

xD(k+1) - xO . .
h'- + I = L..,nx ] = L..,N"

C(z()) = z() i=m+l,n+n, j=1.,N; (22)

Note we are in effect constructing n,, separate cell mappings of dimension n,, each representing a

slice within the parameter space p =(p1,..,y,,p)r.

A similar approach to the construction of the cell map system may be taken for any continuous

nonlinear model that can be written in the form
x(t) = £(x(),n) xeR” pueR™ (23)

It is straight forward to approximate the image of a cells center point for (23). Take a point
xi, u@ within xeR”, fix values for the parameters p@eR™, choose a time interval r and
calculate the resulting trajectory for =0-r to give x{%);, p@. All this requires is a suitable

integration scheme to solve (21) given (23)
x( = x(")@ = x(0)@ + [ 1(x9@), @ )ar (24)
0 :

The only additional information needed is the time step r and an integration step size. T is chosen
as would be normal for the problem, bearing in mind the choice of integration method. The time
step r is dependent on the cell size and should be chosen such that image of the center point of a
cell lies, on average, within a neighbouring cell. This obviously depends upon the strength of the
local vector field and the cell size chosen. If the interior of the cell contains an attracting
equilibria, the trajectory described by (21) will remain within that cell. An interactive approach to
the choice of 7 is best adopted. Generally choosing r to be 3-15 times the integration interval T
gives good results. Repeating the above calculations for each cell within S and applying (22-24)

approximates the cell map C(z).



V. CELL MAP ANALYSIS

Having constructed C(z) the classification of all cells within S is carried out using a modified
version of the unravelling algorithm (Hsu and Guttalu, 1980). The algorithm involves calling up

each cell in turn and processing it in order to determine its global characteristics. Each cell is

then classified accordingly.

A cell may be a singular cell, P-1, or a periodic cell cycle, P-K, satisfying (Sj or (6). The set of all
such cells make up the invariant orbits within Z". When K =1 a fixed point has been located,
when K >1 a periodic solution or limit cycle has been detected. Alternatively a cell may simply be
a regular cell in the DOA of a P-K cell. Each such cell is then said to be in the same group and
have the same periodicity as that cell cycle and is labelled accordingly. Finally a cell may be
mapped by (21) outside the region of interest into the Sink cell. Such a cell is then said to be in
the domain of attraction of the sink cell, the DOA-Sink, and is labelled accordingly. For more
detail on the unravelling algorithm and is variants see Hsu (1987) or Haynes and Billings (1992).

The advantage of the parameterised cell map approach outlined above is that it combines the
qualitative aspects of dynamical systems theory with the global aspect afforded by the unravelling
algorithm. In implementing the above algorithm many variations are possible. The version
developed in this work focuses on the problems of enumerating the global characteristics of a
wide variety of parameterised nonlinear systems. One aim throughout this work has been to
maintain an interactive aspect to the algorithm. This enables the analyst to probe the dynamics of
a problem by varying both the extent and form of the cell state space. In order to facilitate this the
algorithms outlined here have been packaged into a prototype CAD tool that enables the probing

and analysis of a wide variety of nonlinear systems.

VI. ANALYSIS OF A NONLINEAR FEEDBACK SYSTEM

In a nonlinear system the type of bifurcation characteristic obtained can often depend on the
bifurcational parameter selected. In real problems, where there may be a number of parameters
of interest the selection of the primary parameter may be critical. Two or more parameters may
interact strongly, requiring greater powers of analysis to be applied to the problem. In the
following example a parameterised cell map system is constructed for the nonlinear feedback

system depicted in Fig. 2. described by
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x(t) = Ax(f) + F(x(t)) + Bu(f)  x€R™ ueR™ yeR™ F-R*—R™
y() = Cx(r) Ainsn, Binpmy, Cingn,
u®) = r-Gx() reR™ G :mxn, (25)

Choosing n, =2, n,=1 and n, =1 gives a SISO system with second order dynamics for the plant
element. Note in this example we are dealing with a linear plant albeit as part of a nonlinear
feedback loop. It should be noted that we could just as well be considering a nonlinear plant

characteristic and are by no means limited to the model structure depicted in Fig. 2.

In this problem the main focus of our attention is on determining what influence the control
matrix G and the set point vector r have on the overall system characteristic. In order to simplify
this example further assume that the feedback matrix comprises just a single parameter and the

nonlinear element is a simple cubic polynomial

20y -x 2)3] 26)

G=[k—k] F(x)=[ 5
A=[(1)-01] B=[(1)] c=[01] 27

so that system set point, r, and feedback gain, k, become the chosen system parameters.

The characteristic of this system is dominated by the system gain k. This is easily demonstrated
by performing a set of simple step tests. Large gain k, or large set point values r, result in an
oscillatory response. As it stands the system can be analysed directly, both Hopf Bifurcation
theory (Marsden and MaCracken, 1976) and Describing Function methods (Hahn, 1985) have

been applied with some success.

A, Cell Map Analysis u=k, r=0
Consider the cell map analysis of the system, writing (25) in the form of (23) gives
x(t) = F(xrk) x€R? reR keR (28)

Setting r=0 reduces the dimension of the parameter vector to one, further simplifying the

problem, and leaving the primary parameter, u =k, the system gain. Thus

x(t) = F(xp)  p=k r=00 xeR® ueR (29)
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It is now necessaryito Eefi;e tl_me regfon of interest, tl;xat is the range over which to construct tﬁe
cell map (12). Choosing x;€[-1,1], x,€[-1,1], p€[-0,2] and the number of cells to be
175x175x30 cells allows the application of (19-24) to give C(z). Subsequent application of the
unravelling algorithm gives rise to the cell entities depicted in Fig. 3 This diagram provides almost
complete characterisation of the systems behaviour over the parameter range .0.0-_<_ks2.0 for
r=0.0. Within this range the shaded areas represent the stable DOA’s of a complex sequence of
equilibria indicated by the dotted curves. These curves are made up of either P-1 singular cells
(fixed points) or P-K cell cycles (limit cycles) that have been detected by the unravelling
algorithm. The entire DOA comprises the set of all cells that are ultimately attracted to either a

stable P-1 or P-K asymptote within this region.

For 0.0<k<1.0 a number of P-1 cells are detected along the x-axis of the diagram. This implies a
stable attractor exists over this parameter range which exerts an influence domain, the size of
which is defined by the extent of the shaded DOA. The DOA forms a cone around the x-axis
about which a number of longer period P-K cycles‘ can be detected. These unstable cell cycles
mark the separatrix between the stable DOA and the unstable sink cell, there form being more

clearly depicted in the lower plots of Fig. 3.

At k=1 a split in the solution structure is evident leading to the formation of two new stable
asymptotes located symmetrically either side of the x-axis with a further, unstable, asymptote
existing along the x-axis for 1.0<k<1.5. This qualitative change in the systems characteristic
implies a pitchfork bifurcation has occurred around & =1.0 (Guckenheimer and Holmes, 1983).
At k =1.5 a further split in the solution structure occurs resulting in the formation of a stable P-K
limit cycle for 1.5<k<2.0. This qualitative change implies a Hopf type bifurcation has occurred.
The lower diagrams of Fig. 3. emphasise this essentially 3-D characteristic which we christen the
feedback induced behaviour for the system.

A number of points are worth emphasising when considering this analysis. First, very little a
priori knowledge of the system characteristic is necessary in order to carry out the analysis. Yeta
broad and complete picture of the systems characteristic can be quickly obtained. Secondly, it is

quite feasible to alter the coarse cell size chosen so that more quantitative information can be
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extracted from the cell diagrams at any particular point.

B. Cell Map Analysis u=r, k=0.5, 1.0, 1.25
In order to determine the influence of the set point r on the overall system characteristic now

choose the primary parameter s =r and fix the value of feedback gain to k =0.5,1.0 and 1.25. The

newly parameterised problem is suspended in the cell map framework such that
x(t) = F(x,p) p=r k=05-125 xeR* peR (30)

Firstly fixing k =0.5 and defining the cell state space over x,&[~1,1], x,€[-1, 1], u€[-0.2,0.2}, for
175x175x30 cells, allows the construction of a new cell mdp C(z). Subsequent application of the

unravelling algorithm results in the pattern of cell entities in Fig. 4.

Once again the upper plots show the distribution of P-K cycles but this time the shaded area
represents the DOA of just the P-1 cycles, the DOA P-1. That is just those cells that are
asymptotic to a fixed point. These vary with the input set point over the range -0.2<r<0.2.
About the point r==0.2, a sequence of periodic, Hopf type, cycles appear marking the transition
to instability at the edge of the DOA. The lower phase plane plots show this input induced
behaviour more clearly. For k=0.5, and a small input, the system is attracted to the stable

equilibrium. For larger input set points, unstable limit cycles surrounding the origin induce a

more oscillatory response.

By considering the problem as essentially two dimensional the analysis shows periodic behaviour
to occur at lower values of gain k than expected when r =0.0, that is we have detected limit cycles
for k=0.5. In essence of course we have a two parameter problem in which the limit cycle

characteristic is both feedback and input induced.

Taking k =1.0 and repeating the above analysis, results in the diagram Fig. 5. A similar scenario
exists, the stable origin undergoes a pitchfork type bifurcation. Notice the system now has a
reduced domain of stability with respect to the set point, roughly | r | <0.1, but increased internal
stability with respect to the state variable x ( the DOA in the lower plots being increased in size ).

For values outside this range a sequence of periodic bifurcations again leads to instability.

Taking k=125 results in the diagram Fig. 6. which further confirms this trend. Oscillatory
behaviour increases further as the equilibria move closer to the unstable limit cycles marking the

division between the stable and unstable domains.
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VII. ANALYSIS OF A NONLINEAR SAMPLED DATA SYSTEM

To further illustrate the utility of our approach consider now the analysis of the sampled data

system depicted in Fig. 7. If the feedforward element or plant model is linear then

x(t)
y(?)

Ax(t) + Bu(t)

C x(t) (31)

and, given digital control with sampling period T and an implied ZOH element, then within the
(k +1)* sampling interval (31) becomes

x(t)
y(®)

Ax(t) + By u(t) = u

C X(f) l'E[fk,tk +1 [ (32)

and under the usual assumption that the plant is time invariant
T
Xes1 = ey + f e ¢=1) B u, dr (33)
0

Thus an exact recursive relationship has been obtained in the form
Xe+1 = Pxp + Awy
Yo = Cx (34)
where @ and A are constants dependent upon T. Assume now that feedback is applied such that
we = 1 - (V) (35)

where g(.) is either a linear or nonlinear function of the output. If g(.) is linear the system (32-35)

can be analysed using well known techniques. If g(.) is nonlinear (32) can be rewritten as
Xes1 = F (X, p) Xx€R™ ; peR™ (36)

where the parameter p is say the set point p=ry. If the plant is instead a general nonlinear system

the model (31) is no longer valid and the description

x()
y(®)

f(x(¢),u(t)) £R™*xR"—R™ 37

h(x(?)) h:R*—R™

must be used but in this case an exact discrete model of the plant cannot be formulated.
However, all that is necessary for the system to be analysed using a parameterised cell state space

is that the feedforward and feedback elements can be combined into the form
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Xe+1 = F(x,p) (38)

or

X(t) = F(x(t), p) (39)

In the first case the plant has been transformed directly into the nonlinear map F().. Normally this
requires that the feedforward element in Fig. 7. is linear. The construction of the cell state space

system, C(z), then proceeds using (18-22). In the second case, the continuous plant exhibits a

nonlinear continuous characteristic and use must be made of (24).

A. Cell Map Analysis

Consider now the effect of say the sampling interval on the qualitative behaviour of a nonlinear
sampled data system. Assume in this case the plant is a linear system and the feedback g(.)
nonlinear. Settingn =2, /=1, m =1and 4, B, C and g(x) such that

no
A‘{oxz]

and taking \; =1, A, =-1, by =b;=1and ¢; =c;, =1, completes the system definition.

B = [‘g;l C = [01 cl] gx) = x3 (40)

The adoption of this particular block structure may seem restrictive, bearing in mind the flexibility
of the Cell Map approach. However this system was originally considered by Ushio and Hirai
(1983) in order to demonstrate chaos using an analytical approach. There the linear form of the
feed forward element played an important role in the analysis. The same structure is adopted here

purely as a basis for comparison.

Suspending the system in the Cell Map framework the input set point r is selected as the primary
parameter. Next define the cell state space such that x;€[-2,2], x,€[-2,2] and p€[-2,2] over a
mesh of 150x150x30 cells. Then applying (18-22) to construct C(z), over the region of interest for

the three separate cases; T=0.1, 7=0.2 and T =0.3. Application of the unravelling algorithm this
results in the cell diagrams Fig. 8

The diagrams produced exhibit a number of interesting features. For T'=0.1 the system exhibits
an asymptotically stable fixed point over the range of input set point considered, p =re[-2,2]. This
in indicated by the curve of P-1 periodic cells on the graph. For 7=0.2 a stable P-2 cycle is
produced at r=+0.4 which is in agreement with the behaviour predicted by Ushio and Hirai
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(i983). For values of r outside this rénge a sequence of p;;iodié__f’-K cycles are detected which
grow in amplitude as r increases. Note that the coarse cell size used in this analysis and the
corresponding plots leads to some gaps that distort the cone like characteristic. This situation can
easily be improved by adjusting the number of cells used, however, we choose to leave the results
in this first-cut form, preferring to emphasise the ease of analysis of the method as a quick route

to obtaining a broad global picture.

For T'=0.3 this trend increases with P-K cycles evident over the full range of set point values

considered. Indeed this periodic behaviour is so pronounced that it deserves further attention,

Notice that the Cell diagrams show the origin, at r =0, as unstable for this system. This is due to
two unstable manifolds emanating from the fold bifurcations located asymmetrically either side of
the origin. | |

Fig. 9. shows the response for a step input r =0.4 applied to the system for the cases T'=0.1,
T=02 and T=0.3. The resulting outputs confirm the P-1, P-2 and P-K behaviour predicted
above. A similar pattern of cyclic behaviour is displayed if the sampling interval is fixed and the
set point r is varied. In the lower plot in Fig. 9. the behaviour for 7=0.3 and at r =4, appears as
P-K cycles of significantly larger period. Fig. 10. shows the phase plane plot of this response
plotted over 2000 points. This plot displays the characteristic typical of an aperiodic or chaotic
system, the outline of the invariant strange attractor being clearly visible in this graph. Of course
due to the finite number of cells used in this analysis, the unravelling algorithm can not detect
aperiodic chaotic phenomena. However, it is usually a straight forward matter to decide whether
periodic, P-K, behaviour with K large, is actually periodic or indeed aperiodic/chaotic. Typically
either a phase plane, frequency domain or Poincare Map based analysis can be used to ascertain
this. As it stands the analysis of this simple nonlinear sampled data syste;n has served again to
emphasise the utility of the probing approach made possible by carrying out a parameterised cell

map analysis within the framework of a CAD analysis / design tool.

VIII. CONCLUSIONS

The cell-to-cell mapping provides a convenient framework for the analysis of both continuous and
discrete systems. Development of the suspended cell state space system, enabling the analysis of

systems of parameterised bifurcation problems, has proven successful. The preceding examples,
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although simple, succeed in illustrating the concepts behind this approach. The combination of
qualitative and numerical techniques has provided a useful, and more importantly flexible,
methodology for the analysis of nonlinear systems. Providing both local and global

characterisation of a wide range of systems models at a level of detail appropriate to the problem.

From the theoretical point of view the methods are still in the early stages of development. The
effectiveness of the algorithms shows itself in the concrete global results which are difficult to
obtain by previous methods. This work has gone some way to achieving the aim of developing an
integrated tool for the analysis and probing of nonlinear dynamics within different representations
of a nonlinear system. At the moment a bifurcation is detected, or inferred to exist, simply by
evidence of change in the solution structure at some point within the cell state space. Further
work is required to enable a more detailed, possibly analytical, classification at these points. The
examples in this section have been chosen for their illustrative properties. Aﬁother productive
area of épph'cation of the approach is in the analysis, and qualitative validation of nonlinear

models constructed using system identification techniques (Haynes and Billings, 1992).

It has been shown how a qualitative approach based around using the parameterised cell map can
provide useful information on periodic, and to some extent aperiodic, characteristics within a
system. Furthermore this study has served to illustrate just how important parameters such as
sampling interval, set point and input excitation can be in determining the qualitative
characteristics of nonlinear systems. Both stability characteristics, periodic behaviour and to
some extent aperiodic behaviour can all be revealed in the analysis. The qualitative approach
allows both a broad based coarse probing of nonlinear dynamics as well as more detailed or

focused analysis around any particular points of interest.
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FIGURES

FIG. 1 Typical solution branch structure.

FIG. 2 Nonlinear Feedback System Block Diagram

FIG.3 CELL Diagram System u=kr=0.0

FIG. 4 CELL Diagram System p=rk =0.5

FIG.5 CELL Diagram System p=rk =1.0

FIG. 6 CELL Diagram System p=rk =1.25

FIG. 7 Nonlinear Sampled Data System

FIG. 8 CELL Diagram System

FIG.9 Step Responses, T =0.1,7=0.2and T =0.3,r =0.4

FIG. 10 Chaos Phase Plane Plot T =0.3
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