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Abstract: Phase shift is very important in the frequency response analysis of nonlinear systems
and in this paper the phase response function is analysed and interpreted to provide a clear under-
""standing of the problem. Nonlinear systems which include delay elements are also discussed and
simulations of both continuous and discrete time nonlinear systems are included to demonstrate

the concepts involved.

1. Introduction

The frequency domain analysis of nonlinear systems is characterised by a series of
transfer functions which are defined as the multidimesional Fourier transform of the
Volterra kemnels. The estimation and analysis of these higher ‘\ordcr frequency response
functions has recently been studied by several authors(Vinh et al, 1987; Billings and
Tsang, 1989a, 1989b; Cho et al, 1992). However, before the method is accepted by
engineers and scientists and applied to solve various practical problems a full under-
standing and interpretation of the complex-valued multi-dimensional functions, both in
magnitude and phase, must be formulated. So far some general studies on nonlinear
transfer functions have been reported and an interpretation which is mainly in terms of
magnitude has been obtained(Zhang and Billings, 1992; Peyton-Jones and Billings,

1990). But very little work has been done on the analysis or interpretation of the phase
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response. In the present paper, attention will therefore be focused on the phase aspects
of nonlinear systems and the important influence of phase on the total systems

response will be demonstrated analytically and illustrated using simulated examples.

Initially some results for linear systems are briefly reviewed to provide a foundation
which can be extended to the nonlinear case. An expression for the phase response for
a wide class of nonlinear systems is then deterived and illustrated using a simple
example. In §4 the phase response to a multi frequency input is derived to illustrate
how the phase shift of both the input excitation and the phase response of the non-
linear system inﬂuence‘thc overall system peSponse: The effects of delay elements on
the system are considered in §5 and a simulated example is discussed in detail in §6 to
demonstrate in a very simple way the importance of phase in the interpretation of non-
linear frequency response functions. An overview of frequency mixing which plays a

prominent part in nonlinear frequency response analysis, is provided in Appendix I.

2. Linear Case - A Review

It is well known that the input/output relationship of a ligear time-invariant system is
completely characterised by a transfer function H (s). Thc frequency domain character-
istcs can be obtained directly from the frequency(sinusoidal) response function that is
the transfer function in which s is replaced by jw. In general, H(jw) will be a

complex-valued function of the frequency variable ®. This can be expressed in Polar

form as
where I'(w) = |H (jw)! is the magnitude and ®(w) = L H(jw) is the phase angle of

H(jw). In the frequency domain, the Fourier transforms of input and output, if they
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exist, are related by a simple product
Y(Jo) = Hjo) U(w) (2)

If a sinusoidal signal u(¢r) = A -cos(wt) is aﬁplied as a stimulus to the system, then the

steady state response is
¥ (1) = AlH (jw)lcos[ot + LH (jw)]
= A T(w)cos[ot + P(w)] 3

It is apparent from the discussion above that H (j w), or equivalently the two real func-
tions I'(w) and ®(w), completely characterise the effect of the linear system on a
sinusoidal input signal of any arbitrary frequency. In fact I'(w) determines the
amplification (T'(w) > 1) or attenuation (T'(w) < 1) imparted by the system on the input
signal. The phase response ®(w) determines the amount of phase shift imparted by the
system on the input sinusoid. Concequently, a knowledge of H (j ) allows the deter-
mination of the response of the system to any sinusoidal input signal. If the input to
the system consists of more than one sinusoid, the superposition property of linear sys-
tems can be used to determine the response(See Appendix I). Since H (jw) specifies
the response of the system in the frequency domain, it is called the frequency response
of the system. Correspondingly, I'(w) is called the magnitude response and ®(w) is the
phase response of the system. Clearly, in the linear case, both magnitude and phase
response have a clear physical rheaning and provide a valuable aid in systems analysis

and synthesis.

Nonlinear systems can not be described by the simple transfer function because: (i) the
output for a sinusoidal input is not necessarily a sinusoid of the same frequency as the
input; and (ii) nonlinear systems do not obey the superposition principle. Employing

the Volterra series and multi-dimesional Fourier transform a generalised transfer




function or frequency response function for nonlinear systems can be defined. But the
interpretation and application of the magnitude and phase response are not as straight-

forward as in the linear case.

3. Magnitude and Phase Responses of General Nonlinear Systems

For a general nonlinear system, the n-th order generalised frequency response func-
tions, or simply, n-th order transfer functions, are determined by taking the multi-

dimensional Fourier transform of the n-th order Volterra kernels of the system

H,(joy, - Jw,) = J‘ 3§ J' h,(Ty, * **,T,) e-j(m|1t+-..+m.1.) dty -+ dr, 4)

Generally the n-th order nonlinear transfer function H,(jw,, - ,j®,) is multi-

dimensional in nature and a complex quantity. In Polar form

)// 7 PR
Hn(jﬂ)l,f"' * ,j(l)n) — rfl (ml’ . s . ,mn)e]¢ﬂ(ml! vmn) (5)
where, as in the linear case, I',() = IH,(jwy, - - ,jo,)| is called the magnitude

response and

mH, oy, jo,))

(0, 0 = LH, Wy, ,j0 = tan 2 .
A 1 ) Vo, J @) Re[H,,(JUJp'”Jmn)]

(6)

is the phase respons and /m[-] and Re[-] are used to denote the imaginary and real
parts of a complex quantity respectively. Both functions are real and multi-variate. The
magnitude response function I',, () can take on both positive and negative values. Since
—1 can be expressed as e®/™, the sign changes in T, (") can be accomodated in the
phase response @, (-). In this case the phase jumps of im will occur at frequencies
where T, (-) changes sign. Clearly the linear system is a special case where all the

higher than first order transfer functions are zero. Notice that all the frequencies



@}, - - ,0, run from —ee to . From the definition eqn.(4), frequency response func-

tions of real systems are -conjugated when the signs of all the arguments are changed

so that
H,joy, - mjo,) = HyGoy, - - jo,) )
Therefore the phase response &, (-) is an odd function of all the arguments
D, (-wy, " m0,) = =Pyt ,W0,) (8)

In other words, &, (-) is negatively symmetric along the plane @+ - - * +®,=0. Need-

less to say the magnitude I', (") is an even function. Furthermore, from eqn.(7) it is

observed that
Im[Hy (o, ,jo, —jo, - =jo)] = 0 n=12,. ©)
and
0 Re[Hp()]20
Don (8, =7 0, =0, <=+ ) = { . Re[H, ()] <0 G0

The d.c. component is known to arise in this case because the frequency produced is

ZEr0.

Consider a simple nonlinear circuit which is described by the differential equation

dy ()

ey (@) = cou(t) + cau(t) 11)

The linear and nonlinear transfer functions for this system are

Ca

U = T

12)

and

C3
1+ (Jot+wy

Hy(jw,jwy) = (13)




respectively. Both H,(-) and H,(-) can be expressed as polar form as

H\(j0) = T,@ e/®@  and  HyGopjey) = Tio,epe’ ™ (14)

with

¢ -1 @
() = ———:—2 and  @,(@) = ~tan~ = (15)
ci+w 1

and

c @
2 and  Bofar o) w—tan It

I (w,, =

For this specific example, the second order phase response is in a rather similar to the

(16)

first order counterpart but with a dimensional extension. Setting c¢;=5, ¢,=5 and
c3=—0.8 plots of these four real functions, all within the range of +5 Hz, are given in
Figs.] and 2. Because of the conjugate symmetry of H,(:), the plots of
H;(jw), 0<w < = and {-;2(1' @;,j @,) with 0<w;<e and —eo<@,<eo fully characterise

il

the transfer functjons./’l'hc graphical analysis for the multidimensional phase responses

will be presented in the future report.

4. Computation of the Phase Response to a Multi-Frequency Input.

A phase-shift value is always connected to a particular sinusoidal signal. The phase
response function is actually used to determine the phase-shift of each particular fre-
quency component in the output. Consider an input composed of K sinusoids with

different frequencies and phase shifts:

K K |A . K |A .
u@t) = Y I4;lcos(w;t + LA) = 3 {—'—e"“"] =X {—‘—eﬁ“ff‘] (17)
i=1 i=—K 2 i=K 2

where ®, is k-th frequency with amplitude |4, | and phase shift 8,=LA4,. 4, is a
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complex number which gives the amplitude and phase of the kth frequency with the
properties that Ag=0 and A_;, = A: . The total response of the nonlinear system can
be expressed as

N
y()= 2% ya(t) (18)

n=1

where y, (¢) is n-th order output generated by the n th order nonlinearity of the system.

It can be shown that subject to the multi-tone input u (¢) of eqn.(17),

1 K K . ; j(mkl+."+mk)'
Y. (@) = '5;- >t ¥ [Ak, A H oy, 0 e ,ja)k')Je * (19)
k]=-K k,'—'-K
Writing all the complex quatities in Polar form yields
1 K K
Wwh="r X 0 X ['Akr-f‘k. T @y - ’m“-)]
2" k=K k=K
ej(mtl+ ey Mo+ (B b 40 )+ D@ ey ) (20)

where 6, are the phase shifts associated with the input sinusoids and @, (") is the
phase response of thé system. It is seen that when a sum of K sinusoids is applied to a
nonlinear system, the output consists of all possible combinations of the input frequen-
cies —Wg, * * * ,—W_;,®, * - * ,Wg taken n at a time. The phase angle of each particular
term(a phasor) at frequency (@, +---+w, ) is determined by the phase response
o, (@, -+, ), as well as by the relevant combination of phase shifts associated
with the input frequencies. Namely, the phase shift for this particular frequency term is
O+ - - -+6, ) + D, (wy,, - - -, ). This is a very important and intuitive conclusion

for the nonlinear phase response to a multi-tone input.

Notice that eqn.(20) is only a general mathemetical expression in which many terms

are identical if the symmetric transfer function is used. In order to derive an expression




for a specific frequency component, define M = (m_g, - - - ,m_ym,, - - - ;mg) as a fre-

quency mix vector(Chua and Ng, 1979), where m;, k =1, - - - K, are nonnegative
©, .
integers which denote the number of times the frequency f "=ﬁ appears in the fre-

quency mix. An arbitrary frequency mix is then represented By the vector as

K K
fu = X mfy =2 (m —m_)f; @D

and the sum of all terms with frequency f); in the nth order output component y, ()

is given(Billings and Tsang, 1989) as

7. @) = 2|1 A

VnGifu)=—| 1] —

% 27 =2 mi!
i#0

XH,(m_g{f_g}, - m_{fbm{f1}, - mg{fg D)

x ed T ut (22)
A

7

where m, (f,) denotes m, consecutive arguments with the same frequency f, and the
overhard bar '’ denotes that the term is still a complex phasor rather than a real
sinusoidal function. Using {Mf } to denote the argument list of frequencies the fre-

quency response function can be expressed in polar form as

H,Mf)

Hym_g{f g}, - om_((f}m{f1)s - omg{fg D)

rn (Mf )ef‘bn(Mf) (23)

The real sinusoidal component at frequency f), can then be obtained by combining

two complex conjugated phasors

yn(t;fM)=)Tn(t;fM)+.)Tu(t;-fM)=2Re[}Tn(r;fM)]

_ n!
20D - oy my ) (1)

-8 -
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X cos[ 21tfyt + @y + D, (Mf) ]

with

(25)

The phase shift at frequency f,, is therefore ©y + &, (Mf). This is a generalisation
of the linear case where now the frequency is a mixture of the input frequencies rather
than an individual input frequency. For example, for a two frequency input
u(t) = cos(2nf | + 8,) + cos(2nf , + 6,), the component at the intermodulation fre-

quency (f; + 2f ,) in the third order output will be

y5(:0,0,1,2) = %1"3(fl,f2,f2)cos[2n(f1+2f2) + 8,428, + B3 1.f of 2]

\
\

\
\Observe that y, (£;7,) is only one sinusoidal component at frequency f,, contained in

the total response. It is important to realise that several different frequency mixes are
capable of contributing to the response at the same output frequency. In other words,
there may be several sinusoids, each of which has the same frequency but with a
different phase-shift, mixing together to form a frequency component at the output. In
this sense the phase response is of equal importance to the magnitude in determining
the total response at a particular output frequency. To illustrate this remark, consider a
nonlinear system for which the highest order response is fifth order. Let the input con-
sist of two sinusoids at frequencies f; and f,. The output contains a frequency com-
ponent at 2f ,—f ; that is generated by three frequency mixes represented by the vec-

tors M = (0,1,0,2), (1,1,0,3) and (0,2,1,2), that is
y(t:2f o=f 1) = y3(£:0,1,0,2) + ys(¢;1,1,0,3) + y5(r;0,2,1,2)

= 0.75|H 3(=f 1.f 2. DIcos[2R(Q2f o=f | 1#20,-0; + D3(=f 1.f 2./ )]

-9.




+ L251H 5(=f ,=f 2f 2uf 2 DICOS[2RQ2S o=f 20,8y + Ds(=f 1,=f 2./ 2.f 2 )]
+ 1.875|H s(=f 1,=f 1f 1 2/ DIcos[2R(2f o= 1 1+26,-8) + Ds(—f 1,~F 1S 1/ 2 D]

Clearly, the frequency component (2f,—f;) in the output is generated by three
sinusoids of the same frequéncy but with different phase-shifts and different magni-
tudes. The differences between the phase shifts of the three sinusoids only result from
the phase response functions. The phasor diagram of Fig.3 illustrates this effect for
this example and shows the importance of the phase response in determining the final

response.

5. Delays in Nonlinear Systems

Nonlinear systems with delay elements which are often encountered in practical situa-

‘\‘*ﬁons can be represented by the configuration shown in Fig.4. The output of the delay

élement is
v(t)=u(t—d) (26)
where d accounts for the delay time. The transfer function of the delay element is
Hy(jw) =e7%d

Although the delay element is linear, the overall system with the delay is still non-
linear. Suppose that the original nonlinear system can described by nth order kemels
};(') and transfer functions 1-:(,, (*), n= 1,2.... By use of the Volterra functionals, the nth
order output y, () can be expressed as

yn(r)= I I hn(Tl"”'Tn) ﬁv(r—tf)dtll n>0 (27)
—oa i=1

—t

Substitution of eqn.(26) yeilds

- 10 -




[ [ Ay ) TTuG—d—,) d;

— i=1

Yn(t)

& n
[ oo | hatr=d, - - - 1u=d) TTu (=) d; n>0

— —s i=1

]

(28)

This suggests that the nth order Volterra kernel of the overall system is
ha(ty, - oty) = hy(ty=d, - - - 1, =d) n=12,.. (29

where A, () is the kernel with no delay. By definition, the overall transfer function is

Hn(j(l)l, S ’jmn) = J- c e J ﬁn(‘frd, 'TT ,'C,.,—d) e‘j("’l‘tﬁ""ﬂﬂ.‘fa) dTl e dr

—

n

oo

= I e I };r:(‘cl’ Cee ) e—f(m|1|+--.+m,,1:,) e—j(w]-q--. -+, )d dty - d1,

= gd@r e g Gy, Lj@,) (30)

N

As expected that the delay has no effect on the magnitude of the system, which
remains I » (), but it does modify the phase response of the various order transfer func-

tions.

6. Simulations

In a linear time-invariant system the frequency content at the output is always identical
to that of the input. But this is not true for nonlinear systems which can generate new
frequencies which are not contained in the input. These new frequencies can be
divided into two catogories: harmonics and intermodulations. Each frequency com-
ponent will have an associated phase-shift which depends on the nonlinear transfer

functions as well as the phase-shifts associated with the input frequencies. In this

-11 -




section, an example nonlinear system is simulated to illustrate the importance of the
the phase response to a single and a multi-frequency sinusoidal input. It is shown how
the output is affected by both the phase-response and the phase shifts in the input. The

simulated nonlinear system is described by the following discrete-time model
y (k) =09y (k-1) + 0.1u (k-1) + 0.1u3(k-1) (31)

The first and second order frequency response functions of the system are given by

0172
SRy e
and
0.1~ 2R 1+
Hof 1.f ) = —— (33)

y O'Qe—f3“Ul+fz)

respectively. Notice that for this speci.ﬁc example all the higher than second order fre-
\._quency response functions are zero, thus all the nonlinear effects are caused by H ("),
;iamcly by the presence of nonlinear term 0.1u%(k—1). The plots for H (") and H 2(*) in
form of magnitude and phase are given in Fig.5 and Fig.6, respectively. The first and

second order phase response functions are obtained as

e g sin2nf
By == mp [cos2xf —0.9] (34)

and

(33)

R sin2n(f +f 5)
@ 1f5)=~tan [cosZrc(_fl+f2)—0.9

Response to a single frequency input Initially consider a single frequency sinusoidal

input

u(t) = Acos(2nft + 0) (36)

- 1% -




It can be shown that the output will contain a fundamental frequency and the second

order harmonic %

y(t:f) = A H (f )lcos[2nft+6+D, ()] (37)

and

¥ (1:2f ) = 0.5A21H 5(f f Ylcos[2r(2f )t + 28 + Do(f )] (38)

respectively, as well as some d.c. components. From the results in Appendix I it is
known that the response y (¢), which consists of y(z;f) and y(¢;2f), is periodic with
frequency f and the waveform is dependent on both the amplitudes and phase of both
components. Notice how the fonlinear transfer function H 2(°) and input phase-shift 8
affect the phase-shift of the output. Initialy set A=2; f=0.01 and 6=0, to give the

simulated output in Fig.7. Clearly the output which is given by
y(t) = 1.718 cos[ 2n(0.01): — 0.5697 ] + 1.286 cos[ 2rn(0.02)r — 0.9369 ] (39)

" plus some d.c. component is highly distorted by the harmonic effect.

If the amplitude A is decreased from 2 to 1, the waveform is changed, see Fig.8(a).
This is simply because the magnitude of H,(f .f) is not changed in the same scale as
that of H,(f). If the input frequency f is now increased to 0.02, then the change in
the ouput waveform, Fig.8(b), is not only caused by the magnitude of H,(f,f), but
also by the phase value @,(f.f) at (f, f). However, the shape of the output
waveform is not affected by the phase shift 0 in the input. Setting 6= —n/5, say, the
output, Fig.8(c), exhibits the same waveform shape as Fig.7 but with a shift. This is

discussed further in Appendix I.

Response to a multi—frequency input Consider an input composed of two frequen-

cies

« T8 s




ui:) =Acos2rf t +0,) + Acos(2nf 5t + 6,) (40)

The system response for the above input will contain seven frequencies which include
two single input frequencies f; and f,; two harmonics 2f ; and 2f 5; two intermodula-
tions |f~f,| and f,+f,, and zero frequency(or d.c.) components. Notice that all the
extra(new) frequencies are produced by H,(-). Table 1 lists all the amplitudes and
phases for each sinusoidal component contained in the output. This illustrates that
each sinusoidal component in the nonlinear response is determined by the magnitude
and phase response functions. Let 0,=0,= 0, A ;=4 ,= 2, f,=0.02 and f ,=0.035, so that

the input is
u(t) = 2cos[ 2n(0.02)¢ ] + 2cos[ 2x(0.035)¢ ] (41)

An evaluation of the terms in Table 1 for this input are given in Table 4. If all the

seven sinusoids defined in Table 2 are artificially generated the response will be given

. by

y() = 4+ 1.2858cos[21(0.02)r-0.9370] + 0.8658cos[27(0.035)t —1.2359]
+ 0.7752co0s[271(0.04)¢ —1.3017] + 0.4696c0s[27(0.07)r—1.5595]
+ 1.1724c0s[27(0.055)7 —1.4507] + 2.9824cos[2n(0.015)t-0.7777] (42)

The resultant waveform together with the input u (¢) of eqn.(41) is illustrated in Fig.9.
It can be seen that the signal composed from eqn.(42) is basicly the same with the
actual response which is given by Fig.10, except for the different phase. This confirms
the analytical analysis. The power spectral densisty given in Fig.11 clearly shows the

frequency content of the response.

If the 0.035 sinusoid is shifted by n/3 (i.e., set 6,=0, 6,=—7/3) then most output phase
components will change. As a result, the output waveform is changed, as shown in

Fig.12, although all the magnitudes are exactly as before. As expected, the power

o B -




\

spectral density reveals exactly the same frequency content.

Finally, if the parameter 0.1 associated with the nonlinear term is set to 0, then the
system becomes linear. With the same input u (¢) given by eqn.(41) the system output
is illustrated in Fig.13 and the power spectral density, Fig.14, clearly shows that there
are now only two frequencies included in the output, 0.02 and 0.035.

7. Conclusions

The importance of the phase response of nonlinear systems has been invetigated by
both analytically studying the higher order frequency response functions and by con-
sidering simulated examples. It has been demonstrated that phase has a significant

influence on the total system response and suggests that a combined interpretation of

\\ both gain and phase will be required to unravel the frequency domain behaviour of

nonlinear systems.
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Appendix I: Superposition of Sinusoidal Signals

Introduction Sinusoidal signal excitation and response (sine waves or harmonic oscil-
lation) plays a prominent part in many branches of science and engineering. Any sig-
nal, periodic or otherwise, can be represented to an arbitrary degree of accuracy by a
sum of sinusoidal waves and the Frequency Response Analysis (FRA) of linear sys-
tems is now well established and widely applied. For nonlinear systems the study of
sinusoidal superposition is of particular importance since the nonlinear transfer func-
tions are obtained by probing the system with a ’multi-tone’ input. The output will
consist of various frequencies, some of which are generated by the energy transfer

mechanism associated with nonlinear systems.

A unit sinusoidal signal may be in the form of sin(cwr), cos(wt) or e/® in the com-

. plex plane (i.e., a phasor). Consider a real phase-shifted sinusoidal signal

x(t) = A cos(wt +0) = A cos2nfr + 0) (A-1)
This can also be described as
x(t) = Aqcos(2nft) + A, sin(2nft) (A-2)

where A; = A sinB and A, = A cosB. This result is useful for some derivations since

it suggests that any phase-shifted sinusoidal signal can be expressed as a sum of a sine

and a cosine wave, both of which have no phase shift.

Superposition Sinusoids. If two or more sinusoids of the same frequency are added

the resultant is another sinusoid at the same frequency, with a different amplitude and

phase. So that if

xy(t) = Aycos2rft +6;) and x,(t) = A, cos@nft + 6, (A-3)

= ¥ =




then
x(t) = x,(t) +x,(t) = A cosQnfr + 6) (A-4)

with

A = V(A 5in0; + A,sinB,)? + (A ,c0s0; + A,c0s0,)?
] (A-5)

6 {a_n_l A ICOSBI + A 200562
B A jcos; + A ,cos8,

The superposition of two or more sinusoids of the same frequency may be computed
more conveniently by the use of phasors. These complex numbers or phasors can be

added to yeild the amplitude and phase of the summed sinusoid.

Superposition of Different Frequences. If two or more sinusoids of diffrerent fre-

quencies are added then the resultant signal will no longer be a sinusoid in gereral.
| Suppose x(¢) is composed of N sinusoids

X)) = %Ancos(Zth,,t +0,) (A-6)

n=1

Consider the periodicity initially and assume x (¢) is periodic with period time T = 1/f

then

x(t+T) = }A_i, A,cos[2nf,(t+T) + 6,]

n=]1

A, cos[2rf .t + 6,42nf, /f ] (A-7)

I

Clearly if f,/f are all integers for any f,, n=12..N, then x(¢t+T)=x(¢) for all ¢. In
other words, if f{, f, - - - fy are all multiples of some highest common factor, say, f,

then x (¢) will repeat itself after a time T = 1/f . the following three examples illustrate

this

- 18 -



]

2 cos(6mt) + 2 cos(12nt)

x,(t)

x,(t) = cos(2mt) + 2.5 cos(4nt) + 2 sin(14nt) (A-8)
x3(t) = cos(2mt) +2.5 cos(V19mr) + 2 sin(V177mt)

where x; and x, have fundamental frequencies of 3 Hz and 1 Hz, respectively. The
frequencies involved in x5, however, have no common factor. As a result, x5 is not

periodic in tim? and the signal goes on forever without repeating.

/
/

Now consider how the amplitudes and phases of the summed sinusoids affect the
waveform of the resultant signal. If the amplitude of any of the summed sinusoids is
changed, the waveform of the resultant signal will change accordingly, unless all the
amplitudes are changed by the same multiplier. In this case the resultant waveform

will retain the same basic pattern but expand or contract in scale.

Similarly, if the phase-shift of any summed sinusoid is changed the resultant waveform
will also change. But there is also a special case which arises if all the summed
sinusoids are shifted proportionally according to frequency. In this case the resultant
waveform will only shift forward or backwards without any distortion in the

waveform, so that for example

N
x(t)= Y A,cos[2nf,t + 0,+ &f,,]
n=1
N £
= ¥ A, cos[2nf, (t+—) + 6, ]
n=l 2n

=y +1)

£ . )
where T = ?‘m_ is the shift of the resultant waveform.

# 10 =



To illustrate these simple concepts consider the response of a linear system to a sum of
sinusoids, or a rulti-tone signal. If x(¢) of Eqn.(A-6) is input into a linear time-
invariant system with a transfer function H (j '21tf ) (H (j )) the output will be

y@) = EA,, IH-(jan,,)lcos[chf,,t + 6, + LH(j2rf,)] (A-9)

n=1

where |H ()| and L H () are the magnitude and phase responses, respectively, imparted
by the system tof the individual frequency component of the input signal. It is clear
that depending on the frequency response H (j2rft) of the system input sinusoids of
different frequencies will be affected differently by the system, both in magnitude and
phase. Hence the linear system may change the shape of the periodic input by scaling
the amplitude and shifting the phase of the input sinusoidal component (the Fourier
series components) but it does not affect the periodicity of the periodic input signal.
To transmit x(¢f) to y(¢) therefore without introducing distortion, from the above
analysis, the system transfer function H (j2rf ) should satisfy the following two condi-
tions: (i) the magnitude |H (j2nf,)! is constant regardless of f, (ii) the phase response
LH(j2rf ) is a linear function of f,(i.e., LH (j2rf) = k-f,). Under these conditions
the output y (¢#) would exhibit the same waveform as the input x (¢) and the systems

would be distortion free.

A second example concerns the harmonic response of a nonlinear system. Using the
nonlinear transfer function method the response of a second order nonlinear system to

a single frequency input u(t) = A cos(2rnft + 8) is
y(t) = AH (j2rf )lcos[2rft + 0 + LH (j2rf )]
+0.5 A% [Hy(j2nf ,j2nf )|cos[4nft + 20 + LH(j2rf ,j2rf)] (A-10)

The output y (¢) is a distortion of the pure sinusoidal wave u (¢). If either the frequency

f or the amplitude A of input sinusoid are changed, the waveform of y(r) will
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generally change since the amplitudes and phases of the output components will be
changed. However, if only the phase-shift 6 is altered, y(t) will be shifted but the
waveform will not be changed. This is because the phase-shift imparted by the input
phase O are proportional to the order of the harmonic components in the output. The
conclusion holds true even for the case where more than two harmonics are included

in the output.

« 21 =




Frequncies Magnitudes Phases

fi AlH (I 8,+@(f1)

f AylH ()l 0,+0(f)

2f, 0.5A%H, (f, f) 20,+D,(f,f7)
2% 0.5A31H, (o)l 20,+D,(f, /)
fitf A A lH,(f1 )l 0,+0,+D,(f1.f)
~f1thH A Al Hy (—f1.6) 0,-0,+D,(=11./2)
d.c. 0.5A3H,(f, ~f1)1+0.5A3H, (5 ,—F)! 0

Table 1. Amplitudes and phases of various output components.

Frequncies | Magnitudes | Phases(in redians)
0.02 1.2858 -0.9370
0.035 0.8658 -1.2359
0.04 0.7752 -1.3017
0.07 0.4696 -1.5595
0.055 1.1724 -1.4507
0.015 2.9824 -0.7777

d.c. 4 0

Table 2. Amplitudes and phases of the output components with
the two-tone input defined by eqn.(41).
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Fig.1 Gain and phase of H,(-) for Eqn.(11).
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Fig.2 Gain and phase of H,(-) for Eqn.(11).
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Fig.4 Schematic of nonlinear system with delay.




-.207e-05

" Gein (dB) ’

-.256E+02

0.000E+00
0.000E+00

Phase

—.180E+03

-.207e=05

Gein (dB)

0.000E+00

0.5CJE+00

Normalised frequency

R

AN
A\ RS

Fig.5 Gain and phase of H () for the simulated example.

LIRS

|
AL
X

o g
o 0.500€+00

-.256E+02
0.0

0.500£+00  ~-500E+00

0.180E+03

Phase

-.180E+03

Fig.6 Gain and phase of H,(") for the simulated example.

0.500E+00

0.500E+00




Simlulated output for lf=0.0 1, t[heta=01_ﬁ\=2
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Fig.7 Simulated and computed output to the single frequency input with

#0.01, A=2 and 6 = 0.
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Fig.8 Responses to the single frequency inputs with various settings.
(a) /=0.01, A=1 6=-1U5
(b) /=0.01, A=2 0=nt/5
(c) f=0.02, A=1 6=0




4 . . Thq input u(t) of 0.02 and O.QSS cos wave
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Fig.9 The two-tone input and the composed nonlinear output by Eqn.(42).




The u(t) of 0.02 & 0.035, no shift
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Fig.10 The actual nonlinear output to the two-tone input.
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Fig.11 The power spectral density of the nonlinear output.
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4 1 . The u(t) of 0.02 & Q.035, with pi/3 shift
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Fig.12 The nonlinear output to a two-tone input with phase shift.
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Fig.13 The linear output to the two-tone input.
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Fig.14 The power spectral density of the linear output.




