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Abstract

A technique for determining fixed points and shift cycles in one- and two-
dimensional cellular automata based on graph theory is given. The method
is simple to apply and can easily be implemented on a computer.
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1 Introduction

In this paper we shall consider fixed points (and shift cycles) in one- and two-
dimensional cellular automata [1,3). The one dimensional case has recently been
considered in [2] where certain operators are constructed to determine the
fixed points.The method, however,is complicated and is difficult to generalise
to two-dimensions. Here we give a very simple technique which uses the theory
of graphs and applies to both one and two dimensional systems. The method
produces an easily computable result which can be implemented on a computer.

Graphs as finite state machines have been used in the computation theory
of cellular automata [4],but not previously for detecting fixed points. In section
2 we consider one-dimensional problems for a rule of any length and section 3
we consider the case of a 5 bit two-dimensional rule with periodic boundary

conditions.

2 One Dimensional Systems

We shall first consider systems of doubly infinite length for simplicity. Thus we

consider a dynamical system with a binary state vector of the form

z=(.,2-3,T-9,2_1,20,21,%1,22,23,..) , T € Z»
which is defined

z(n+1) = F(z(n))



and F is given by a local rule of order p (odd). Thus,

(Fz(n)):

zi(n+1)
= R (r.'-[p/z](ﬂ), -‘Ef—[p/'z]+1(“)s v vy dy(n)y e '=1-':'+[p/2](”))

For example if p=3 consider the rule R defined by truth table:

x |R
000 | 0
001 |1
010 | 1
011 |1
100 | 1
101 | 1
110 | 1
111 | 0

Then if
z =(....000110010111001000..)
(with leading and trailing zeros) we have
Fz =(...001111111101111100...)

We require to find the fixed points of F for any given rule R, i.e. the points z

such that
= F:r (2.1)
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A p-bit rule assigns a binary bit to each p-bit binary number which can be

represe—nted by its equivalent natural number.Thus a p-bit rule R is a map
R:27={0,1,2,..2? -1} — {0,1}
In the above example, R is the 3-bit rule given by
R(0)=0,R(1)=1,R(2)=1,....,R(7) = 0.

2.1 Definition The fixed point set Rz of the rule R is the subset of
{0,1,2,..,27 — 1} consisting of all numbers whose central binary bit is fixed

by R . Thus, if
K= blbg...bg_;d....bp e
then K is a fixed point of R if
R(K) = b%

Again in the above example, R = {0,2,3,6}.
Consider the state 2 to be made up of successive strings of p-bit binary

numbers:
= .....b-gb_lbgblbg...

where each b; € 2° and is to be considered as being written in binary form. In

order that z be a fixed point of F it is clearly necessary that

bi€ Rr , i€ Z.



This is obviously not sufficient, however, since substrings of b; bi+1 may not
be in R_r.
2.2 Definition We shall say that for two elements b; = (B1y---sBp) and by =

(71,--7p) € Rz, we may put b, to the right of b; if

Bi=%-1, 2<i<p.

We also say that b; can be put to the left of by. We next form a directed
graph G with vertices which are the elements of Rr. If v1,vo € Rx then the
graph contains the directed edge (v, v2) if and only if v can be put to the right
of v1 (or equivalently, if v; can be put to the left of vy). We shall write V (or
Vi) for the vertices of G and by E (or Eg) the edges of G. As above, let a state

z be written in the form
=, ..b_'_)b_lbob}bg —

where each b; € 2P is p-bit binary stringand b; € Rz, i€ Z.

2.3 Lemma If the state z is a fixed point of F then the set
By ={b;:i€Z)C2

is a connected subgraph of G.
ProofIf b; and b, are in different connected subgraphs of G and ¥ < ¢ consider

the subsequence

bibryr---be



on z. Since
(bi,biy1) € Eg

for k < 7 < £ we have a contradiction. o
It follows from lemma 2.3 that we can restrict attention to connected sub-
graphs of G.

2.4 Lemma If (vy,v3,v3,...,0y,v1) is a circuit in G then
T=(...0102... 0102 ... 00102 ...)

is a fixed point of F.

Proof The proof is trivial. O
We now describe an algorithm which reduces the graph G to a tree from

which all possible fixed points = can be determined.Let e be any edge in G

which is on a loop and let Af(e) denote the maximal connected subgraph of G

containing e suck that every vertex of M (¢) is on a loop.Clearly we have
Me) = M(ey)
if and only if e and e, are on a loop so that
e,e1 € M(e), M(e,y).

Hence M (e) isindependent of the choice of € in M (e). Otherwise M (e) and M (€)
are disjoint if € € M (e). Let G be the graph obtained from G by shrinking each

subgraph M(e) to a point and regarding it as a vertex of G. All other vertices



and edges in G remain unchanged.

2.5 Example Consider the graph G if fig. 2.1.

Then G is the graph in fig. 2.2.

2.6 Lemma For any directed graph G, G is tree.

Proof Suppose that (v;,%), (%2,73)...,(TL, 1) is a circuit in G. Each vertex

7; in G corresponds to a (nonunique) vertex v; in G. Then (v1,v3),- -+, (vL,v1)

is a circuit in G contradicting the definition of the vertices of G. O
2.7 Theorem Denote by V; C V the vertices in G which are obtained by

shrinking a maximal connected set of circuits as described above. Consider the

set of all paths in G and ending in V;. These are clearly finite in length and

finite in number. Then any fixed point of F is given by

I =81V11 V1K, S2V21 - VaK, 83 - "SLUL]... ULk SL+1

where L is the number of edges in the path, vi; are verticesof G and sy,---,574;

are strings obtained from the maximal circuit subgraphs corresponding to ver-

tices of 17 along the path. Note that s;, sz, are infinite strings while 54, .- -, sp
are finite.
Proof The proof is trivial from the definition of G. O

In order to determine the structure of the strings s; in theorem 2.7 in more
detail we introduce the following terminology. In G consider a maximal circuit
subgraph C and let Vo C V be the vertices of G in C. Suppose that v € V and
v & Ve, but the edge (v,v;1) € Eg for some v; € V. Then v is called an entry

point of C. Similarly we can define an exit point of C in the corresponding



way.

Clearly, each of the strings s;,...,s; must start and finish with an entry
point and an exit point. Similarly, s; must end with an exit point and sz,
must start with an entry point.

We shall say that a vertex 7 € V is a peripheral in G if it has no entry point
which is connected to another element of V or no exit point similarly connected.
Then s, and sp41 can be peripheral ( although not necessarily) and s, -, s
cannot. Within s, ---,s. we can have any path leading from an entry point to
an exit point possibly containing an arbitrary number of loops. Similar remarks
apply to s; and s;.,1.We therefore see that all the fixed points of F can be read
from G and G.

2.8 Example We shall determine all the fixed points associated with the graph
in fig.1. From the above results we clearly can have fixed points of only four
types:

S1VgS2

where s; is an infinite string in 7, or 74 and s is an infinite string in 77 or va.
Note that fixed points cannot contain vs or v7. There is only one infinite string
in 7y, namely

T U3V V12013011012

Note that v;3 is an exit point for 7;. Similarly, T4 has only one infinite string,i.e.

T U42U4104204)



with v4; as an exit point. The vertex T3 also has only one string with v3; as an

entry point:
U31¥32¥33034V31032 * - *

Finally, 72 has an infinite number of strings with entry point vs;. The most

obvious one is
U21V22V23V24 V25021 V22l23 - - -

However at any point vy, along this string we can insert the loop vaava6v27v99

any number of times. Hence all the strings in 7, are of the form

I "
V21V59V23V24V25V21 Ugq Va3 + « -
where v, = va3 or vhy = V22U25U27V22V26127 - - - Vae and similarly for v4,, etc.

2.9 Example As a concrete example consider the five-bit rule with fixed point

set Rr given by

Ry = {00000,00011,00100,00101,00" 10,01001,01010,01011,
01100,10010,10011,11001,11010,11011, 11111}

Then G is the graph in fig. 2.3.

Thus, a fixed point is of one of the forms:

+-0100100100110011001100110011 - -
--000000000 - - -

--111111111---



Consider next the case of finite dimensional dynamical systems with the vector
T = (1:1,2‘.‘2, o .,IK)

with periodic boundary conditions. We can form the graphs G and G just as
before and we obtain the following theorem.

2.10 Theorem If K > p then the system has a fixed point if and only if G
has a cycle of length K. (The length of a cycle (vivavs - -+ Umvy) in G is m.)

Proof Since we have periodic boundary conditions if
z=(x,20, ", 2K)
is a fixed point then so is
TITy Ty TREITy Ty

The result is now obvious, @]

2.11 Example Consider the 5-bit system of example 2.9. Clearly arbitrary
dimensional systems have fixed points containing just 0's or 1’s respectively
since G has cycles of arbitrary length in these vertices. However the only other
cycles have length 3 and 4. Hence only systems of dimesions 3m and 4m for
m > 2 will have fixed points. For example, 001001001001001001 is a fixed point
of an 18-dimensional system while 10011001 is a fixed point of an 8—dimen5iona]
system.

Note finally that shift cycles can be treated in exactly the same way as fixed

points if we replace the elements the set Rx by the set R given by the elements
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of R which satisfy then property
R(blbg...bp)=b,' , 1 <1< p.

This will give a shift of magnitude |22 — |,

3 Two-Dimensional Systems

In this section we shall show that the one dimensional results obtained above
can be easily generalized to the two-dimensional case. For simplicity, we shall
consider only the case of a five-bit rule which determines a new value for a
given pixel in terms of its old value and the values of its four nearest horizontal
and vertical neighbours (fig. 3.1). Also,we shall restrict attention to periodic
boudary conditions.

We can write
b;) = R(b]bgbgb4b5) F:

3.1 Definition The fixed point set Ry of the rule R is the subset of {0,1, - - -, 31}
consisting of numbers K = b;bybsbsbs for which R(R) = b3.

bf 3.2 Definition If Ky = bybobabsbs and Ko = cicac3cqcs are two binary repre-
sentations of a five-bit neighbourhood then we say that K; can be put above

(respectively below, to the left of, to the right of ) K, if
bs=c , bs=rc3

(resp. by = c3,b3 = 554 = b3, c3 = basbs = ¢3,by = ¢3)

11



In contrast to the one-dimensional case we now form two directed graphs
Gup., Grr each containing the vertices Ry and such that Gyp contains an
edge (v1,v2) (for vy, vy € Rg) if and only if v» can be put above v; and Gpp
contains an edge (vy, v2) if and only if v can be put to the right of v;. Suppose

our state vector is of the form
r=(zy) , 1<i,j<K.
Determine all K-length cycles in Ggr. These are finite in number and we write
CE, ={c: cisa K-length cycle in Ggr}

for the set of such K-length cycles. Now form a new graph Grr with vertices
in a one to one correspondence with CK,. Two vertices ¢; and g in CE; will
be joined by a directed edge (and we say that ca can be put above ¢;) if the
following holds:

Suppose that ¢; and c5 represent the K-length cycles

Cl o ‘UJ..-UK

and that ¢; can be cyclically permuted to obtain
(_‘i = UiUi41 - URUL Ui

so that
Vj4i=1 lfJ-}-?—]Sff
wj can be put above
Vi41-1-K ifj +i-1>K

12



3.3 Theorem A K x K two-dimensional system has a fixed point if and only

if Grr has a K-length cycle.

Proof This follows in exactly the same way as theorem 2.10. o
3.4 Remark We could also define the graph Gy p in an obvious way.

3.5 Example We shall illustrate the above theory with a simple five-bit rule.

The rule in this case is given in the following way:

We shall represent the cells surrounding a given cell ¢ as follows:

and the rule is d=fined on such a set of the cells by
R(abede) = ¢

where R is given fully in fig. 3.2.

If
S = {(abcde) : R(abede) = ¢}
tlien we clearly have
S = {00000, 00001, 00010,00111,01000,01101,10000, 10110, 11100}:

First we form Ggr as above. This gives the graph in fig. 3.3. Number the

vertices vy ---vg as above. Suppose we wish to find periodic fixed points in a
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10 x 10 ‘image’. We must first determine all cycles of length 10 in Grr. These
can be found, in general, by computer from the incidence matrix of the graph,
but here we can read them off quite easily. For simplicity and for the purposes
of illustration we shall only determine a small part of Ggrr. Thus ,consider the

following 10-bit cycles in Ggyr:

Vi = vinpvivivy c--tg

V2 = 01U1U1Vataly -y
VY3 = v1U1U3v4v5Ugly - U1
V4 = U10103V7UsUsT] -+ 1
V5 = U1V U1vlgly -- -

By considering Gy p it is easy to see that

VIVIVIVaV3ViVsViV V] (3.1)

is a length-10 cycle in Grr. This cycle corresponds to the fixed point shown in

fig- 3.4.

4 Conclusions

A simple technique has been given for the determination of fixed point (and shift
cycles) in one and two-dimensional cellular automata. It is specified in terms of

graph theory and provides an easily computabie method in both cases. Since a
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limit cycle is a fixed point of a rule applied several times we anticipate that the
technique will also be useful in finding limit cycles. This will be examined in a

future paper.
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Fig. 2.2. Simplified Graph of the Graph G in Fig. 2.1.
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Fig. 3.1. Neighbourhood Structure for a 5-bit Rule
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Fig. 3.3. The Graph GRL for a Simple 2-Dimensional System
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Fig. 3.4. A Two-Dimensional Fixed Point



