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Abstract 
 
 We start from the fourth order nonparabolic and anisotropic conduction band bulk dispersion 

relation to obtain an one-band effective Hamiltonian which we apply to an AlGaSb symmetric double-
barrier structure with resonant energies significantly (more than 200meV) above the well bottom. The 
spin-splitting is described by the k3 Dresselhaus spin-orbit coupling term modifying only the effective 
mass of the spin eigenstates in the investigated structure. Apart from the bulk-like resonant energy shift 
due to the band nonparabolicity, we obtain a substantial shift depending on the choice of boundary 
conditions for the envelope functions at interfaces between different materials. The shift of resonant 
energy levels leads to the change of spin-splitting and the magnitude of the dwell times. We attempt to 
explain the influence of both the nonparabolicity and boundary conditions choice by introducing 
various effective masses. 

 
1. Introduction 
 
Recently [1], a symmetric III-V heterostructure has been shown to exhibit spin-dependent 

transmission probabilities. Glazov et al. [2] have shown that the transmitted electrons generate a spin 
polarized current if an in-plane electric field is applied to a double-barrier resonant tunnelling structure 
(DB-RTS). In our previous work, we have discussed that significant spin-polarization may be expected 
in both asymmetric DB-RTSs and symmetric triple-barrier structures [3, 4] with the the influence of the 
perpendicular electric field proven to be particularly important. Spin filters based on all-semiconductor 
structures might never reach the performance of those based on ferromagnetic materials or diluted 
magnetic semiconductors, especially if care is taken to optimize the latter [5, 6]. However, all-
semiconductor structures have some important virtues - better compatibility with the existing 
semiconductor technology and the prospect of achieving spin polarization even in the absence of 
magnetic fields. 

 Most of the theoretical work so far focused on spatial aspects of the spin filtering process (i.e. those 
corresponding to stationary states). A spin dynamic filter has been proposed in [7]. Using the electron 
dwell time as a well established parameter for studying the temporal aspects of double-barrier 
tunnelling [8, 9], we discuss the effects of the band nonparabolicity.  

The spin-splitting in III-V semiconductors has its origins in the spin orbit coupling (SOC) and the 
inversion asymmetry of the zinc-blende structure so the spin eigenstates are determined by the wave 
vector. To avoid scattering between spin-split subbands, Ref. [2] introduces a DB-RTS in which the 
energy of the electrons is significantly above (more than 200meV) the conduction band (CB) bottom of 
the well region, suggesting that significant nonparabolicity and anisotropy effects might be expected.  

 
2. The double-barrier resonant structure and nonparabolicity 
 
In the absence of external electric and magnetic fields, the spin-splitting in symmetrical structures 

based on III-V semiconductors is described by the Dresselhaus k3 Hamiltonian [1, 10] as 
2 2 2 2 2 2

0 ( ) ( ) ( )D x x y z y y z x z z x yH k k k k k k k k kγ σ σ σ⎡ ⎤= − + − + −⎣ ⎦ .                                  (1) 

kx, ky and kz are the components of the wave vector k, σx, σy and σz are the Pauli spin matrices and the 
effective Hamiltonian is obtained by letting kz=−id/dz. As pointed out by [1] for the single-barrier and 
by [2] for the double-barrier structure shown in Fig. 1., Eq. (1) is simplified to 

0
d d( )
d dD x x y yH k k
z z

σ σ γ= − ,                                                              (2) 
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since |kz|>>kx, ky for electrons with E≈Ec0 (see Fig. 1.). The consequence is that the spin-state of 
electrons in either of the states described by the spinors 

11 ,    
exp( )2s s

s i
χ

ϕ
⎡ ⎤

= = ±⎢ ⎥− −⎣ ⎦
,                                                 (3) 

is preserved in the tunnelling process described by the diagonalized spin-dependent effective 
Hamiltonian 

4 2 2

0 4 2 ( , )
2s

s

d dH E k
dz M dz

α ϕ= − + .                                              (4) 
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Fig. 1. The symmetrical double-barrier resonant tunnelling structure. 

Structure parameters: x≈0.15, y≈0.3, z1=0, z2=50A, z3=75A, z4=125A, Ecb=750meV, Ec0=200meV, 
Ecw=0, me=mc=0.065m0, mb=0.073m0, mw=0.057m0, α0e=α0c=−1310eVA4, α0b=−1129eVA4, 
α0w=−1493eVA4, β0e=β0c=−1143eVA4, β0b=−1070eVA4, β0w=−1215eVA4, γ0e=γ0c=157eVA3, 

γ0b=129eVA3, γ0w=185eVA3. 
 
The Dresselhaus constant, γ0, in (2) is defined as positive so that χ+ state has a slightly higher 

energy than the χ− state in the corresponding bulk dispersion. Eq. (4) is obtained from the fourth order 
bulk dispersion for the conduction band [11] 

( )
2 2

4 2 2 2 2 2 2 2 2 2
0 0 0( )

2 x y y z z x z x y
kE k k k k k k k k s k k k
m

α β γ= + + + + + + ,             (5) 

so that kx=k||cosϕ, ky=k||sinϕ,  
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⎝ ⎠
.                                   (7) 

We have assumed that the effective mass, m, the nonparabolicity coefficient, α0, the anisotropy 
coefficient, β0 and the Dresselhaus constant, γ0 vary along the structure but are constant inside the 
individual layers (see Fig. 1.). The assumption of different parameter values in the layers is somewhat 
arbitrary. We have used it to emphasize the boundary conditions issue. Apart from γ0 obtained from 
[12], we have investigated the values for these coefficients for the AlGaSb system within three bulk 
dispersion models and used linear interpolation to obtain the values of alloy parameters. 

'Model a)' is a 14-band kp model described by [13] and [14] which has previously been used for 
AlGaAs systems. We have calculated the values for α0 and β0 for AlSb and GaSb using the theory from 
[13, 14] and the parameters from [12]. 

'Model b)' is a higher order nonparabolic but isotropic dispersion relation for the conduction band 
given in [15] which has been obtained by fitting the theoretical expressions for the imaginary part of 
the dielectric function ε [16] to the experimental values obtained from various sources. 

'Model c)' represents the fit of the dispersion formula (5) to the bulk dispersion of AlSb and GaSb 
which we obtained by pseudopotential calculations. 
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Fig. 2. shows the dispersion curves corresponding to these models and the parabolic curve. We have 
chosen to use the values of m, α0 and β0 obtained from the 'Model c)'. It is seen from Fig. 2. that 'Model 
c)' and 'Model b)' agree fairly well, whereas the nonparabolicity predicted by 'Model a)' appears to be 
an overestimate. The energy range we were interested in is 200-400meV, (see Fig. 1.). 
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Fig. 2. Comparison of various models considered for modelling the transmission characteristics of 
the DB-RTS from Fig. 1. These are the GaSb bulk dispersion curves. For the AlSb bulk dispersion, 

similar results apply.  
 

The equienergy curves in the (kx, ky) plane shown in Fig. 3. demonstrate that the conduction band 
anisotropy may indeed be neglected (the same applies to AlSb), even in the case of using the value of 
β0 from 'Model a)' which is an order of magnitude higher than the one predicted by the 'Model c)'. 
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Fig. 3. The in-plane (kx,ky) anisotropy of the conduction band in GaSb for k||=0.025·2π/a with: 
 'Model a)' paramerers: m=0.041m0, α0=−11696eVA4, β0=−9059eVA4 and 

'Model c)' parameters: m=0.057m0, α0=−1493eVA4, β0=−1215eVA4. 
 In both 'Model a)' and 'Model c)' the anisotropy is negligible. 

 
 
The spin-dependent wave functions, ψs, are obtained by solving  

s s sH Eψ ψ= .                                                              (8) 
These represent linear combinations of momentum eigenstates, exp(ikz,s) and exp(−ikz,s), in each 
individual layer connected by the boundary conditions at interfaces z1, z2, z3 and z4. The values of kz,s in 
the layers for an electron with given E, kx and ky are obtained in a straightforward manner by excluding 
the two spurious solutions among the four solutions of the quartic equation. The spin-dependent 
reflection, Rs, and transmission, Ts, coefficients are defined so that  

, , 1exp( ) exp( ),     s z s s z sik z R ik z z zψ = + − <                                      (9) 
and  
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, 4exp( ),    s s z sT ik z z zψ = > ,                                                 (10) 
with resonant energies, ER,s,  having the unit trasmission probability,  

,( ) 1s R sT E = .                                                           (11) 

Since (8) is a fourth order equation and only two of four solutions for kz,s are physically meaningful 
(so only two linearly independent conditions are allowed), (8) cannot be satisfied in every point, i.e. the 
boundary conditions need to be imposed artificially. We do not introduce any criteria for the suitability 
of particular boundary conditions (such as models of higher accuracy or experimental results), but carry 
out the calculations for three different boundary conditions and show how sensitive the results are on 
the particular choice. To define the boundary conditions, we introduce two additional parameters with 
the dimension of mass. 

For a momentum eigenstate, exp(ikz,s), (4) and (8) give 
2 2

,

,

( , )
2

z s

H s

k
E E k

m
ϕ= + ,                                                     (12) 

where we have introduced the mass mH,s by 
2

0 ,
2

,

21 1z s

H s s

k
m M

α
= + .                                                      (13) 

This is the 'local' effective mass along kz. Next, consider the mass, mJ,s, given by 
2

0 ,
2 2

, , ,

41 1 1 1z s

J s s z s z s

k E
m M k k

α ∂
= + =

∂
.                                       (14) 

We define the boundary conditions as 

( ) ( )s n s nz zψ ψ− +=  and 
1 1( ) ( )s s

n s n
s s

d dz z
C dz C dz

ψ ψ ψ− += ,                                 (15) 

for n=1,2,3,4 while Cs is set to mJ,s, mH,s or Ms. In the next section, we will investigate the influence of 
the choice of boundary conditions by changing the way Cs are defined. The importance of mJ,s comes 
from the fact that by putting Cs=mJ,s the current density probability is preserved. 

The dynamics of the spin-dependent DB-RTS tunnelling [7, 9] is investigated by introducing the 
electron dwell time with 

4

1
,

,

z

sz
D s

in s

dz

J

ψ
τ =

∫
,                                                                (16) 

where Jin,s is the probability current density of the incoming electron with spin s which equals the 
overall probability current density Js if the transmission equals unity.  
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Fig. 4. Dependence of the spin-split resonance energies ER,s on the choice of boundary conditions. 

These results are for the χ+ and χ− states. The spin of an arbitrary state, a+χ++a−χ−, is not conserved in 
the tunnelling process. 
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The extent to which a physical meaning may be ascribed to the dwell time is arguable (see e.g. [8] 
and [17]), but it clearly gives a good starting point for estimating the time scale of the tunnelling 
process and, hence, it is interesting for studying the spin-splitting in the time domain. 

 
3. Numerical results and discussion 
 
We have found that the band nonparabolicity introduces a bulk-like displacement of the resonant 

energy levels ER,s, the magnitude of which is ~100meV as can be estimated from Fig. 2. Varying the 
boundary conditions introduces similar effects to the resonant states, affecting the position of ER,s. In 
Fig. 4. the dependence of ER,s on k|| is shown for three different boundary conditions. We see that as the 
mass-like parameter is appearing in (15) is increased from m to mH,s and, finally, to mJ,s (because α0 is 
negative and kz,s is real in the well) the position of the resonant energy levels is increased, contrary to 
the expected decrease. A similar effect is observed by 'turning on' the nonparabolicity, i.e. although the 
'local' effective mass in the nonparabolic model is higher than m, the resonant energy levels are 
increased. Ref. [11] reported the same ('nonintuitive') result of the increase of confinement energies in 
quantum well structures when nonparabolicity is taken into account. All the three boundary conditions 
are reduced to the usual BenDaniel-Duke boundary conditions in the limit α0, β0→0. However, for 
nonzero α0, β0, only the Cs=mJ,s condition yields the conservation of current density probability. 

The dependence of the spin-splitting, ER,+−ER,-, on the choice of Cs shown on Fig. 4. is mainly due 
to the displacement of ER,s, as well. If we assume that the position of ER,s is an approximately linear 
function of the effective mass, and the two spin states have a fixed (determined by bulk properties) 
diference of the inverse of their effective masses, we can explain the decrease of the splitting observed 
in Fig. 4.  

To discuss the variation of the magnitude of τD for the resonant energy levels, we note that [8] 
/Dτ = Γ ,                                                               (17)  

where Γ is the width of the transmission resonance i.e. the energy uncertainty of the resonant 
quasibound state. This quantity is clearly increased as ER,s is increased since an electron in the barrier 
can interact with the environment behind the barriers more easily if its energy is higher. Therefore, τD 
is decreased as ER,s goes up. This reasoning is confirmed by our results shown in Fig. 5.  

We have compared the results of our model with the results given in [9] and found excellent 
agreement when α0, β0 →0. Taking into account the nonparabolicity changes the results but their order 
of magnitude remains the same. 
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Fig. 5. The dwell time for various boundary conditions. The decrease of τD for increasing energies 
is explained by the increase of the energy uncertainty for quasibound states with higher energy. 

 
In summary, we have carried out an analysis of nonparabolicity effects in a fourth-order one-band 

effective Hamiltonian model. The results indicate that including band nonparabolicity may 
substantially shift the resonant energy levels which is followed by 'secondary' effects, such as decrease 
of spin-splitting with the increase of the effective mass (due to the nonparabolicity or varying boundary 
conditions) and the decrease of dwell times. We have proven that the results are very sensitive even to 
the choice of boundary conditions alone, the issue of which exists even in parabolic models. The 
models which we studied, had a negligible band anisotropy. Our study of the GaSb and AlSb 
dispersion indicates that the 14-band kp model for calculating higher order k terms in the conduction 
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band dispersion, might not be appropriate for energies more than 100meV above the conduction band 
bottom. 
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