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The Theory of Classification 
Part 9: Inheritance and Self-Reference 

Anthony J H Simons, Department of Computer Science, University of 
Sheffield, U.K. 

1 INTRODUCTION 

This is the ninth article in a regular series on object-oriented type theory, aimed 
specifically at non-theoreticians. The previous article demonstrated how the intuitive 
notion of class in object-oriented languages has a strictly formal interpretation that is 
more general than the simple notion of type [1]. A class can be modelled as an F-bounded 
polymorphic type, representing a family of similar types which share a minimum 
common structure and behaviour [2, 3]. In this second-order model, which provides an 
alternative to first-order subtyping [2, 4], even recursively-defined classes can be shown 
to nest properly inside each other [1], a more sophisticated kind of type compatibility that 
we call subclassing in figure 1 (box 8). Type rules were defined for class membership, 
sub-classification and class extension by inheritance.  
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Figure 1: Dimensions of Type Checking 

The previous article concentrated only on the typeful aspects of classes. In this article, we 
now turn to the concrete aspect of classes and the detailed modelling of method 
implementations. We want to be able to explain in the formal model how an object’s 
structure is extended or altered during inheritance. In particular, we want to understand 
the process of method overriding and the meaning, after inheritance, of the special self-
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referential variable self, also known as this, or current in different object-oriented 
languages.

2 OBJECT IMPLEMENTATIONS 

Several articles ago, we considered three different formal encodings of simple objects [5]. 
We preferred the λ-calculus encoding, which represents recursive objects as functional 
closures, denoting simple records of methods. One reason for choosing this model is 
because it fits so well with the F-bounded explanation of polymorphic classes, since both 
models rely on the use of generators, special functions which accept self (or, the self-
type) as their argument. Later, we shall link the object model with the type model, in a 
combined second-order F-bounded λ–calculus. For the time being, we shall deal with 
objects in an untyped way. 

A simple two-dimensional point object at the co-ordinate (3, 5) may be represented 
as a record, whose fields store values and functions, representing the attributes and 
methods of the object. Each field consists of a label which maps to a value (a simple 
value, or a function): 

aPoint2D = µ self . { x a 3, y a 5, identity a self, 
  equal a λp.(self.x = p.x ∧ self.y = p.y) } 

In the above, self is the recursion variable, a placeholder equivalent to the eventual 
definition of the whole object aPoint2D, which contains embedded references to self 
(technically, we say that µ binds self to the resulting definition – see [5] for an 
explanation of this convention). Following the dot is a record of fields, enclosed in braces 
{…}. The first two fields, labelled x and y, map to simple values in the model. This is 
because we want aPoint2D.x and aPoint2D.y to return the simple values directly, rather 
like accessor methods. The third field identity is a method for returning the object itself; 
the fourth field equal maps to another function λp.(…), representing a method that 
compares aPoint2D with the argument p, which is assumed to be another Point2D 
instance. 

This is where it becomes clear why aPoint2D is a recursive object: inside the body 
of the equal method, aPoint2D must invoke further methods x and y upon itself, to 
perform the field-by-field comparison with the argument p. To enable this, the body of 
the equal method needs a handle on the top-level object aPoint2D, granted through the 
recursion variable self. Any object that needs to invoke nested methods on itself must be 
recursive, so this is quite a common occurrence in practice. The identity method is also 
recursive, returning the object itself. 

This theoretical use of self corresponds exactly to the usual meaning of self (in 
Smalltalk), this (in Java and C++) and current (in Eiffel). In the model, you always 
invoke nested methods explicitly through the recursion variable self. In some of these 
programming languages, you can omit the receiver of a nested message to the same 
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object, which is implicitly understood to be self (this, or current). This is just a syntactic 
sugaring in the programming language. 

3 OBJECT GENERATORS 

Readers who have been following this series will know by now that a recursive definition 
is created from first principles using a generator, a function which abstracts over the point 
of recursion. Previously, we used type generators to build recursive types [1, 2]. Here, we 
introduce object generators to build recursive objects: 

genAPoint2D = λ self . { x a 3, y a 5, identity a self, 
  equal a λp.(self.x = p.x ∧ self.y = p.y) } 

In this function, self is not yet bound to any value – it is the argument of the function. The 
generator can be used to build the recursive object by infinite self-application [5]: 

aPoint2D = genAPoint2D(genAPoint2D(genAPoint2D(…))) 

and for convenience’s sake, we may use the fixpoint finder Y to build this infinite 
sequence: 

Y (genAPoint2D) = genAPoint2D(genAPoint2D(genAPoint2D(…))) = aPoint2D 

Later, we will see more expressions of this kind to describe the final fixing of the 
recursive structure of an object. Roughly speaking, an object generator genAPoint2D is a 
template for the structure of points like aPoint2D, in which self does not yet refer to 
anything. It turns out that this is a useful construction, since it will allow us to explain 
how self can refer to different objects. 

4 EXTENDED OBJECT IMPLEMENTATIONS  

Our goal is to model the inheritance of implementation. This can be thought of as a kind 
of extension or adaptation of an object, to produce an extended object with more fields, 
some of which may be modified, in the sense that the labels map to different values than 
in the original object. The challenge we set ourselves is to derive a three-dimensional 
point aPoint3D at the co-ordinate (3, 5, 2) by extending the simple two-dimensional 
aPoint2D in some fashion. 

To begin with, we jump ahead to describe what we want aPoint3D to look like, at 
the end of the derivation process. Ultimately, we want it to have an extra z dimension and 
a modified version of the equal method, as if it had been defined from scratch, as a 
whole, in the following way: 

aPoint3D = µ self . { x a 3, y a 5, z a 2, identity a self, 
  equal a λp.(self.x = p.x ∧ self.y = p.y ∧ self.z = p.z) } 
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In the above, self is the placeholder variable, equivalent to the eventual definition of the 
object aPoint3D, which also contains embedded references to self in its identity and equal 
methods. Note the difference in the meaning of self: whereas before µ bound self ← 
aPoint2D, here µ binds self ← aPoint3D. The object denoted by self changes, depending 
on the binding context. From the practical point of view, this is also desirable, since the 
body of the modified equal method is only valid if self stands for aPoint3D (viz: you 
could not access the z-method of aPoint2D). 

In the previous article [1], we constructed a simple model for inheritance, in which 
we treated a record as a set of fields and used set union ∪ to build a larger derived record 
by taking the union of the fields of the base record and a record of extra fields: 

derived = base ∪ extra 

This only works for very simple records, which have unique fields and no recursion: 

aCoord2D = { x a 3, y a 5 }   - base record 
zField = { z a 2 }     - extra record 
aCoord3D  =  aCoord2D ∪ zField  =  { x a 3, y a 5, z a 2 } 

We cannot construct aPoint3D in this way, because the simple union of fields would 
create a result in which there were two different versions of equal, since the original and 
redefined versions of this field are not actually identical, therefore the union would 
preserve two copies. 

5 UNION WITH OVERRIDE 

Instead, a different operator must used, called union with override:  ⊕. This is a standard 
mathematical operator, defined for maps (rather than sets), that combines two maps in a 
certain way, which we define below. A map is a collection of pairs of values, called 
maplets, with an arrow from the left- to the right-hand value in each pair. A map is 
written like: 

{a a x, b a y, c a z, ….} “a maps to x, b maps to y, c maps to z, ...” 

and can be viewed variously as a lookup table, in which each maplet relates a key (on the 
left) to a corresponding value (on the right), or alternatively as a function1 from the 
domain {a, b, c, … } to the range {x, y, z, … }. Where a map models a function, all the 
domain values are unique (but the range could contain duplicates). 

An advantage in modelling objects as records is that they can also be thought of as 
maps: each field is a maplet consisting of a label (the domain) that maps to a value (the 
range). In object maps, the labels always have the same type (viz: Label), but the values 

                                                           
1 The operator ⊕ is sometimes called function override in formal methods like Z, precisely because 
functions in Z are modelled as maps. 
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could be of many different types. For this reason, we give the union with override 
operator the following definition: 

∀α, β, γ . ⊕ : (α→β) × (α→γ) → (α→β∪γ) 
⊕ = λ(f:α→β).λ(g:α→γ). 
  { k a v | (k ∈ dom(f) ∪ dom(g)) ∧ 
   (k ∈ dom(g) ⇒ v = g(k)) ∧ 
   (k ∉ dom(g) ⇒ v = f(k)) } 

The top line is a polymorphic type signature [2], saying that ⊕ takes two maps with the 
individual type signatures (α→β) and (α→γ), and returns a map with the signature (α→β
∪γ). Notice how the type of the domain α is the same in each case (for labels), but the 
types of the ranges β, γ are possibly different. The range in the result is a union type β∪γ, 
formed by merging the types of the ranges of each argument. This is consistent with the 
type unions used in the previous article [1]. 

The full definition follows. This says that ⊕ takes two argument maps, f and g (with 
the given types) and produces a result map (the whole expression in braces). This result is 
the set of all those maplets k a v that satisfy the following conditions (after the vertical 
bar | ). The domain values k are obtained by taking the union of the domains of each 
argument map. This ensures that the domain of the result contains all the unique domain 
values from both maps. The range values v are obtained according to the asymmetric rule: 
if k is in the domain of the right-hand map g, use the corresponding range value g(k) from 
the right-hand map; otherwise use the corresponding range value f(k) from the left-hand 
map. This works, because every k must either be in the domain of the left-, or right-hand 
maps, or both. Note that f(k), g(k) denote range values by appealing to the functional 
interpretation of maps: f(k) “applies” the map f to the domain value k, yielding the 
corresponding range value. 

When used with records, the union with override operator has the effect of merging 
two records, but preferring the fields from the right-hand side in the case of conflicting 
labels. Where there are no label-conflicts, it takes the union of the fields. If there are 
label-conflicts, it discards fields on the left-hand side and chooses fields from the right-
hand side. This is exactly the behaviour we need to model record extension with 
overriding. 

Another use for this operator is to model field updates in an object. We shall look at 
this first, as a simple way of illustrating the behaviour of ⊕. Consider updating the x 
position of the simple co-ordinate from above: 

aCoord2D = { x a 3, y a 5 }  - starting state values 
newCoord2D = aCoord2D ⊕ {x a 7} - override the x value 
 = { x a 7, y a 5 }   - modified state values 

This can be used to model a primitive notion of field reassignment, although in the 
calculus we always create and return new objects (the λ-calculus is purely functional, 
after all). 
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6 SCHIZOPHRENIC SELF-REFERENCE 

Following this example, it would seem natural to define the extended object aPoint3D by 
combining the record for aPoint2D with a record of the extra methods (z and the 
modified equal) that we want it to have. The overriding behaviour of ⊕ will ensure that 
the result gains just one copy of the equal method, from the right-hand record of extra 
methods, which has the following structure: 

{ z a 2, equal a λp.(self.x = p.x ∧ self.y = p.y ∧ self.z = p.z) } 

Notice how this record also implies a recursion somewhere, because the equal method 
contains free references to self. To which object should this self refer? Looking at the 
body of the equal method, it is clear that we intend it to refer to aPoint3D, because we 
want to invoke the nested method self.z, which is not valid for aPoint2D. The only way to 
make self refer to the resulting object is to bind it outside the record combination (see 
bold highlight): 

aPoint3D  =  µ self . ( aPoint2D ⊕ { z a 2,  
 equal a λp.(self.x = p.x ∧ self.y = p.y ∧ self.z = p.z) } ) 

This says that aPoint3D is a recursive object, formed by taking the union-with-override 
of aPoint2D and a record of extra methods, in which self refers to aPoint3D. Unrolling 
the definition of aPoint2D (see bold highlight) this gives: 

aPoint3D  =  µ self . ( { x a 3, y a 5, identity a aPoint2D, 
  equal a λp.( aPoint2D.x = p.x ∧ aPoint2D.y = p.y) }  
 ⊕ { z a 2, equal a λp.(self.x = p.x ∧ self.y = p.y ∧ self.z = p.z) } ) 

We can now judge how ⊕ will combine the fields of these two records. The result should 
contain fields having all the labels {x, y, z, identity, equal} and the right-hand version of 
equal should be preferred, overriding the left-hand version. After record combination, 
this simplifies to: 

aPoint3D  =  µ self . { x a 3, y a 5, z a 2, identity a aPoint2D, 
  equal a λp.(self.x = p.x ∧ self.y = p.y ∧ self.z = p.z) } 

This is the correct result, but on closer inspection, it may not be quite what was expected. 
Unrolling the definition of aPoint3D reveals what has become of all the references to 
self: 

{ x a 3, y a 5, z a 2, identity a aPoint2D, 
 equal a λp.(aPoint3D.x = p.x ∧ aPoint3D.y = p.y ∧ aPoint3D.z = p.z) } 

From this it is apparent that aPoint3D is a schizophrenic object, in two minds about 
itself! The inherited method identity thinks that self ← aPoint2D, while the locally added 
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method equal thinks that self ← aPoint3D. How did this confusion arise? Recall that the 
recursive object aPoint2D was defined in isolation, such that self was bound over a 
different record: 

aPoint2D = µ self . { x a 3, y a 5, identity a self, 
  equal a λp.(self.x = p.x ∧ self.y = p.y) } 

All self-reference in this object inevitably refers to aPoint2D. So, when we inherit any 
methods from aPoint2D that contain self, this always refers to aPoint2D. In an earlier 
article [2], we described the problem of type-loss in languages such as C++ and Java, 
when methods referring to the self-type are inherited. The current example explains in 
more detail why this type-loss occurs: it is because inherited self always refers to the old 
object.

7 REDIRECTING SELF-REFERENCE 

It was Cook and Palsberg who first described the more flexible behaviour of self in 
languages like Smalltalk and Eiffel [6]. They drew analogies between object self-
reference and recursive function derivations . Figure 2 shows the two contrasting cases.  

client M F

 

client M F

 
 

Figure 2:  Naïve, and mutually recursive derivations 

In the first example, a simple recursive function F calls itself, indicated by the loop. A 
modification to F is modelled as a derived function M which calls F. Recursive calls in F 
are unaffected, so the encapsulation of F is preserved. This is like the treatment of self in 
languages such as Java and C++. In these languages, a derived object does not modify the 
self-reference of the base object. 

In the second example, the derived function M is mutually recursive with F. 
Recursive calls in F are affected by the modification, in the sense that they refer back to 
M, instead of to F. This is like the treatment of self in languages such as Smalltalk and 
Eiffel. In these languages, a derived object implicitly modifies the inherited self-
references of the base object, such that these refer instead to the derived object. 

To model inheritance in Smalltalk and Eiffel, we must redirect inherited self-
references to refer to the derived object. In the formal model, this is accomplished by 
using generators instead of records. A generator is a function of self, in which the 
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argument self is unbound (see section 3 above). The generator for 2D point objects is 
given by: 

genAPoint2D = λ self2D . { x a 3, y a 5, identity a self2D, 
   equal a λp.(self2D.x = p.x ∧ self2D.y = p.y) } 

and now we seek to derive a generator for 3D point objects, by inheritance. The key 
strategy is to make sure that the old self2D is replaced by the new self before any record 
fields are combined. This is achieved by applying genAPoint2D to the new self-argument 
for 3D points (see bold highlight): 

genAPoint3D  =  λ self . ( genAPoint2D(self)  ⊕  { z a 2,  
   equal a λp.( self.x = p.x ∧ self.y = p.y ∧ self.z = p.z) } ) 

This creates an instance of the generator body in which the substitution {self/self2D } has 
taken place. This body has the form of a record (see bold highlight): 

genAPoint3D  =  λ self . ( { x a 3, y a 5, identity a self, 
   equal a λp.( self.x = p.x ∧ self.y = p.y) }  
 ⊕  { z a 2, equal a λp.(self.x = p.x ∧ self.y = p.y ∧ self.z = p.z) } ) 

Both records on the left- and right-hand sides now refer to exactly the same self. We may 
combine them using the union with override operator, yielding the final simplified 
expression: 

genAPoint3D  =  λ self . { x a 3, y a 5, z a 2, identity a self, 
  equal a λp.(self.x = p.x ∧ self.y = p.y ∧ self.z = p.z) } 

This produces the generator that we desired, in which all self-reference is uniform (see 
bold highlight). To create the derived recursive object, all we need to do is take the 
fixpoint of the generator, which has the effect of binding self to the resulting record: 

aPoint3D  =  Y (genAPoint3D) 

=  µ self . { x a 3, y a 5, z a 2, identity a self, 
  equal a λp.(self.x = p.x ∧ self.y = p.y ∧ self.z = p.z) } 

We have now succeeded in our challenge, for this object has the desired structure and 
uniformity that we anticipated in section 4, but it required a more sophisticated model of 
inheritance. This model of implementation inheritance is somehow more satisfying, in 
that it allows inherited code to adapt to the derived object. For example, the inherited 
identity method will now return the derived object aPoint3D, rather than the old object 
aPoint2D.
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8 CONCLUSION 

We have constructed two different models of implementation inheritance and found that 
these correspond broadly to the mechanisms used in the major object-oriented languages. 
The core idea of extending and modifying object templates can be modelled using records 
and the union with override operator ⊕, for which we provided a satisfying typed 
definition. In Cook’s earlier work [4, 3, 6], no general typed definition was ever given for 
⊕, so this aspect is novel in our Theory of Classification. The operator captures the basic 
mechanism for record combination with overriding for all languages. After this, object-
oriented languages diverge, falling into two groups. 

In the first group, which includes Java and C++, self-reference is fixed as soon as the 
object template is defined. When such an object is extended, although self-reference in 
the additional methods refers to the derived object, self-reference in the inherited methods 
always refers to the base object.  In a suitably deep inheritance hierarchy, this means that 
objects may contain many versions of self, each referring to a different embedded 
ancestor-object! We described this as a kind of schizophrenia in self-reference. It is also 
linked to the problem of type-loss when methods passing values of the self-type are 
inherited [2]. Nonetheless, this model is the one used in all languages based on types and 
subtyping. 

In the second group, which includes Smalltalk and Eiffel, self-reference is open to 
modification, even after the object template is defined. When such an object is extended, 
self-reference in the inherited methods is always redirected to refer to the derived object. 
All references to self are uniform, which is good for consistency, but they are interpreted 
locally in the object concerned. This is a novel feature of object-oriented languages, 
anticipating other kinds of adaptive programming. It is interesting to note how this 
flexibility came about. In Smalltalk, all methods are dynamically interpreted, so 
references to self are only bound at runtime to mean the current receiver. In Eiffel, the 
recursion variable current was originally conceived as a macro, to be expanded locally to 
refer to the new class. This had the effect of building implicit type redefinition into the 
language. The flexible model of inheritance is used in all languages based on classes and 
subclassing [1]. 

Formally, the difference between the two models of inheritance is very slight: it 
depends only on when fixpoints are taken. In the subtyping model, the recursion in the 
base object is fixed before record combination. In the subclassing model, the recursion is 
only fixed after record combination. For this reason, we can claim that the theory is both 
elegant and economical. 
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