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The Theory of Classification
Part 9: Inheritance and Self-Reference

Anthony J H Simons, Department of Computer Science, University of
Sheffield, U.K.

1 INTRODUCTION

This is the ninth article in a regularr&s on object-orientedype theory, aimed
specifically at non-theoreticians. The p@s article demonstrated how the intuitive
notion of class in object-oriented languages hastectly formal interpretation that is
more general than the simple notiortygde [1]. A class can be modelled asFubounded
polymorphic type, representing a family of similar types which share a minimum
common structure and behaviour [2, 3]. listeecond-order model, which provides an
alternative to first-order subtyping [2, 4],eevrecursively-defined classes can be shown
to nest properly inside each other [1], a m&wphisticated kind ofype compatibility that

we callsubclassing in figure 1 (box 8). Type rules were defined for class membership,
sub-classification and clasgtension by inheritance.

Schemas Interfaces  Algebras

Exact 1 3
Subtyping 4
Subclassing 7

Figure 1: Dimensions of Type Checking

The previous article ecwentrated only on thgpeful aspects of classes. In this article, we
now turn to theconcrete aspect of classes and thetalled modelling of method
implementations. We want to be able tgplain in the formal model how an object’'s
structure is extended or altdreluring inheritance. In pi@cular, we want to understand
the process of method overndi and the meaning, after inhtance, of the special self-
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referential variableself, also known aghis, or current in different object-oriented
languages.

2 OBJECT IMPLEMENTATIONS

Several articles ago, we considered three difiteieemal encodings adimple objects [5].
We preferred the.-calculus encoding, which represemésursive objects as functional
closures, denoting simple records of methddse reason for choog this model is
because it fits so well with the F-boundegblanation of polymorphic classes, since both
models rely on the use generators, special functions which accegdlf (or, theself-
type) as their argument. Later, we shall lthke object model with the type model, in a
combined second-order F-boundgédcalculus. For the time by, we shall deal with
objects in an untyped way.

A simple two-dimensional point object attleco-ordinate (3, 5) may be represented
as a record, whose fields store valuesl dunctions, representy the attributes and
methods of the object. Eaclelil consists of a label which maps to a value (a simple
value, or a function):

aPoint2D =u self . { x> 3, y— 5, identity— self,
equal— Ap.(self.x = p.xa self.y = p.y) }

In the abovesdlf is the recursion variable, a plaodéder equivalent to the eventual
definition of the whole objecaPoint2D, which contains embedded referencessdid
(technically, we say thap binds self to the resulting definition — see [5] for an
explanation of this convention). Following thet @a record of fields, enclosed in braces
{...}. The first two fields, labelledx andy, map to simple values in the model. This is
because we waraPoint2D.x andaPoint2D.y to return the simple values directly, rather
like accessor methods. The third fiétkbntity is a method for returning the object itself;
the fourth fieldequal maps to another functiohp.(...), representing a method that
comparesaPoint2D with the argumenp, which is assumed to be another Point2D
instance.

This is where it becomes clear whkoint2D is a recursive object: inside the body
of the equal method,aPoint2D must invoke further methods andy upon itself, to
perform the field-by-field comparison with the argumpniTo enable this, the body of
the equal method needs a handle on the top-level olgBotnt2D, granted through the
recursion variableelf. Any object that needs to invokested methods on itself must be
recursive, so this is quite aromon occurrence in practice. Thdentity method is also
recursive, returning the object itself.

This theoretical use odelf corresponds exactly to the usual meaningsabff (in
Smalltalk), this (in Java and C++) andurrent (in Eiffel). In the model, you always
invoke nested methods explicitthrough the recursion variabgelf. In some of these
programming languages, you can omit the remrenf a nested message to the same
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object, which is implicitly understood to Iself (this, or current). This is just a syntactic
sugaring in the programming language. N

3 OBJECT GENERATORS

Readers who have been follogithis series will know by nothat a recursive definition
is created from first principk using a generator, a furctiwhich abstracts over the point
of recursion. Previously, we usgbe generators to build recursiveypes [1, 2]. Here, we
introduceobject generators to build recursive objects:

genAPoint2D =\ self . { x> 3, y— 5, identity— self,
equal— Ap.(self.x = p.xa self.y = p.y) }

In this function self is not yet bound to any kee — it is the argumermf the tuinction. The
generator can be used talduhe recursive object by infinite self-application [5]:

aPoint2D = genAPoint2D(genAPoint2D(genAPoint2D(...)))

and for convenience’s sake, weay use the fixpoint finde¥ to build this infinite
sequence:

Y (genAPoint2D) = genAPoint2D(genAt2D(genAPoint2D(...))) = aPoint2D

Later, we will see more expressions of this kind to describe the final fixing of the
recursive structure of an object. Ryily speaking, an object generagenAPoint2D is a
template for the structure of points lileoint2D, in which self does not yet refer to
anything. It turns out that this is a usefwnstruction, since it wilallow us to explain

how self can refer to different objects.

4 EXTENDED OBJECT IMPLEMENTATIONS

Our goal is to model the inheritance of implentation. This can be thought of as a kind
of extension or adaptation ah object, to produce an emtied object with more fields,
some of which may be modified, in the sensd the labels map to different values than
in the original object. The challenge we seirselves is to derive a three-dimensional
point aPoint3D at the co-ordinate (3, 5, 2) by extending the simple two-dimensional
aPoint2D in some fashion.

To begin with, we jump ahedad describe what we wa@aPoint3D to look like, at
the end of the derivation @eess. Ultimately, we waiittto have an extradimension and
a modified version of thequal method, as if it had been fded from scratch, as a
whole, in the following way:

aPoint3D =u self . { x> 3, y— 5, z— 2, identity— self,
equal> Ap.(self.x = p.xa self.y = p.ya self.z = p.z) }
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In the aboveself is the placeholder variable, equivalent to the eventual definition of the
objectaPoint3D, which also contains embedded referencesltan its identity andequal
methods. Note the difference in the meaningsaf. whereas befor@n boundself «
aPoint2D, hereu bindsself «— aPoint3D. The object denoted Iself changes, depending

on the binding context. From theactical point of view, thiss also desirable, since the
body of the modifiedequal method is only valid ifself stands foraPoint3D (vizz you
could not access tleemethod ofaPoint2D).

In the previous article [1], we construdta simple model for inheritance, in which
we treated a record as a eéfields and used set unianto build a larger derived record
by taking the union of the fieldsf the base record and a record of extra fields:

derived = base’ extra
This only works for very simple records, wh have unique fieldand no recursion:

aCoord2D ={x— 3,y— 5} - base record
zField ={z— 2} -extrarecord
aCoord3D = aCoord2D zField = {x— 3,y 5,z 2}

We cannot construaPoint3D in this way, because the simple union of fields would
create a result in which there reewo different versions adqual, since the original and
redefined versions of this field are nattually identical, therefore the union would
preserve two copies.

5 UNION WITH OVERRIDE

Instead, a different operator must used, call@dn with override: @. This is a standard
mathematical operator, defined for maps (rather than sets), that combines two maps in a
certain way, which we define below. #ap is a collection of pairs of values, called
maplets, with an arrow from the left- to theght-hand value in each pair. A map is
written like:

{aH x,b—>y, c— 2z ...} “amapstox, bmapstoy,cmapstoz, ..”

and can be viewed variously as a lookup tableyhich each maplet relates a key (on the
left) to a corresponding value (on thghi), or alternatigly as a functioh from the
domain {a, b, c, ... } to the range {x, y, z, }. Where a map models a function, all the
domain values are unique (buéetfange could contain duplicates).

An advantage in modelling objects as resoiglthat they can also be thought of as
maps: each field is a maplet consisting ofl@elgthe domain) that maps to a value (the
range). In object maps, the labels always hheesame type (viz: Label), but the values

! The operato® is sometimes callefdinction override in formal methods like Z, precisely because
functions in Z are modelled as maps.
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could be of many different types. For thisason, we give the union with override
operator the following definition:

Va, B,y .®D: (a—>p) x (a—y) = (a—>Puy)
@ = Af:a—P).A(g:0—Y).
{k—v| (ke dom(f)u dom(g))A
(k € dom(g)= v =g(k) A
(k ¢ dom(g)= v =1(k)) }

The top line is a polymorphic typggnature [2], saying th& takes two maps with the
individual typesignaturesd—) and ¢-—v), and returns a map with the signatuxe>@

wy). Notice how the type of the domainis the same in each case (for labels), but the
types of the range y are possibly different. The rangethe result is a union tyga_y,
formed by merging the types of the rangegath argument. This is consistent with the
type unions used in th@revious article [1].

The full definition follows. This says thé& takes two argument magsandg (with
the given types) and produces a result mapwihnae expression in braces). This result is

the set of all those mapléts— v that satisfy the following conditions (after the vertical
bar | ). The domain valudsare obtained by taking the union of the domains of each
argument map. This ensures that the domaih@fesult contains all the uniqgue domain
values from both maps. The range valuase obtained according to the asymmetric rule:
if kis in the domain of the right-hand mgpuse the corresponding range vaiie from

the right-hand map; otherwiseauthe corresponding range valife) from the left-hand
map. This works, because evéryust either be in the domaitf the left-, or right-hand
maps, or both. Note thdk), g(k) denote range values bymealing to the functional
interpretation of mapst(k) “applies” the mapf to the domain valué, yielding the
corresponding range value.

When used with records, the union with oige operator has theffect of merging
two records, but preferring the fields fronethght-hand side in the case of conflicting
labels. Where there are no label-conflicts, ke the union of théelds. If there are
label-conflicts, it discards fields on the Widnd side and chooses fields from the right-
hand side. This is exactly the behaviour weed to model record extension with
overriding.

Another use for this operator is to mofield updates in an object. We shall look at
this first, as a simple way of illustrating the behaviourdofConsider updating the x
position of the simple co-ordinate from above:

aCoord2D ={x—> 3,y 5} - starting state values
newCoord2D = aCoord2B {x > 7} - override the x value
={x—>7,y—5} - modified state values

This can be used to model a primitivetion of field reassignment, although in the
calculus we always createch return new objects (thie-calculus is purely functional,
after all).
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6 SCHIZOPHRENIC SELF-REFERENCE

Following this example, it would seemtaeal to define the extended objegtoint3D by
combining the record foaPoint2D with a record of the extra methods &énd the
modified equal) that we want it to havé he overriding behaviour @éd will ensure that
the result gains just one copy of tegual method, from the right-hand record of extra
methods, which has thellowing structure:

{z— 2, equal> Ap.(self.x = p.xA self.y = p.ya self.z = p.z) }

Notice how this record also impliesrecursion somewhere, because dtpgal method
contains free references $alf. To which object should thisalf refer? Looking at the
body of theequal method, it is clear that we intend it to referafoint3D, because we
want to invoke the nested methsaif.z, which is not valid foaPoint2D. The only way to
make self refer to the resulting object is to bitdoutside the record combination (see
bold highlight):

aPoint3D =p self . (aPoint2D® { z - 2,
equal— Ap.(self.x = p.xa self.y = p.ya self.z = p.z) })
This says thaaPoint3D is a recursive object, formday taking the union-with-override

of aPoint2D and a record of extra methods, in whgef refers toaPoint3D. Unrolling
the definition ofaPoint2D (see bold highlight) this gives:

aPoint3D =p self . ({ x+— 3,y 5, identity — aPoint2D,
equal — Ap.(aPoint2D.x = p.x A aPoint2D.y = p.y) }
® {z 2, equal> Ap.(self.x = p.xa self.y = p.yan self.z =p.z) })
We can now judge ho@® will combine the fields of these two records. The result should
contain fields having all the lab€{g, y, z, identity, equal} and the right-hand version of

equal should be preferred, overriding the {afind version. After record combination,
this simplifies to:

aPoint3D =p self. { x— 3, y— 5, z— 2, identity— aPoint2D,
equal— Ap.(self.x = p.xa self.y = p.ya self.z = p.z) }
This is the correct result, but on closer ieson, it may not be die what was expected.

Unrolling the definition ofaPoint3D reveals what has become of all the references to
self:

{x 3,y 5, z— 2, identity— aPoint2D,
equal— Ap.@Point3D.x = p.xA aPoint3D.y = p.yA aPoint3D.z = p.z) }

From this it is apparent thaPoint3D is a schizophrenic obgt, in two minds about
itself! The inherited methoitlentity thinks thatself «<— aPoint2D, while the locally added
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methodequal thinks thatself «— aPoint3D. How did this confusiomrise? Recall that the
recursive objecPoint2D was defined in isolation, such thsdif was bound over a
different record:

aPoint2D =u self . { x— 3, y— 5, identity— self,
equal- Ap.(self.x = p.xa self.y = p.y) }

All self-reference in this object inevitably refersaBoint2D. So, when we inherit any
methods fromaPoint2D that containself, this always refers taPoint2D. In an earlier

article [2], we described the problem of type-loss in languages such as C++ and Java,
when methods referring to the self-type areerited. The current example explains in
more detail why this type-loss occurs: it is because inhesiéa@lways refers to the old
object.

7/ REDIRECTING SELF-REFERENCE

It was Cook and Palsberg who first d@lsed the more flexible behaviour gélf in
languages like Smalltalk and Eiffel [6]. They drew analogies between object self-
reference and recursive furani derivations . Figure 2 shewhe two contrsting cases.

(e {7

Figure 2: Naive, and muilly recursive derivations

In the first example, a simple recursive function F calls itself, indicated by the loop. A
modification to F is modelled as a derived function M which calls F. Recursive calls in F
are unaffected, so the encapsulation of préserved. This is like the treatmentselff in
languages such as Java and C++. In thegpidges, a derived object does not modify the
self-reference of the base object.

In the second example, the derived function Mmigtually recursive with F.
Recursive calls in fare affected by the modification, inehsense that they refer back to
M, instead of to F. This is like the treatmentsdff in languages such as Smalltalk and
Eiffel. In these languages, a derived object implicitly modifies the inhesse
references of the base object, such these refer instead to the derived object.

To model inheritance in Smalltalk and Eiffel, we must redirect inhersgd
references to refer to the derived objecttia formal model, this is accomplished by
using generators instead of recardd generator is a function @Eif, in which the
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argumentself is unbound (see section 3 above). Demerator for 2D point objects is
given by:

genAPoint2D =\ selb, . { X — 3, y— 5, identity— selfp,
equal — Ap.(selfp.X = p.XA selbp.y = p.y) }
and now we seek to derive a generator 3Dr point objects, by inheritance. The key
strategy is to make sure that the sftf,p is replaced by the neself before any record
fields are combined. This is achieved by appldagAPoint2D to the new self-argument
for 3D points (see bold highlight):

genAPoint3D =A self . (genAPoint2D(self) @ {z - 2,
equal > Ap.( self.x = p.xa self.y = p.ya self.z=p.z) })

This creates an instance of the generator body in which the substitseifiselfoo } has
taken place. This body has the form of a record (see bold highlight):

genAPoint3D =\ self . ({ x> 3,y 5, identity - self,
equal > Ap.(sefx=pxAsdfly=p.y)}
@ {z > 2, equal> Ap.(self.x = p.xa self.y = p.ya self.z =p.z) })
Both records on the left- and right-hasides now refer to exactly the sasaf. We may

combine them using the union with ovegidperator, yielding the final simplified
expression:

genAPoint3D =L self . {x+> 3, y— 5, z 2, identity— self,
equal— Ap.(self.x = p.xa self.y = p.ya sef.z =p.z) }
This produces the generator that we desiredyhich all self-reference is uniform (see

bold highlight). To create the derived reduesobject, all we need to do is take the
fixpoint of the generator, which has the effect of bindi@§to the resulting record:

aPoint3D =Y (genAPoint3D)

= uself.{x— 3,y— 5, z— 2, identity self,
equal> Ap.(self.x = p.xa self.y = p.ya self.z = p.z) }

We have now succeeded in our challenge,tlits object has the desired structure and
uniformity that we anticipateoh section 4, but it requiredraore sophisticated model of
inheritance. This model of implementatiorha@nitance is somehowore satisfying, in
that it allows inherited code to adaptttee derived object. For example, the inherited
identity method will now return the derived objeafRoint3D, rather than the old object
aPoint2D.
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8 CONCLUSION -

We have constructed two different models of implementation inheritance and found that
these correspond broadly the mechanisms used in tim@jor object-oriented languages.
The core idea of extending and modifying objechplates can be modelled using records
and the union with override operatér, for which we provided a satisfying typed
definition. In Cook’s earlier work [4, 3, 6], rgeneral typed definition was ever given for

@, so this aspect is novel in our TheoryQiassification. The operator captures the basic
mechanism for record combination with oveimg for all languages. After this, object-
oriented languages diverdgalling into two groups.

In the first group, which includes Java anetCself-reference ixed as soon as the
object template is defined. When suchdject is extended, although self-reference in
the additional methods refers to therived object, self-reference in the inherited methods
always refers to thbase object. In a suitably deep inheritance hierarchy, this means that
objects may contain many versions of se#fch referring to a different embedded
ancestor-object! We described this as a kindabfizophrenia in selfeference. It is also
linked to the problem of type-loss when thmads passing values of the self-type are
inherited [2]. Nonetheless, this modelthe one used in all languages basetypes and
subtyping.

In the second group, which includes Smalltalk and Eiffel, self-reference is open to
modification,even after the object template is defined. Wfhsuch an object is extended,
self-reference in the inherited methods is always redirected to refer to the derived object.
All references to self are uniform, whichgeod for consistency, but they are interpreted
locally in the object concerned. This isnavel feature of object-oriented languages,
anticipating other kinds of adaptive progmaing. It is interesting to note how this
flexibility came about. In Smalltalk, almethods are dynamically interpreted, so
references taelf are only bound at runtime to meare tburrent receiver. In Eiffel, the
recursion variableurrent was originally conceived asnaacro, to be expanded locally to
refer to the new class. This had the effecboilding implicit type redefinition into the
language. The flexible motef inheritance is useih all languages based olasses and
subclassing [1].

Formally, the difference between the two dats of inheritance is very slight: it
depends only omvhen fixpoints are taken. In the subtygi model, the recursion in the
base object is fixetefore record combination. In the suassing model, the recursion is
only fixed after record combination. For this reason, @an claim that the theory is both
elegant and economical.
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